
URL-based Web Tracking Detection Using
Deep Learning

Ismael Castell-Uroz∗, Théo Poissonnier†, Pierre Manneback† and Pere Barlet-Ros∗
∗Department of Computer Architecture, Universitat Politècnica de Catalunya

Barcelona, Spain
Email: {icastell, pbarlet}@ac.upc.edu

†Computer Science Unit, Faculty of Engineering, University of Mons
Mons, Belgium

Email: theo.poissonnier@student.umons.ac.be / pierre.manneback@umons.ac.be

Abstract—The pervasiveness of online web tracking poses a
constant threat to the privacy of Internet users. Millions of users
currently employ content-blockers in their web browsers to block
tracking resources in real time. Although content-blockers are
based on blacklists, which are known to be difficult to maintain
and easy to evade, the research community has not succeeded
in replacing them with better alternatives yet. Most of the
methods recently proposed in the literature obtain good detection
accuracy, but at the expense of increasing their complexity and
making them more difficult to maintain and configure by the
end user. In this paper, we present a new web tracking detection
method, called Deep Tracking Detector (DTD), that analyzes the
properties of URL strings to detect tracking resources, without
using any other external features. Consequently, DTD can easily
be implemented in a browser plugin and operate in real time. Our
experimental results, with more than 5M HTTP requests from
100K websites, show that DTD achieves a detection accuracy
higher than 97% by looking only at the URL of the resources.

Index Terms—web tracking, deep learning, URL classification

I. INTRODUCTION

Several studies (e.g. [1], [2]) have shown that, nowadays,
more than 70% of the most popular web services have
tracking systems running in the background. Web tracking
allow online companies to collect information about their
users to improve their services. For instance, web tracking
is the basis of many search customization algorithms and
targeted advertisement campaigns. However, from the user
perspective, this is achieved at the expense of their own
privacy. Some studies found the collected data to be used
for many other purposes, such as price discrimination [3],
assessment of financial credibility [4] or determination of
insurance coverage [5]. Moreover, the appearance of the so-
called third-party trackers and data-brokers aggravated the
situation. The former are services with the ability to centralise
personal information from multiple different domains, while
the latter are companies willing to collect personal information
to sell it to other companies. According to [6], the web
analytics market size was $2.63B in 2018 and it is expected
to reach $10.73B by 2026.

Although the research community has dedicated great ef-
forts to improve the privacy protection measures by means of

new complex techniques (e.g. [7]–[9]), the most popular ap-
proach to block web tracking systems still relies on traditional
content-blockers [10]; browser plugins that block URLs found
on manually-curated pattern lists. The reason behind this is
that latest methods proposed in the literature are difficult to
adopt by common users. For example, recent proposals require
users to install instrumented versions of web browsers [7],
get measurements from multiple vantage points [11] or share
privacy-sensitive information, like cookies [12].

In this work, we present Deep Tracking Detector (DTD), a
novel approach that uses deep learning to automatically detect
tracking URLs. The classification is done locally and exclu-
sively based on the properties of the URL string, without the
necessity of using any external features or communications.
This approach has several advantages: (i) it does not require
to download the source files, so malicious resources can be
blocked in advance, (ii) it is more robust against the use
of minification and code obfuscation techniques [13], (iii)
it is more difficult to evade than traditional content-blockers,
(iv) it can potentially generalize to new tracking domains,
which would be missed by traditional content-blockers based
on blacklists, and (v) it is lightweight enough to be included
in a browser plugin.

In order to evaluate the performance of DTD, we collected
over 5M HTTP requests from the top 100K most popular
websites as per the Alexa’s list [14]. The corresponding URLs
were labeled using the most popular pattern lists currently
available. Our experimental results show that DTD obtains
a detection accuracy over 97% using only the characters of
the URL as input. This result indicates that tracking URLs
actually have distinguishable properties that can be effectively
exploited for web tracking detection.

The rest of the paper is organized as follows. Section II
revises the most relevant related work in this area. In Section
III we present the architecture of our deep learning detector,
while the evaluation is presented in Section IV. Lastly, Section
V concludes the paper and presents the future work.

II. RELATED WORK

In recent years, there have been many research studies that
focused on improving online privacy. We refer the interested

reader to [15] for a comprehensive survey on the existing web
tracking mechanisms and the available protection measures.
Regarding tracking detection methods, Ikram et al. in [9] and
Wu et al. in [8] proposed machine learning algorithms based
on the analysis of JavaScript code syntax to detect tracking
patterns. Other works, such as Iqbal et al. in [7], proposed
complex combinations of JavaScript code attribution, DOM
code inspection and network requests annotation to detect
tracking pattern signatures. However, most of these approaches
are very specialized and complex, and usually require major
modifications to the browsers, fact that prevent common users
to adopt these solutions.

In [12] Metwalley et al. present a system to find unique
identifiers embedded in the HTTP headers or HTTP requests.
To this end, they compare the requests of different users
accessing the same domain to discover parameters that can be
used as identifiers. Similarly, Wu et al. present in [16] a system
to detect the same identifiers collaboratively by means of a k-
anonimity machine learning algorithm. Both approaches use
only the URLs, similarly to our work. However, they need to
compare requests from different users to detect identifiers. The
main advantage of this approach is that it is easy to deploy
using a browser plugin that communicates to a centralized
system responsible for the comparison. The main drawbacks
are the privacy implications involved in sending all the HTTP
requests done by the user to make the comparison, and the
delay introduced by this communication.

In [17] Le et al. propose a deep learning method to
detect malicious and phishing websites. The system applies
a combination of two Convolutional Neural Networks over
the characters and words of the URL to find patterns that
could identify malicious websites. In contrast, we show that
a simpler and more compact architecture can work more
effectively in the case of web tracking detection.

On the other hand, content-blockers such as AdBlock
Plus [18], Ghostery [19] or uBlock Origin [20] compare the
URLs to a predefined list of patterns indicating the domains
to be blocked. These solutions are simple and easy to deploy,
as they only require local access to the URL. EasyList [21]
and EasyPrivacy [22] are the most popular and precise lists
currently available. Both of them are maintained by the
community. The manually-curated and static nature of those
lists are their main drawback, preventing them to quickly adapt
to an evolving environment like web tracking.

Our proposal, like content-blockers, also works at the URL
level, presenting all the associated benefits. URLs are very
easy to access since it is not necessary to load the whole
page or to explore any other exchanged data. Similarly, lexical
features like the URL length can be measured fast, while other
features such as network properties (e.g. IP Address, HTTP
headers) or content properties require explicitly to download
the content hosted by the URL to perform the inspection,
increasing the risk and slowing down the process. Moreover,
given that our method does not use code inspection, it is more
robust against code minification and obfuscation, which is used
by some JavaScript trackers to avoid detection [13].

Fig. 1. URL structure

III. PROPOSED METHOD

Our proposal is focused on classifying a given URL as
tracking or non-tracking based only on the contents of the
URL. To achieve it we have a set of URLs previously labeled,
and we need to find a prediction model that minimizes the
total number of mistakes in the entire data set. We are facing
the problem as a binary classification problem. Considering
a set of M URLs : (x1, y1), (x2, y2), . . . , (xM , yM) where
xm represents a URL, and ym ∈ {0, 1} is the label of the
URL (1 → tracking, 0 → non-tracking), we need to find a
prediction function f : Rn → R whose role is to assign a
class for any given instance x of type URL. The prediction
made by the function is denoted as ŷm = sign(f(xm)). In our
case, this function is represented as a Deep Neural Network
(DNN). We compared it to other models such as a Recurrent
Neural Network (RNN) and a Convolutional Neural Network
(CNN). Although the results were similar, RNN had much
slower inference time (1.16s vs. 0.04s) and CNN had about
50% more false positives.

A. Preprocessing

The main benefit of deep learning is that it operates over
raw data, making unnecessary to extract features to be used in
the classification process. However, the model cannot accept
directly string-format inputs like URLs. We need a preprocess-
ing step to find a representation that could be used as input.
To this end, we look at the URL as a sequence of characters,
splitting it in each individual character. Every character is
taken into account to give the model as much information as
possible, even the separation characters (e.g. ”/”, ”;”). At this
step, each URL is a 1-dimension variable-length array such as
u = [c1, c2, . . . , cL] where ci, i = 1, . . . , L is a character (e.g.
letters, symbols, numbers) and L is the length of the URL.

The second step transforms each character into an integer
using a dictionary preserved over all the process. Our data set
contains 90 different characters numbered from 1 to 90. At the
end of this step, each URL is a 1-dimension variable-length
array such as u = [n1, n2, . . . , nL] where ni, i = 1, . . . , L is
an integer ∈ [1, 90] and L is the length of the URL.

The last step consist of fixing the length of the URL. Based
on our expertise we selected a maximum length value of
200 characters, usually longer enough to contain all the URL
(only 3.4% of the total and 6.8% of the tracking URLs are
longer) but easy to handle by deep learning algorithms. The
structure of a typical URL can be seen in Fig. 1. According
to our observations, usually the most relevant information is
contained in the parameters and query parts of the URL. As

Fig. 2. URL preprocessing

shown in the figure both are located at the last positions.
Consequently, if the URL is longer than 200 characters the
system truncates the first elements containing the scheme,
domain and path information until only 200 characters remain.
On the contrary, if the URL is shorter than 200 characters we
pad it filling it with zeros at the beginning of the array until
the total length becomes 200. This way the system keeps the
most important information always at the end of the array.
Finishing this step, each URL is a 1-dimension fixed-length
array such as u = [0, . . . , 0, n1, n2, . . . , nL] where L = 200
and ni, i = 1, . . . , L is an integer ∈ [1, 90]. Fig. 2 shows a
diagram of the full preprocessing process.

B. Model Architecture

Although the model proposed is prepared to receive as input
the preprocessed URLs presented in the last subsection, the
input still needs some manipulation to be usable by the clas-
sification process. Thus, the model itself can be conceptually
divided in two parts: the URL representation generation and
the classification layers. Fig. 3 shows the model complete
with all its layers. The URL representation generation would
comprehend the first two layers while the classification would
be the last three, all of them integrated into one model.

By default deep learning treat the inputs as numerical
values, interpreting that 2 close values are similar. In our
scenario each character has been substituted with an integer,
but there is no special relation between them. Thus, if we
train the system with only the preprocessed URLs the model
would be biased. To fix it we add a first Embedding Layer,
transforming the preprocessed URLs to a low-dimensional
continuous representations of them (each character will be
represented by a 32-dimensions vector). Furthermore, we set
a masking parameter to inform the model to ignore the zeros
introduced in the padding process. Lastly, we need to simplify
the resulting matrix to a 1-dimension array, the final input that
Dense Layers expect. To this end, we add a new Flatten Layer
that reduces the embedding output to a 1-dimension array by
putting each row of the matrix side by side in one array.

The second part of the model correspond to 3 Dense Layers
with a decreasing number of units respectively. In order to
find the optimal number of layers and units per layer we
executed a Grid search with multiple values. The method tries

Fig. 3. Deep Neural Network architecture

TABLE I
CLASSIFICATION RESULTS

Subset Precision Recall F1 Score Accuracy

DNN + Left Padding Non-tracking 95% 100% 0.97 94.7%Tracking 99% 54% 0.69
DNN + Left Padding

+ Embedding
Non-tracking 98% 100% 0.99 97.1%Tracking 97% 78% 0.86

DNN + Right Padding
+ Embedding

Non-tracking 97% 100% 0.98 97.9%Tracking 96% 83% 0.87

all the possible combinations and select the best one. We found
that selecting too many neurons (e.g. 2048) makes the model
to overfit. To avoid overfitting on the model a dropout has
been added to each layer. The output is composed of a 1-unit
layer with a softmax activation function giving a float output
∈ [0, 1]. The output is then rounded to the closest integer (0
for non-tracking or 1 for tracking).

IV. EVALUATION AND VISUALIZATION

A. Evaluation

To evaluate the system we analyzed the top 100K most
popular websites as per Alexa’s list [14]. The exploration was
performed on April 2020 using ORM [2], an open source
framework we developed to map URL and resources used
within online domains. The labeling of the ground-truth was
done using uBlock Origin [20] running over a dozen filter-lists
including EasyList [21] and EasyPrivacy [22], two of the most
popular and precise pattern lists available. The collected data
set has more than 5,3M unique URLs where approximately
4,7M have been labeled as non-tracking and 600K as tracking.
The evaluation of DTD was made using cross-validation (90%
for training and 10% for testing) over the entire data set.
Furthermore, we used a subset of the training set to stop the
training process when overfitting starts.

Table I shows the results of DPD with different con-
figurations for the embeddings and tagging process. The
results are splitted differentiating non-tracking and tracking
classification. The system has high accuracy with all the
configurations, presenting the best results by using an em-
bedding and padding/truncating the URLs by the right side.
However, as seen in Fig. 1 and commented before, padding or
truncating them by the right would require to truncate requests
parameters and query properties, for long URLs. These fields
include relevant information, such as the file type (e.g. most
tracking systems work on JavaScript files). On the contrary,

Fig. 4. t-SNE applied on the output of the penultimate layer of the model

the left fields include information about the domain names.
Thus, padding the URLs by the right could bias the system
towards finding common properties of the domains hosting
tracking, instead of focusing on the properties of the resources
themselves. Accordingly, we decided our system to pad the
URLs by the left, even if the accuracy is a bit lower with our
data set (≈ 0.8%). This way, the resulting model should be
more robust and suffer less from temporal obsolescence, for
example if the list of tracking domains changes over time.

For the selected configuration (DNN + Left Padding +
Embedding) the system present a very high accuracy specially
for the non-tracking classification. For tracking URLs the
precision is very high with a 97%, but the recall decreases
until 78%. Blocking non-tracking resources may break website
usability or functionality. Thus, from the user perspective it
is better to have more false negatives and a bit lower recall,
letting pass through some tracking URLs, than having a lower
precision and higher false positives.

B. Visualization and Observations

In order to have a better understanding of the resulting
model, we applied some visualization techniques using the
output of the penultimate layer of the model. We collected each
element, represented by a 128-dimension array, and applied a
dimensionality reduction technique called t-SNE. The resulting
plot, shown in Fig. 4, presents the classification accuracy
in different colors. There are clear clusters for tracking as
well as non-tracking URLs. It also presents one cluster with
mixed results. We correlated some characteristics of the URLs
included in each cluster to discover particularities and, as
expected, we found differentiated clusters depending on the
type of file being loaded by the URL. This enforces our
decision of padding the URLs by the left to maintain file
characteristics. The numbers of the figure represent the most
common resource for each cluster. The small green clusters
are all formed by JavaScript files.

To explore the mixed cluster in higher detail, we randomly
selected a subset of 50K URLs and loaded the information
with the online visualization tool from Tensorflow [23] using
the same t-SNE technique. The tool permitted us to explore

Fig. 5. Classification results detail

the details of each URL. Fig. 5 shows the results given
by the visualization tool, differentiating between correctly
classified in blue and badly classified in red. The clusters in
the center of the figure contain the majority of errors. We
zoomed in those clusters and compared the initial labels given
by the pattern lists with the predicted values (red→tracking,
blue→non-tracking). Most of the incorrectly classified URLs
belong to the clusters inside the circles shown in the figure.
Inspecting the corresponding URLs we found that most errors
pertain to ground-truth misclassified URLs for very common
non-tracking libraries like JQuery, or WordPress configuration
scripts. This explains why our method also misclassified them
and highlights the inaccuracies of current pattern lists.

V. CONCLUSIONS

In this work we presented Deep Tracking Detector (DTD),
a new web tracking detection system based on deep learning.
DTD can detect web tracking resources with 97% accuracy
using only as input the characters of the URL string. To
the best of our knowledge this is the first work to apply
deep learning to the detection of web tracking using only
the URL. Our solution is simple and much easier to adopt
than more complex systems recently proposed in the literature.
Compared to current content-blockers, our solution is more
difficult to evade and can potentially generalize to new tracking
domains that may appear in the future, if they have similar
characteristics to current tracking domains. As a future work
we plan to develop browser plugins that implement our model
for the most popular browsers, which could help Internet users
to easily improve their privacy.

VI. ACKNOWLEDGMENTS

This work was supported by the Spanish MINECO under
contract TEC2017-90034-C2-1-R (ALLIANCE).

REFERENCES

[1] S. Englehardt and A. Narayanan, “Online Tracking: A 1-million-site
Measurement and Analysis,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, (Vi-
enna, Austria), pp. 1388–1401, Association for Computing Machinery,
Oct. 2016.

[2] I. Castell-Uroz, J. Solé-Pareta, and P. Barlet-Ros, “Network measure-
ments for web tracking analysis and detection: A tutorial,” IEEE Instru-
mentation & Measurement Magazine, vol. Special Issue ”Measurements
for Advanced Networking & Networks for Advanced Measurements”,
In press.

[3] J. Mikians, L. Gyarmati, V. Erramilli, and N. Laoutaris, “Crowd-
assisted search for price discrimination in e-commerce: first results,”
in Proceedings of the ninth ACM conference on Emerging networking
experiments and technologies, CoNEXT ’13, (Santa Barbara, California,
USA), pp. 1–6, Association for Computing Machinery, Dec. 2013.

[4] K. Lobosco, “Facebook friends could change your credit score,” Aug.
2013. https://money.cnn.com/2013/08/26/technology/social/facebook-
credit-score/index.html.

[5] The Economist, “Very personal finance.”
https://www.economist.com/finance-and-economics/2012/06/02/very-
personal-finance.

[6] “Web Analytics Market Size, Share and Industry Analysis | Forecast
2026.” https://www.alliedmarketresearch.com/web-analytics-market-
A05971.

[7] U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and Z. Shafiq,
“ADGRAPH: A Graph-Based Approach to Ad and Tracker Blocking,”
IEEE Symposium on Security and Privacy 2020, p. 14, 2019.

[8] Q. Wu, Q. Liu, Y. Zhang, P. Liu, and G. Wen, “A Machine Learning
Approach for Detecting Third-Party Trackers on the Web,” in Computer
Security – ESORICS 2016 (I. Askoxylakis, S. Ioannidis, S. Katsikas,
and C. Meadows, eds.), Lecture Notes in Computer Science, (Cham),
pp. 238–258, Springer International Publishing, 2016.

[9] M. Ikram, H. J. Asghar, M. A. Kaafar, A. Mahanti, and B. Krishna-
murthy, “Towards Seamless Tracking-Free Web: Improved Detection of

Trackers via One-class Learning,” Proceedings on Privacy Enhancing
Technologies, vol. 2017, pp. 79–99, Jan. 2017.

[10] J. Mazel, R. Garnier, and K. Fukuda, “A comparison of web privacy
protection techniques,” Computer Communications, vol. 144, pp. 162–
174, Aug. 2019.

[11] V. Kalavri, J. Blackburn, M. Varvello, and K. Papagiannaki, “Like a
Pack of Wolves: Community Structure of Web Trackers,” in Passive
and Active Measurement (T. Karagiannis and X. Dimitropoulos, eds.),
Lecture Notes in Computer Science, (Cham), pp. 42–54, Springer
International Publishing, 2016.

[12] H. Metwalley, S. Traverso, and M. Mellia, “Unsupervised Detection
of Web Trackers,” in 2015 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6, Dec. 2015.

[13] H. Le, F. Fallace, and P. Barlet-Ros, “Towards accurate detection of
obfuscated web tracking,” in 2017 IEEE International Workshop on
Measurement and Networking (M N), pp. 1–6, Sept. 2017.

[14] K. Cooper, “Alexa: Most popular website list,” 2020.
https://www.alexa.com/.

[15] T. Bujlow, V. Carela-Español, J. Solé-Pareta, and P. Barlet-Ros, “A
Survey on Web Tracking: Mechanisms, Implications, and Defenses,”
Proceedings of the IEEE, vol. 105, pp. 1476–1510, Aug. 2017.

[16] Z. Yu, S. Macbeth, K. Modi, and J. M. Pujol, “Tracking the Trackers,” in
Proceedings of the 25th International Conference on World Wide Web,
WWW ’16, (Montréal, Québec, Canada), pp. 121–132, International
World Wide Web Conferences Steering Committee, Apr. 2016.

[17] H. Le, Q. Pham, D. Sahoo, and S. C. H. Hoi, “URLNet: Learning a
URL Representation with Deep Learning for Malicious URL Detection,”
arXiv:1802.03162 [cs], Mar. 2018.

[18] AdBlock Plus, “Adblock Plus,” 2020. https://adblockplus.org/en/.
[19] Ghostery, “Ghostery Makes the Web Cleaner, Faster and Safer!,” 2020.

https://www.ghostery.com/.
[20] R. Hill, “uBlock Origin,” 2020. https://github.com/gorhill/uBlock.
[21] “EasyList,” Feb. 2020. https://easylist.to/.
[22] “EasyPrivacy,” 2020. https://easylist.to/easylist/easyprivacy.txt.
[23] N. Thorat, C. Nicholson, Big, and D. Smilkov, “Embedding projector -

visualization of high-dimensional data.” http://projector.tensorflow.org.

