2402.10067v1 [cs.DC] 22 Jan 2024

arxXiv

LLM-based policy generation for intent-based
management of applications

Kristina Dzeparoska*
Department of Electrical and Computer Engineering
University of Toronto
Toronto, Ontario
kristina.dzeparoska @mail.utoronto.ca

Ali Tizghadam
Department of Electrical and Computer Engineering
University of Toronto
Toronto, Ontario
ali.tizghadam @utoronto.ca

Abstract—Automated management requires decomposing
high-level user requests, such as intents, to an abstraction that the
system can understand and execute. This is challenging because
even a simple intent requires performing a number of ordered
steps. And the task of identifying and adapting these steps (as
conditions change) requires a decomposition approach that can-
not be exactly pre-defined beforehand. To tackle these challenges
and support automated intent decomposition and execution,
we explore the few-shot capability of Large Language Models
(LLMs). We propose a pipeline that progressively decomposes
intents by generating the required actions using a policy-based
abstraction. This allows us to automate the policy execution by
creating a closed control loop for the intent deployment. To do so,
we generate and map the policies to APIs and form application
management loops that perform the necessary monitoring, analy-
sis, planning and execution. We evaluate our proposal with a use-
case to fulfill and assure an application service chain of virtual
network functions. Using our approach, we can generalize and
generate the necessary steps to realize intents, thereby enabling
intent automation for application management.

i

I. INTRODUCTION

The growing heterogeneous and distributed resources that
support the plethora of services and applications can be chal-
lenging to manage, in particular considering dynamic environ-
ments and strict application requirements such as availability,
security, and reliability. Human-based operations are prone
to error, and time- and cost-sensitive. Automation is highly
desirable to relieve administrators from repetitive and tedious
management tasks, thereby keeping OpEx low, and focusing
their attention on more complex problems. Recent advances
in ML and Al can be leveraged to simplify these management
efforts.

*equal contribution

IThis article has been accepted for publication in 2023 19th International
Conference on Network and Service Management (CNSM), 3rd International
‘Workshop on Analytics for Service and Application Management (AnServApp
2023), DOL: 10.23919/CNSM59352.2023.10327837

Jieyu Lin*
Department of Electrical and Computer Engineering
University of Toronto
Toronto, Ontario
jieyu.lin@mail.utoronto.ca

Alberto Leon-Garcia
Department of Electrical and Computer Engineering
University of Toronto
Toronto, Ontario
alberto.leongarcia@utoronto.ca

An intent defines a set of operational goals (that a system
should meet) and outcomes (that a system should deliver),
without specifying how to achieve or implement them [1].
Intent-based networking (IBN) or intent-based management
seek to automate network and management tasks by allowing
the system to accept and realize user intents. Intents bring two
main requirements that are categorized by functionality into
intent fulfillment and intent assurance. The former includes:
functions such as translation, decomposition and execution;
abstractions that capture system hierarchy (from top-level
applications to low-level infrastructure devices) and provide a
logical view to support the intent-related functions. To ensure
that intents are continuously met during their life-cycle, and to
prevent “intent drift” [1]], intent assurance requires the system
to monitor and adapt the intent deployment accordingly. Fi-
nally to close the loops for assurance and fulfillment, negative
feedback control loops can couple the required steps for the
necessary measurements, decisions and control.

Large Language Models (LLMs) provide powerful capa-
bilities for Natural Language Processing (NLP) tasks, such
as understanding, generating, and classification of text data.
This makes LLMs attractive as a solution in translation and
decomposition in intent processing. Moreover, LLM models
are trained on massive datasets, which allows a model to learn
and understand the contextual relationship in natural language
data. This is beneficial for intent-based management because
is provides the ability to learn and adapt the steps required
to realize intents. In this paper, we leverage the few-shot
learning capability of LLMs to generate progressively the steps
to realize an intent. This approach can generalize to unseen
intents and support dynamic environments, where pre-defined
sequences of actions would fail.

We use a policy-based approach to capture and model
the relevant abstractions at each level of the management
hierarchy. Our goal is to automatically decompose intents
into a sequence of policies that when executed will deploy

the intent. Our focus is on the capabilities of generic large
language models for intent-based application management.

We developed “Emergence”, an intent based management
system. In order to realize the notion that an intent specifies
“what the user wishes the system to do, without specifying
how”, we implemented an LLM pipeline for progressive
decomposition of intents into policies, and then use mapping
functions for policy-to-API resolution. Through this pipeline,
Emergence determines the “how” part of the intent. This
allows Emergence to then proceed with intent deployment,
and to support intent fulfillment and assurance.

We use a language model to understand natural language
data and context in order to derive the steps to realize an
intent. These steps enable our system to gather the necessary
monitoring data, analyze the data based on current environ-
ment conditions, and accordingly create and execute a plan
to deploy the intent onto the infrastructure. To link these
steps and execute the policies, we use feedback control loops
(MAPE-K, monitor-analyze-plan-execute and knowledge [2]).

We evaluate Emergence in an intent use-case that involves a
virtual network function (VNF) service chain with high avail-
ability, consisting of a deep packet inspection tool and a load-
balancer. Our use-case demonstrates both intent fulfillment
and assurance, by taking appropriate actions when issues are
detected to ensure that the intent is continuously met during
its life-cycle.

Our contributions in this paper are:

o Propose the use of LLMs with few-shot learning for
progressive decomposition of intents into policies to
support intent-based application management.

« Evaluate the system on a cloud testbed and demonstrate
intent fulfillment and assurance.

o Discuss opportunities of generic LLMs for intent-based
management.

II. BACKGROUND AND RELATED WORK

Research in intent-based systems has focused on differ-
ent requirements, scopes, architectures, and approaches for
the intent-related tasks. Efforts by standardization bodies
such as Internet Engineering Task Force (IETF), European
Telecommunications Standards Institute (ETSI), International
Telecommunication Union (ITU), and TM Forum, as well
as in academia have considered the use of ML/AI, closed
control loops, abstractions (formal intent languages, policy
models, etc.). Recent surveys discuss these research efforts,
requirements, and challenges [3[]-[5].

Natural-language processing (NLP) is required to translate
and formalize intents. Recurrent neural networks, such as long
short-term memory (LSTM), have been used to translate in-
tents [6[]-[|10]]. These models extract the necessary information
from the intent, which is then mapped to an abstraction model
or language that the system understands in order to process
the intent. For example, LUMI [6] uses bidirectional LSTMs
to extract entities and translate intents into an intent language
(NILE), and then into configuration commands. LUMI has a
chat-based interface (Google Dialogflow) for users to express

their intents to the system. Other chat-based proposals include:
iNDIRA [11]] uses NLP to construct semantic RDF graphs to
understand, interact, and create the required network services;
EVIAN [12], an extension of iNDIRA, uses the RASA NLP
tool to translate intents. RASA is also used in [13], and
Dialogflow is used in [14] and [S§]].

Large language models (LLMs) such as GPT ([15], [16]),
PalLM [[17] and LLaMA [18]] are transformer-based models
with impressive capabilities for NLP tasks. These models
are trained using massive amounts of text data, and have
billions of parameters. While both LSTMs and LLLMs handle
context in text, LLMs typically outperform LSTMs in large-
scale language tasks due to a self-attention mechanism [[19],
that provides a more flexible way of handling long-range
dependencies in text. Moreover, LLMs are capable of few-shot
learning [16], which allows the model to learn to perform a
new task by simply training the model with several examples
for a given task at hand. ChatGPT by OpenAl uses the
Generative Pretrained Transformer (GPT) language model to
generate responses to natural language inputs. Although these
models are not trained for intent-based management tasks,
they can be useful tools for intent processing due to their
capabilities for few-shot learning. In [20], we explored this
capability to decompose intents into a set of Python APIs.
Here, we leverage LLMs for intent to policy decomposition.

Abstraction languages allow the modeling of an intent to
a formal model that the system can understand. Languages
proposed for intent modeling include, NILE [6], SNIL [8],
LAI [21]. We use the formal policy framework from our prior
work, [22] that allows us to model policies at different levels
of abstractions across the system hierarchy. To promote the
adoption of our policy framework, we created a mapping to
the Metro Ethernet Forum Policy Driven Orchestration Model
(MEF PDO) [23|, which is extensive and YANG-defined to
support automation.

III. METHODOLOGY

We now describe the Emergence system for management of
intent-based applications. In this paper we focus on the LLM
pipeline to decompose intents into a policy-based abstraction
that can be mapped to APIs for intent execution and deploy-
ment. Figure |1 gives an overview of the pipeline and its three
stages. Each uses an LLM with few-shot learning. The first
stage classifies intents into types known by the system. The
second stage decomposes the intent and type into policies.
The third stage validates the policies for omissions or errors
in the policy format, as well as for the correct ordering of
policies. Before discussing the pipeline in detail, we describe
our policy-based abstraction.

A. Policy model functional abstraction

We use a policy-based approach to provide the abstractions
needed at each level of the system hierarchy. We defined a
formal policy framework in [22], to model different types of
policies (e.g., utility, goal, action) at different levels of abstrac-
tions, and detect and resolve conflicts across the hierarchy.

Progressive
Policy
Generation

Intent
Classification

k v
: L "
. |
i ! ’
, H :
1 ! ' i
: H i pom:y‘r |) i
' vl) : Policy Tree !
' N Few-shot training: M AP H b
! [- Policy model H !
! vl definition ap 0 T ;
! . [- Exampis policy - '
' Few-shot training Intent || mode! attributes ac!;o% : i ;
! - Intent types E (action, resource, i ;
1 - Example + i constraint) ; D :
' classifications Intent = 1 _ Example action Environment I |
1 . 1 ' ’ P ! []
Behaviour nien ! sequences result (e digital D i
' specification Typ e H - Exampigs of Intents -g., dig Vo |
| [and intent types to i i
. | i decomposed policies TWIF'I, prOd) E i ;
! - - Behaviour . . : D h i
! H 4 o ! !
1 N specification Policy Mapping and Execution o) !
— j/

Fig. 1. Pipeline overview: 1) classify intents to known intent types, 2) progressively decompose intents and generate policies: map each policy to an API,
execute the API and return the result to the LLM, 3) validate the policies. The resulting policy tree represents the sequence of derived policies from the intent.

Our model formally defines Policy P as:

P=(D,E,A,Q). (1)

where D denotes the policy definer that defines the policy,
is an entity or a group of entities that enforce the policy, and
A is an action. C is a vector of constraints that apply to action
A with regards to resources (é), temporal (f) and spatial (§)
constraints, defined as:

¢ =(R,T,S). 2)
For each policy P, we define policy metadata that includes the
policy ID, domain, expiration date, priority, and autonomic
permission. To support implementation of our policies in
order to execute and deploy intents, we have created mapping
functions to convert our policies to our APIs and to the MEF
PDO model.

B. Intent Decomposition using few-shot learning

Our goal is to decompose intents into policies with actions
that correspond to a MAPE-K closed control loop. We use our
policy model as an abstraction and train a generic LLM (Ope-
nAI’s ChatGPT) using few-shot learning to generate policies
for user intents. In the few-shot part, we pass to the LLM
an input message that generally contains: definitions (e.g.,
policy model) and descriptions, examples of intents and their
corresponding intent types and policy sequences, and LLM
behaviour specification (e.g., to act as a MAPE-K sequential
policy generator). We find that LLMs can generalize well and
learn to decompose intents, even with just a couple of intent
to policy examples.

The generated policies represent the ordered sequence of
policies to process and deploy an intent at a given time. We

refer to this sequence as a policy tree (an example tree is
shown in Figure [T). As an example, for an intent that calls
for the creation of a small virtual machine, the following
policy (one of the required policies) is needed to check for
availability of 1 small virtual machine in Domainl: P =
(avail,vm, zone = Domainl, size = small, count = 1).
To train the LLM we represent the policy as a JSON object as
follows: {”action” : "avail :,” resource” : "vm”,” zone” :
" Domainl”,” size” : " small”,” count” : 1}. This allows us
to train the LLM to output the policies in the same format (key-
value pairs), making it easier to integrate them into code. For
example, a dictionary data structure in Python allows us to map
the policy action to an API and include the remaining policy
attributes. We note that we purposefully omit the Definer and
Enforcer attributes from the policies for clarity. The Definer
is the user or application that creates or manages the intent,
and the Enforcer is the MAPE component that enforces the
policy. For example, for the above policy, the Definer is
”Administrator” and the Enforcer is "Analyze”.

1) Intent Classification Stage: The first pipeline stage uses
an LLM to classify intents into one or more intent types
supported by our system. To train the LLM with few-shot
learning, we provided the intent types supported in our system,
examples of intents and their corresponding intent types,
and LLM behaviour specification (e.g., to act as an intent
classifier). An intent may contain one or more intent types.
For example, the intent: “Create a small monitored VM
in domain 1.” is classified to the following types: create
resource, schedule health check. The first type is for the set of
policies to create the VM. The second type is for the health
check, since a VM cannot be monitored without having this
check. Other intent types include: deploy service, start service,

stop service, run service, discover resource, collect resource,
publish resource, validate resource, etc. Figure 2] shows the
output of the classification results for three different intents.

Fig. 2. Example intent to intent type classification for the first stage.

2) Progressive intent decomposition Stage: The second
pipeline uses an LLM to progressively decompose intents
into policies based on each policy’s execution result. The
LLM is trained with few-shot learning to learn the steps
(i.e., actions) required to deploy an intent, in a MAPE-
based fashion. For this, we provide the LLM with the policy
definition, system supported actions, and example resources
and constraints. Examples are shown in Figure [3] We also
provide typical sequences of actions required for the different
intent types our system supports. For example, for the intent
type create resource, the sequence of actions per MAPE com-
ponent is: Monitor=[get], Analyze=[avail], Plan=[reserve],
Execute=[create, validate]. To help the model learn how to
apply the above, we provide a couple of examples of intents,
with their respective intent types and policies. In Figure 4| we
show a few-shot training example that is provided to the LLM
to learn the intent to policy progressive decomposition process.
Lastly, we specify the model’s behaviour by instructing the
model to act as a MAPE-K policy generator that outputs
policies progressively, and uses the provided policy execution
result to determine the next policy.

In our implementation, once the LLM generates a policy,
we use mapping functions to convert the policy into an APL
We then execute the API, and provide the result to the LLM.
Next the LLM proceeds with the next policy until it derives
the complete working sequence of actions (i.e., policy tree).
Depending on the results and current conditions, the LLM
can either conclude with an "END” message (indicating a
successful intent completion), or an "ERROR” message.

3) Intent Validation Stage: The last stage uses an LLM
to validate the policy tree obtained from stage 2. We trained
the validation LLM by modifying the prompt used for the
decomposition LLM (stage 2), and included examples of
incorrect policy sequences, and example corrections. This
trains the LLM to look for any omissions or errors in the
policy attributes, as well as incorrect policy sequences.

In the second stage of the pipeline, we test the policy
execution in a digital twin environment. We provide the intent,
intent type, and generated policies to the validation LLM.
Once we have the final version of our policies, if any policies
were modified in stage 3, we test the intent again in our digital
twin. If there are no issues, we can safely deploy the intent

The below are the available actions for decomposing intents:
Monitor: collect, publish, subscribe, get, post, notify, retain, back-up-

Analyze: check, avail, process, validate, verify, detect_conflict, estimate, trend, forecast, correlate, sanity.

Plan: reserve, optimize, resolve_conflict, minimize, maximize, compute, traffic_engineer, network engineer, select.

Execute: enable, disable, discover, configure, create, delete, update, add, schedule, health, run, deploy.

Each action applies to one or more resources, and these resources should be in the policy.

Example resources:

compute: server, vm, container, compute.
network: interface, link, path, switch, router, network-
storage: database, event_bus, storage, knowledge.

service: firewall, load-balancer, application, middlebox.
policy: policy-

infrastructure: infrastructure, compute, network, storage, service, domain, core, edge.

There are constraints based on the intent that apply to the resources, or as function parameters for the action.
Example constraints: status, protocol, type, location, output, input, supported, rule, enabled, zone, count,

image, topic, tag, utilization, load, delay, capacity, weight, source, destination, transit, middlebox,

frequency, startTime, endTime, startInterval, endInterval, period, time, day, data period,

function, function parameters, comand, method, by, task, metric_name, ram, storage, cpu, metwork.

Fig. 3. Example policy actions, resources, and constraints.

Fig. 4. Few-shot training example for progressive decomposition of an Intent
and its corresponding Intent type.

in the production environment. we have a dedicated project
for the digital twin within our testbed, so we can test policy
deployments without affecting other domains.

IV. EVALUATION AND USE-CASE

We evaluated the pipeline for intent-to-policy decomposition
and execution in an intent use-case with intent fulfillment and
assurance. The intent in the use-case is to deploy a service
function chain that consists of Deep Packet Inspection, load-
balancer, and two web servers. The intent is: ”Deploy a service
function chain with high availability in Domainl consisting
of: a medium vm for the dpi service, a medium vm for the
load-balancer service, and 2 small vms for the web servers.”

We conduct our experiment using OpenStack in the SAVI
testbed which is composed of multiple domains, projects and
regions. For example, the region we use to deploy the intent
has more than 23 physical servers that provide 800 vCPUs,
4TB RAM, and close to 200TB storage. We performed 5 trials
for the fulfillment, and for the assurance, and we report on the
average time to fulfill and assure the use-case intent. We use
the ChatGPT API (GPT3.5 and GPT4 models) for the LLM
few-shot training and intent pipeline.

A. Intent Fulfillment

To fulfill the intent, we pass it through the pipeline in Figure
We first classify the intent and then obtain the following
intent types: create resource, deploy service, availability. Next,
the intent and types are provided to the second stage, and
progressively decomposed into policies. For each decomposed

Fig. 5. Progressive policy generation and execution for intent fulfillment. Intent: ”Deploy a service function chain with high availability in Domainl consisting
of: a medium vm for the dpi service, a medium vm for the load-balancer service, and 2 small vms for the web servers”. Intent type: create resource, deploy

service, availability.

Fig. 6. Progressive policy generation and execution for intent assurance (second scenario).

policy, we map the policy to the corresponding API, and
provide the result of the execution to the LLM. The API is
based on the policy action, and policy resource and constraints
are provided as parameters to the APL Figure [shows the
result of this stage. In summary, the LLM outputs policies
to gather necessary data, check resource availability, make a
reservation request, create and validate resources, deploy the
service function chain, and creates policies to enable monitor-
ing for high availability (i.e., schedule a health check, and set
up notifications). If these actions complete successfully, the

intent can be safely deployed (given that the validation stage
also completes successfully).

B. Intent Assurance

To demonstrate assurance, we intentionally shut off the
DPI VM to trigger the assurance. This was captured by
the health check, which sent a notification about the state
of the monitored VMs to the Application Manager module
(AppManagement). This module detects the intent drift (the
state of the DPI VM is ’Shutdown”, as opposed to “Running”),
and passes this message to the LLM to fix the intent. To test

TABLE I
INTENT EVALUATION ANALYSIS
Execution Time (s) | Number of policies
Intent Fulfillment 338.9 11
Intent Assurance 1 13.2 2
Intent Assurance 2 85.7 10

the assurance capability of the LLM, we test two scenarios. In
the first scenario, we let the LLM successfully perform a start
action for the DPI VM. In this case, two policies are executed:
start the VM, and validate the VM. In the second case, we
provide a negative result when trying to perform the start
action, and in turn the LLM generates additional assurance-
related policies: delete the VM, get necessary data and check
resource availability again, make a reservation request, create
and validate the VM, and last, update the service function
chain. The result of the second scenario is shown in Figure [(]

C. Evaluation Results and Analysis

The results from fulfillment and assurance are shown in
Figures [7| and [8 respectively. We report the average times and
the number of generated policies to fulfill and assure the intent
(for both assurance scenarios) in Table |l The execution results
mostly depend on the time our testbed APIs take to complete
(e.g., create VM). The time to receive a response using the
ChatGPT API is mostly negligible. Although not immediately
evident, the policies help us quantify the hidden complexities
when working with intents. For example, to fulfill the use-
case intent, 11 policies were generated, and these policies are
essentially defining the main logic for how to realize the intent.
Considering that the policies get mapped to API calls, this
means our policies abstract even more lines of code executed
through the API calls.

One important aspect of an intent-based system is the
ability to generalize well, meaning that the system can handle
modified and unseen intents. From our evaluations, we find
that the LLM can handle this requirement well. For example,
the intent used for the few-shot example was simpler and
had different requirements compared to the use-case intent.
However, the LLM was able to learn from the provided context
(few-shot learning), such that it can generalize and decompose
intents with unseen requirements. These results indicate that
generic LLMs are very promising for intent-based applications
and management.

Fig. 7. Result of the intent fulfillment.

Fig. 8. Result of the intent assurance.

V. DISCUSSION AND OPPORTUNITIES

We now discuss our insights and additional LLM opportuni-
ties for intent-based applications, lessons learned, limitations,
and future work.

A. LLMs for additional conversions

In this paper, we demonstrated that LLMs can be used
to decompose intents into a high-level abstraction, such as
a policy. Per our policy framework, the policies specify the
actions, resources, and constraints to be applied. However,
to execute these policies, we either need to map them to a
language that supports implementation, such as YANG (e.g.,
to the MEF PDO policy model), or to a corresponding APIL.
In this work, we use separate mapping functions in our
implementation to map policies into APIs. However, an LLM
can also be trained to be able to convert policies into other
formal languages, including programmable code, e.g., Python
APIs. The benefit of deriving the policies first, is that it allows
us to obtain the intent workflow, i.e., the set of steps to fulfill
or assure intents in a MAPE loop.

In our prior work (Emergence), we use a set of pre-
defined Finite State Machines (FSM) to execute policies.
However, it would be more beneficial to be able to dynamically
generate these FSMs. In this manner, the system would be
able to execute new, unseen intents, provided that the required
functions (e.g., APIs) are available. One approach to creating
dynamic, on-demand FSMs, would be to train a generic LLM
to create Boolean-Logic Decision Trees from the policies, and
then convert these trees into Finite State Machines.

B. Lessons Learned

An important consideration for LLMs with few-shot learn-
ing include over-training and under-training. It is worth noting
that we do not modify the weights of the model, but instead
provide descriptions, definitions, and usage examples as input
to the model, so that the underlying Transformer architecture
can learn to decompose intents into policies. The goal is to
be able to train the model to generalize well, in order to
consistently generate policies that are correct and work as
intended. To help generalize better, before a new intent is
received, we clear the conversation history, and we send the
training prompt to the model. If the training prompt contains
too many details, it can confuse the LLM, or it can cause the
LLM to output exactly as per the prompt (even if incorrect).
If there is too little information, the LLM can begin to deviate
and create new attributes or entities (e.g., actions, constraints,
resources) that are irrelevant to the system.

In this paper, we provide simple results back to the LLM
upon the execution of a policy, for example, a Boolean value
(True, False). If more information is provided to the model,
such as some details from the execution, then the LLM could
modify the policy constraints accordingly in an attempt to meet
the intent. For example, if a policy asks for a large size VM,
or a specific version of an image, and these are not available,
then, if the LLM receives information about other available
sizes and images as part of the result, the LLM will select

the best option, e.g., a medium VM, and an image version as
close as possible to the original intent version requested. This
shows that we can further improve the reasoning logic for the
LLM, for example by embedding specific algorithms as part
of the few-shot training. In this way, the LLM can play an
even bigger role in management.

C. Limitations and Future Work

Although we demonstrated that a generic large language
model can be very efficient in decomposing intents using few-
shot learning, there are a number of challenges to consider:

« Validation is important to ensure that the policies capture
the desired behaviour. This requires validating the poli-
cies in terms of the format, proper sequence, correctness
and omissions of attributes. For this, we can train an LLM
to look for these types of issues. Second, we need to
check for logic and algorithmic issues. For this, we can
leverage FSMs to ensure correct state transitions, and that
the final state matches the intent’s desired state. Finally,
it is desirable to use a combination of simulators and
emulators to create a real digital twin environment.

o The transformer model comes with context length limita-
tion, i.e., the number of tokens that the model can attend
to. This limits how far the transformer can look back
in the conversation history. As such, this also limits the
size of the training prompt. However, recent models are
increasing the context limit, e.g., GPT3.5 supports 4096
tokens, and GPT4 variants offer 8k or 32k.

e The Boolean results provided to the LLM can inadver-
tently cause the LLM to relax some important constraints,
or even start generating policies that deviate from the
user’s intent (i.e., beyond the scope) as the LLM tries to
“desperately” meet the intent. Therefore, it is important
to carefully craft the intent, for example by using specific
pointer words such as shall, must, should to ’limit” the
LLM’s efforts. For example, consider an intent to use a
path between two nodes with some specific requirements.
If such a path is not available currently, the LLM might
try to use actions such as engineering the traffic, or even
the network, if the previous attempt fails. This is a major
overreaction to a simple intent.

VI. CONCLUSIONS

In this paper, we focused on leveraging a generic LLM
in our Emergence system for intent-based management and
applications. Specifically, we proposed using LLMs with few-
shot learning to enable progressive policy generation, driven
by policy execution results. We considered both intent ful-
fillment and assurance, and our results indicate that LLMs are
very promising in attaining our goal to enable automatic intent
decomposition for application management.

REFERENCES
[1] A. Clemm, L. Ciavaglia, L. Z. Granville, and J. Tantsura, “Intent-Based

Networking - Concepts and Definitions,” RFC 9315, Oct. 2022.
[Online]. Available: https://www.rfc-editor.org/info/rfc9315

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

J. Kephart and D. Chess, “The vision of autonomic computing,” Com-
puter, vol. 36, no. 1, pp. 41-50, 2003.

A. Leivadeas and M. Falkner, “A survey on intent-based networking,”
IEEE Communications Surveys & Tutorials, vol. 25, no. 1, pp. 625-655,
2023.

E. Zeydan and Y. Turk, “Recent advances in intent-based networking: A
survey,” in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-
Spring), 2020, pp. 1-5.

L. Pang, C. Yang, D. Chen, Y. Song, and M. Guizani, “A survey on
intent-driven networks,” IEEE Access, vol. 8, pp. 22 862-22 873, 2020.
A. S. Jacobs, R. J. Pfitscher, R. H. Ribeiro, R. A. Ferreira, L. Z.
Granville, W. Willinger, and S. G. Rao, “Hey, lumi! using natural
language for {intent-based} network management,” in 202/ USENIX
Annual Technical Conference (USENIX ATC 21), 2021, pp. 625-639.
Y. Ouyang, C. Yang, Y. Song, X. Mi, and M. Guizani, “A brief survey
and implementation on refinement for intent-driven networking,” IEEE
Network, vol. 35, no. 6, pp. 75-83, 2021.

M.-T.-A. Nguyen, S. B. Souihi, H.-A. Tran, and S. Souihi, “When nlp
meets sdn : an application to global internet exchange network,” in /ICC
2022 - IEEE International Conference on Communications, 2022, pp.
2972-2977.

C. Yang, X. Mi, Y. Ouyang, R. Dong, J. Guo, and M. Guizani, “Smart
intent-driven network management,” IEEE Communications Magazine,
vol. 61, no. 1, pp. 106-112, 2023.

N. Vedula, N. Lipka, P. Maneriker, and S. Parthasarathy, “Open intent
extraction from natural language interactions,” in Proceedings of The
Web Conference 2020, 2020, pp. 2009-2020.

M. Kiran, E. Pouyoul, A. Mercian, B. Tierney, C. Guok, and I. Monga,
“Enabling intent to configure scientific networks for high performance
demands,” Future Generation Computer Systems, vol. 79, pp. 205-214,
2018.

H. Mahtout, M. Kiran, A. Mercian, and B. Mohammed, “Using machine
learning for intent-based provisioning in high-speed science networks,”
in Proceedings of the 3rd International Workshop on Systems and
Network Telemetry and Analytics, 2020, pp. 27-30.

C. H. Cesila, R. P. Pinto, K. S. Mayer, A. F. Escallon-Portilla, D. A. A.
Mello, D. S. Arantes, and C. E. Rothenberg, “Chat-ibn-rasa: Building
an intent translator for packet-optical networks based on rasa,” in 2023
IEEE 9th International Conference on Network Softwarization (NetSoft),
2023, pp. 534-538.

M. Bezahaf, E. Davies, C. Rotsos, and N. Race, “To all intents
and purposes: Towards flexible intent expression,” in 2021 IEEE 7th
International Conference on Network Softwarization (NetSoft), 2021, pp.
31-37.

OpenAl, “Gpt-4 technical report,” 2023.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877-1901, 2020.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al., “Palm: Scaling
language modeling with pathways,” arXiv preprint arXiv:2204.02311,
2022.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Roziere, N. Goyal, E. Hambro, F. Azhar et al,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

J. Lin, K. Dzeparoska, A. Tizghadam, and A. Leon-Garcia, “Apple-
seed: Intent-based multi-domain infrastructure management via few-
shot learning,” in 2023 IEEE 9th International Conference on Network
Softwarization (NetSoft). 1EEE, 2023, pp. 539-544.

B. Tian, X. Zhang, E. Zhai, H. H. Liu, Q. Ye, C. Wang, X. Wu, Z. Ji,
Y. Sang, M. Zhang et al., “Safely and automatically updating in-network
acl configurations with intent language,” in Proceedings of the ACM
Special Interest Group on Data Communication, 2019, pp. 214-226.
K. Dzeparoska, N. Beigi-Mohammadi, A. Tizghadam, and A. Leon-
Garcia, “Towards a self-driving management system for the automated
realization of intents,” IEEE Access, vol. 9, pp. 159 882-159 907, 2021.
“MEF Standard (95), Policy Driven Orchestration (PDO),” Metro
Ethernet Forum, July 2021. [Online]. Available: https://www.mef.net/
wp-content/uploads/MEF-95.pdf]

https://www.rfc-editor.org/info/rfc9315
https://www.mef.net/wp-content/uploads/MEF-95.pdf
https://www.mef.net/wp-content/uploads/MEF-95.pdf

	Introduction
	Background and Related Work
	Methodology
	Policy model functional abstraction
	Intent Decomposition using few-shot learning
	Intent Classification Stage
	Progressive intent decomposition Stage
	Intent Validation Stage

	Evaluation and Use-case
	Intent Fulfillment
	Intent Assurance
	Evaluation Results and Analysis

	Discussion and Opportunities
	LLMs for additional conversions
	Lessons Learned
	Limitations and Future Work

	Conclusions
	References

