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Abstract—  Internet of Things (IoT) is the future of 

ubiquitous and personalized intelligent service delivery. It 

consists of interconnected, addressable and communicating 

everyday objects. To realize the full potentials of this new 

generation of ubiquitous systems, IoT's 'smart' objects 

should be supported with intelligent platforms for data 

acquisition, pre-processing, classification, modeling, 

reasoning and inference including distribution. However, 

some current IoT systems lack these capabilities: they 

provide mainly the functionality for raw sensor data 

acquisition. In this paper, we propose a framework towards 

deriving high-level context information from streams of 

raw IoT sensor data, using artificial neural network (ANN) 

as context recognition model. Before building the model, 

raw sensor data were pre-processed using weighted average 

low-pass filtering and a sliding window algorithm. From the 

resulting windows, statistical features were extracted to 

train ANN models.  Analysis and evaluation of the proposed 

system show that it achieved between 87.3% and 98.1% 

accuracies. 

 
Keywords—IoT, context awareness, context sensing, context 

recognition.  

I. INTRODUCTION  

    The IoT, an  emerging global Internet based information 

architecture, is the future of ubiquitous sensing and 

personalized service delivery as it promises a new world where 

all objects around us are connected to the Internet, having the 

capability to communicate with each other with minimal human 

interventions [1-2]. IoT allows people and things to connect 

anytime, and anywhere, with anything and anyone, ideally 

using any network and any service [3]. It is the new Internet 

where things and humans become addressable and readable 

counterparts [11]. Thus, physical and virtual objects can 

cooperate in social interactions, where each entity can produce 

or consume intelligent services [13]. With this latest 

revolutionary development, it is now possible for our everyday 

objects to understand our needs: what we want or prefer, where 

and when we need them. 

    To realize such capability, IoT platforms should incorporate 

intelligent functionality such that IoT objects can understand 

one another and the environments in which they are situated to 

move from the realm of smart objects to more practical realm 

of smart communities. Equipped with sensing and data 

processing capabilities, IoT infrastructure will incorporate the 

necessary functionality to sense, pre-process and extract high-

level context knowledge from raw sensor data. This will foster 

the enrichment as well as understanding of human-to-object or 

object-to-object interactions, ultimately enhancing the 

anywhere, anytime delivery of intelligent services, which are 

tailored to our interests [21].  

    So far, data obtained directly from smart objects are  

unreliable for delivering personalized intelligent services 

because these data contain errors and noise. Thus, contexts 

obtained from such objects will be biased, and might lead to 

misleading conclusion. To address this problem, these raw 

context data can be processed to obtain meaningful high-level 

context information. The solution consists equipping IoT 

objects with the capability to infer objective as well as 

subjective context information from trustworthy sources to 

characterize an agent such as a user, a service or an object to 

provide intelligent and credible personalized services in the IoT 

environments. The objective contexts, on the one hand, are 

context data such as location, time, illumination, noise, etc. 

coming from physical sensors, characterising the situations of 

agents. On the other hand, the subjective context captures 

cognitive data such as preferences, trust, etc. of the agents [11]. 

   

Fig. 1. Situational context from High-level context and low-level 

context data 

 

 



    A contextual situation or situational context characterising 

any agent is at higher semantic level than high-level context. 

Contextual situations are products of semantic relationships 

between high-level contexts or between low-level and high-

level contexts. It is a context information that is expressed in a 

way similar to how humans express “conditions”.  In [4], Ye et 

al. defined situational context as follows: “ Situation can be 

defined by collecting relevant contexts, uncovering meaningful 

correlations between them, and labelling them with a 

descriptive name”. IoT objects should be capable of identifying 

situational contexts. This type of contexts is more meaningful 

and can be easily interpreted by humans and applications. For 

example, let us  assume that a user, Carisa, is located at home, 

and that she is sitting in the living room. Now, suppose that the 

TV in the living room is switched on we can conclude that 

Carisa is watching TV!  “Carisa is watching TV” is a situational 

context. Similarly, “located at home”, “sitting in the living 

room”, and “TV is on” are situational contexts obtained from 

combinations of primary contexts as illustrated in Fig.1. Thus, 

“sitting”,” home”, “TV”, “living room” (which  can be 

obtained from the map of the “home”) are high-level  contexts, 

gleaned from raw sensor data.  

The figure also illustrates the transition from raw sensor data to 

high-level context information.  

    Presently, not all IoT context platforms provide such 

functionality for obtaining high-level and situational contexts 

from raw IoT sensor data as illustrated above. Thus, until IoT 

platforms are able to classify such high-level contextual 

information from raw data to characterize real or virtual entities 

in the real world, only then can context information be 

successfully shared between IoT objects for delivering 

intelligent services. This kind of new context awareness will 

extend the traditional notion of context from “any information 

that can be used to characterize the situation of an entity, e.g. 

person, place object, etc. is considered relevant to the 

interaction between a user and an applications themselves” 

[20] to a context model of the real world that can be shared and 

reused across heterogeneous and interconnected objects. 

Examples of sensors are accelerometers and gyroscopes, 

motion sensors used for sensing movements such as 

acceleration, velocity, etc.. For example, GPS sensor provides 

raw location data as coordinates such as +37.687064, -

22.049645, which do not provide us with any meaningful 

information about the physical address such coordinates 

represent.  

    However, as we know, a lot of information such as locality, 

city, country, etc., can be derived from those two coordinates. 

Similarly, take these x, y, z (-0.0383072, 2.68151, 8.65743) of 

a tri-axial accelerometer, these data provide no clue that can 

lead us to knowing that the user was driving or walking. 

Essentially, raw sensor data are aggregated, and extracted as 

useful data features, which are then fed into classification 

models to derive meaningful high-level contextual information 

    This paper presents the design of a framework for context 

awareness in the IoT, based on ANN model as an  important 

component of our existing IoT platform to extract high-level 

contexts from objects’ raw context data. Using this ANN 

model, we evaluate the sensitivity of the proposed system to 

classification of high-level contexts  from raw sensor data.  

      The rest of the paper is organized as follows. Section II 

presents background and related work. In section III, we present 

details of the proposed context classification framework. In 

section IV, we analyze and present ANN as model for 

classifying context raw sensor data. Section V presents our 

experiments and evaluation results. In section VI, we draw 

conclusion and outline our future work.  

      

II. RELATED WORK 

     IoT possesses the potentials to take context-awareness to the 

next level considering that massive data coming from diverse 

sensors can be explored to build intelligent applications [11]. 

Context awareness has been extensively explored as a 

fundamental and key feature of mobile computing systems for 

adaptive decision making [22]. Therefore, the outcomes of 

reasoning about information derived from context data should 

be explored to enhance user’s perceived quality of personalized 

services in ubiquitous environments [21]. However, majority of 

current IoT systems focus only on raw context data. For 

example, [16] presents an architecture that enhances the 

context-aware capability of IoT middleware solutions, enabling 

to build a sensing-as-a-service platform.  

      Similarly, Hussein et al. [11] proposed a system for 

semantic context awareness in IoT with novel concepts of 

objective and subjective context information in social IoT 

environments. Nevertheless, this solution only assumes the 

availability of classification of high-level contextual 

information from raw sensor data. Mingozzi et al. [17] also 

present a semantic-based context model for quality of service 

support in IoT, where a semantic ontology model has been 

developed for context reasoning to infer high-level context 

information for allocating services to applications while 

meeting QoS requirements.  

    Perera et al. [2] present a more comprehensive survey of 

context awareness in IoT, with detailed analysis and 

 
Fig. 2 . IoT Context Abstraction Layers 

 

 



information. One of the key requirements that need more 

attention is the capability of these systems to identify and 

classify high-level context information from raw context data. 

Some other platforms, such as FIWARE with its context broker, 

provide the capability to obtain low-level context data from IoT 

sensors as well as providing interfaces for applications to access 

these data. However, how to classify high-level contexts from 

these data remains an open issue [15].   

   These proposals are just few of numerous ongoing work 

addressing context recognition and reasoning in IoT 

environments. Nevertheless, unlike these existing proposals, 

we propose an IoT based context recognition architecture that 

can be incorporated into our trust evaluation management 

(TME) system as a key functionality [19]. Our goal is to 

develop and integrate IoT context recognition framework, 

which incorporates trustworthiness as depicted in Fig. 2 and 

Fig. 3.  In the current article, however, we focus on the high-

level architecture of our platform. As an important component 

of our trust-based IoT platform [20], we also present results of 

the evaluations of context recognition processes developed. 

III.   Proposed SYSTEM FRAMEWORK 

A.  Overview of the proposed System Architecture 

The predicted deployment of billions of devices and their 

global access require layered management architecture from the 

physical devices (edge layer) to the cloud computing [18]. In 

this section, we introduce a high-level overview a typical IoT 

platform, such as the one being developed by the Wise-IoT 

project consortium [18]. Wise-IoT project is an H2020 funded 

project, which is being executed by leading European research 

and academic institutes and their counterparts in South Korea. 

Wise-IoT aims to provide a worldwide interoperable Internet-

of-Things that utilizes a large variety of different IoT systems 

and combine them with contextualized information from 

various data sources. 

    The IoT platform is broadly a three-layer architecture as 

shown in Fig. 2. Thus, the first layer of the architecture is the 

sensor or physical layer where many heterogeneous IoT devices 

are deployed. These devices can communicate with each other, 

using standardized connectivity such as Wi-Fi, 3GPP, 3G/4G, 

Bluetooth, ZigBee and LoRaWAN (supporting low power 

connectivity) based on such standards as OneM2M. The 

OneM2M standard is a global IoT standard that addresses 

communication issues for a common IoT service layer and 

interoperability on the IoT connectivity layer [15] [18].  This 

sensor layer is also responsible for the IoT management. 

    The second layer is the contextual information management 

layer and can be considered as the Cloud layer responsible for 

the acquisition, aggregation and processing of context data. 

Additionally, low-level context data from the physical layer is 

preprocessed for inference purposes using various techniques 

such as data mining or machine-learning algorithms as well as 

Semantic Web models for context reasoning, consisting of a 

context knowledgebase, query and inference engines. One of 

the current and popular implementations of this layer is 

FIWARE context broker, which is based on NGSI standard 

[15]. Nevertheless, presently these context brokers, such as 

FIWARE Context broker, do not provide the capabilities for 

context classification and knowledge processing and logical 

inference [15].   

   The last layer is the application layer where context 

information is explored to deliver intelligent services.  Different 

kinds of applications can be deployed at this layer, for example, 

car parking or route recommendation applications. 

   In the proposed platform,  to address issues related to security 

and trustworthiness of interactions and data exchange between 

service providers and consumers, an end-to-end security and 

trust evaluation component is being developed as a cross layer 

service.  

B. Context Recognition Framework 

This section introduces the context awareness component as 

illustrated in Fig. 4 that we are developing, for deployment on 

IoT platform to process context data obtained from IoT context 

brokers and other IoT platforms such as FIWARE broker. Each 

of these components and the algorithms they implement will be 

discussed next. The framework consists of various processing 

modules to be incorporated into our trust-based platform for 

 

Fig. 3. High-level Architecture of the Proposed System 
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intelligent service delivery in IoT environment. The context 

framework has been designed for providing the capabilities for 

high-level context classification, using machine learning and 

ontologies for context classification, semantic processing and 

reasoning.  

(i) Context sensing  

In the proposed IoT system, context sensing is defined as the 

acquisition of trusted raw context data in the IoT environment 

from smart objects, via context broker to characterize the real-

world situations. A trusted sensor provides trusted context data. 

For example, in a room with 5 thermometers, if 4 sensors 

provide 25 oC as the temperature readings and one of them 

provides 50 oC, then it can be concluded that this sensor cannot 

be trusted. Additionally, data from IoT objects are error prone. 

In their raw forms, they are not suitable for building real-world 

applications. Noise, drifts, and delays are some of the common 

sources of sensor data errors [12] [14]. In order to mitigate the 

influence of these errors and noise in the raw data, since they 

can corrupt the captured context information and consequently 

the inferred contextual situation, raw data filtering must be 

performed. This is necessary because applications utilizing 

context information obtained from these sensors have no 

control over the outputs of the sensors. However, the filtering 

process can be used to eliminate or minimize these errors before 

they are used to infer high-level context information. Also, note 

that in the architecture, the sensor data should be obtained from 

trusted IoT sources. The evaluation of such system using trust 

indicators such as experience, reputation, knowledge, etc. has 

been reported in [19], and would not be discussed further in this 

paper. 

(ii) Filtering  

In our framework, we assume the availability of various kinds 

of sensors (e.g. accelerometer, thermometer, light, noise, 

gyroscope, etc.) to design an efficient approach to recognize 

contexts in an IoT environment. Since raw data from these IoT  

sensors are  prone to high frequency noise and errors, it is 

important to mitigate the influence of these factors on the 

collected before using them to classify context information. The 

signals from these sensors are streamed through a low pass filter 

to eliminate the high frequency related noise to smoothen the 

signals. The fundamental concept of a typical low-pass filter is 

to simply replace the values of a sample by weighted moving 

average calculated such that 𝑥𝑙 =  𝑥𝑖−1 ×  𝛼 + (1 − 𝛼) × 𝑥𝑖  

where 𝑥𝑙  is the filtered value, 𝑥𝑖−1 is the previous value and 𝑥𝑖 

is the current value. This type of filtering is called a weighted 

moving average because it smoothens the sensor data by 

replacing each data point with an average of neighboring data 

points within a given order of the filter [9]. This low-pass filter 

process produces a response given as the difference equations 

(1) for a tri-axial sensor, such as accelerometer or gyroscope. 

For a one- axis sensor such as a light sensor, the filtering is 

performed on the streams of data it generates. 

 

 

𝑥𝑠(𝑖) =  
1

2𝑁+1
(𝑥(𝑖 + 𝑁) + 𝑥(𝑖 + 𝑁 − 1)+, … , 𝑥(𝑖 − 𝑁))     

   

𝑦𝑠(𝑖) =  
1

2𝑁+1
(𝑦(𝑖 + 𝑁) + 𝑧(𝑖 + 𝑁 − 1)+, … , 𝑦(𝑖 − 𝑁))

        

𝑧𝑠(𝑖) =  
1

2𝑁+1
(𝑧(𝑖 + 𝑁) + 𝑧(𝑖 + 𝑁 − 1)+, … , 𝑧(𝑖 − 𝑁))

                       

Xs (i) is the filtered signal value for the ith data point; whereas N 

is the number of data points on both sides of Xs (i) and 2N +1 is 

the order of the filter. There are two important advantages for 

using this method to filter out noise from motion sensors 

according to [9]. First, while retaining low frequencies, it 

minimizes random high frequencies in the sensor data. Second, 

it helps to reduce errors that might have been introduced during 

context data acquisition. 

 (iii) Feature extraction 

Feature extraction is used as one of the preprocessing 

techniques to obtain useful hidden information from raw sensor 

data in order to transform the entire raw data into a useful and 

reduced representational set of features [5]. Although the raw 

data from sensors contain lots of hidden information and noise 

[6], the feature extraction process, if carefully selected, can help 

to isolate useful features from unwanted ones. Additionally, 

having redundant features in a large set of data results in high 

dimensional dataset, which could increase computational 

requirements of the classification algorithms as well as 

jeopardizing their recognition accuracies. Therefore, extracting 

suitable features  from the IoT sensor data is a very crucial 

process to improve the whole context classification efficiency. 

The feature extraction process as used in this paper is executed 

in two phases. The first phase corresponds to the process of 

splitting the sensor data into fixed length of segments or 

windows. The second phase is the actual process of extracting 

relevant statistical features from each defined sensor data 

window. 

(a) Sliding window phase 

    In this first phase of the feature extraction process, an 

algorithm known as fixed length temporal sliding window or 

segmentation is used [14]. This algorithm splits the sensor data 

into data segments of fixed intervals of samples called 

“windows”. A window contains a small part of the sensor signal 

[5], [14]. Each window is “overlapped” to form the next 

window, preserving a proportion of the previously data to be 

used as the beginning of the next sample [7]-[8]. The formal 

definition of this process as used in our proposed framework is 

provided below. Let f represent the function that determines the 

patterns in the event sequences of N  IoT sensors with L axes 

(e.g. x, y, z), matching the user contexts.  f is defined as follows:   

f  : Sl  A  where l  is the window length of each sensor’s axis 

and A is a set of contexts to be recognized. 

Let s ∈ S = { s1,s2, …, sn}, and  let a ∈ A = {a1, a2,…,an}  be 

defined as the representations of the devices’ built-in sensors 

and contexts to recognize respectively.   

Each sequence of events of a sensor s is represented as vector 

Xs, Ys and Zs defined as: 

1 



 

{

𝑋𝑠 =< 𝑥0
𝑠, … , 𝑥𝑖

𝑠, … >

𝑌𝑠 =< 𝑦0
𝑠 , … , 𝑦𝑖

𝑠 , … >

𝑍𝑠 =< 𝑧0
𝑠, … , 𝑧𝑖

𝑠, … >

                (2) 

These vectors represent the readings from x, y and z axes’ 

events respectively at time i. 

 

                                     

Let function f1 take as input N × L sequence of sensor data to 

produce as output K vectors of features Fi. Each vector is 

labeled with activity a ∈ A = {a1, a2,…,an}.  Let l and i denote  

windows parameters, representing the window’s length and the 

timestamp when the first window begins respectively. i+l  is the 

total time for the first window and it marks the time when the 

next window begins.  Let r be the length of the windows slide. 

For a 50% windows slide, r = 0.5 l.  

     Using these definitions, function f1 is defined as follows in 

equation (3): 

Wi :Xs
i  Mi,    f1:Mi Fi                                                       (3) 

  

Where Mi  = <Mxi, Myi, Mzi > are matrices of temporal groups of 

sequences of events for each sensor in x, y, and z axes. And Wi 

is the sequence of events segmented into d samples of temporal 

domain windows or time slices of l seconds in length for 

contiguous readings of the sensor’s x, y, z axes respectively, 

starting at the time i  as follows:  

 

  {

𝑤𝑥𝑖
𝑠 =< 𝑥𝑖

𝑠, … , 𝑥𝑖+𝑙−1
𝑠 , … >

𝑤𝑦𝑖
𝑠 =< 𝑦𝑖

𝑠 , … , 𝑦𝑖+𝑙−1
𝑠 , … >

𝑤𝑧𝑖
𝑠 =< 𝑧𝑖

𝑠 , … , 𝑧𝑖+𝑙−1
𝑠 , … >

                           (4)

                      

The window slide r defines the next temporal windows as 

follows: 

 {

𝑤𝑥𝑖+𝑟
𝑠 =< 𝑥𝑖+𝑟

𝑠 , … , 𝑥𝑖+𝑟𝑙−1
𝑠 , … >

𝑤𝑦𝑖+𝑟
𝑠 =< 𝑦𝑖+𝑟

𝑠 , … , 𝑦𝑖+𝑟𝑙−1
𝑠 , … >

𝑤𝑧𝑖+𝑟
𝑠 =< 𝑧𝑖+𝑟

𝑠 , … , 𝑧𝑖+𝑟𝑙−1
𝑠 , … >

         (5) 

                    

For each window, the segments that start at time i are grouped 

into the matrix: 

{

𝑀𝑥𝑖 =< 𝑤𝑥𝑙 , … , 𝑤𝑥𝑙
𝑁 , … >

𝑀𝑦𝑖 =< 𝑤𝑦𝑙 , … , 𝑤𝑦𝑙
𝑁 , … >

𝑀𝑧𝑖 =< 𝑤𝑧𝑙 , … , 𝑤𝑧𝑙
𝑁 , … >

          (6)

                                         

(b) Statistical Feature extraction phase 

  The second phase of the feature extraction process involves 

generating a set of statistical features from each window known 

as feature extraction [5] [12]. Following the sliding windowing 

process explained in the previous section, statistical features are 

generated from each of the matrices  Mxi, Myi, Mzi to build vector 

Vi  with labeled contexts a∈A = {a1, a2,…,an}, of the agent. 

Therefore, given a set of n contexts A = {a1, a2 ,…, an}, every 

temporal window wi will produce a vector Vi  that is labeled with 

activity a ∈ A.  A function f2 builds the classifier that learns and 

finds the mapping between Vi and the context to be identified. 

In the present work, five statistical features have been defined 

as shown in Table 1. 

IV. CLASSIFICATION USING NEURAL NETWORK ALGORITHM 

    The evaluation of the proposed system requires the 

implementation of a predictive model for classifying contextual 

information in an IoT environment. Thus, the interpretation of 

sensor’s raw data to realize the move to high-level context 

information is executed in steps as described in section III. The 

statistical feature vectors generated in the last process are fed 

into a classifier to produce the predictive model for context 

classification. This model can be ported onto the IoT platform 

to infer or extract meaningful contextual information from 

sensor data. The first part of our design and development of 

classification model for high-level contexts in IoT is therefore 

to build a machine-learning model. The second part is to 

evaluate the developed model. In the current work, we have 

chosen ANN to build our predictive model. ANN is a flexible 

algorithm capable of learning non-linear data. It also has the 

capability to handle reconfiguration, generalized learning and 

can adapt to errors [6]. Multilayer perceptron algorithm is an 

ANN that learns a non-linear function 𝑦 = 𝑓(∑ 𝑤𝑖𝑥𝑖𝑖 ) =
𝑓(𝑤𝑇𝑥).  Where x and 𝑤 represent the input vectors and the 

weight vectors respectively. 𝑓  is the activation function as 

shown in Fig. 5. Learning is done by training a dataset, in our 

case, represented vectors of features extracted from the 

collected sensor data as a given set of input vectors [X = x1, x2, 

x3,…, xm] with a target yi. Where X represents the feature vector 

obtained from the processes in section III and y1…yn represent 

the classes or outputs. The generic feedforward neural network 

TABLE 1 

FEATURE DESCRIPTIONS AND DEFINITIONS 

Feature Feature Description Formula 

Variance 
(Var) 

Defines the average 
squared difference from 

the mean of the sensor 

data over a sliding 
window. 

𝑣𝑎𝑟 =
1

𝑛
∑(𝑥𝑖 − 𝜇)2

𝑛

𝑖=1

 

Median 

(Med) 

Median is the value that 

separates the higher half 

of a window the sensor 
data from the lower half.  

𝑚𝑒𝑑𝑖𝑎𝑛 = 𝑙 + [

𝑁
2

− ∑ 𝑓0

𝑓𝑤

] 𝑖 

 

Standard 

Deviation 

(STD) 

Measures the distribution 

of the sensor data over a 

sliding window. 𝑆𝑇𝐷(𝛿) = √
1

𝑛
∑(𝑥𝑖 − 𝜇)2

𝑛

𝑖=1

 

Root Mean 
Square 

(RMS) 

It represents n discreet 
acceleration of the sensor 

over a sliding window. 
𝑅𝑀𝑆 = √

𝑥1
2 + 𝑥2

2, … , 𝑥𝑛
2 

𝑛
 

Range This is the difference 

between the largest and 
the smallest values of 

sensor data over a sliding 

window. It provides the 
statistical dispersions of 

the acquired sensor data. 

Range = max-min: 

Where Max = 
max({f(x1),f(x2),…,f(cn)}) 

And min = 

min({f(x1),f(x2),…,f(cn)}) 



architecture (topology) consists of layers as shown in Fig. 6. 

illustrates a generic multilayer perception with input, hidden 

and output layers. The left most block of  Fig. 6. represents the 

input layer consisting of neurons{𝑥𝑖|𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚}, which 

represent the inputs to the classifier. 

    The next block is the hidden layer, which transforms the 

input values from the previous layer using a weighted 

summation {𝑤1𝑥1 , 𝑤2𝑥2, 𝑤3𝑥3, … , 𝑤𝑚𝑥𝑚} and the last is the 

output layer, which transforms the output from the last hidden 

layer into a final output, which determines from the input the 

high level contexts represented by such raw data. However, in 

practice, finding the topology of ANN remains a challenge. 

      Nevertheless, with series of experimentation, an optimum 

number of feed-forward network nodes with a non-linear 

sigmoid activation function   f = 
𝑖

1+ 𝑒−𝑥     has been used in the 

hidden layer.  Note that the output layer contains the number of 

nodes equivalent to the number of classes (contexts) to be 

classified. Thus, the two ANN models consists of 7 and 10 

output layer nodes respectively. Similarly, the number of input 

nodes depends on the dimensions of the vector space.  

Therefore, in the model, there are 30 input nodes for the 2 

selected sensors each with three axes. To evaluate the 

sensitivity of the developed ANN based context recognition 

model, we used confusion matrix from which we calculate the 

recall (sensitivity) of the model. We also want to understand, 

from the confusion matrix, which contexts can be correctly or 

wrongly classified.   

V.  EVALUATION OF CONTEXT CLASSIFICATION USING ANN 

A. Experimental setup and Raw Data 

    In order to evaluate the context recognition capability of the 

proposed framework, we used our existing data [12]. Raw 

sensor data, which consist of more than 250 thousand records, 

were collected, labelling various contexts at different locations 

such as home, office, in bus, train, etc. On the one hand, some 

contexts were labelled without any indication of the locations 

(GPS coordinates) where they have been collected. This set of 

data we call simple contexts. On the other hand, another set of 

data with labelled with GPS coordinates. This set of data we 

refer to as complex data. These data were collected from two 

traditional 3D sensors namely accelerometers and gyroscope. 

We preprocessed the data using the filtering process as 

described in section  III (B) to mitigate noise and errors. Based 

on the temporal sliding window algorithm, we extracted five 

important statistical features as illustrated in Table 1. Thus, with 

5 features and 3 dimensions for each of the two sensors, the 

models, which were implemented using python machine-

learning toolkit, scikit-learn [16], have 30 input neurons. 

       For the output layer, the number of contexts (classes) we 

wanted to identify determined the number of neurons (7 and 10 

output nodes, for each type of contexts: simple and complex). 

For the hidden layer, after series of experiments, we chose 10 

as the optimal number of neurons.  

       Designing the model this way, the aim was to understand 

various consumption preferences of users when in different 

locations and performing various activities so that contextual 

situations of the agents can be inferred and used by applications 

to deliver intelligent services tailored to their tastes and 

preferences. Our target is to develop an IoT platform providing 

intelligent support to deliver personalized services. However, 

in this paper, as earlier stated, our goal is to identify such  

contexts using IoT devices.  

B. Evaluation Model’s Sensitivity 

To evaluate the performance of the proposed system, its 

recognition accuracy and the sensitivity (recall) were computed 

using confusion matrices of simple and complex context 

information. Simple contexts are those contexts characterizing 

the agents (e.g. users) in ubiquitous environment without 

considering the labelled GPS coordinates of the location of the 

agent. On the other hand, the complex contexts include labelled 

GPS in the classification process. Thus, in the first set of 

experiments, we evaluated the sensitivities of the models to 10 

complex contexts and 7 simple contexts. We therefore trained 

two different models with 10 and 7 nodes representing the 

context classes respectively. We used two separate datasets and 

 

Fig.  5. ANN Neuron 
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adopted the leave-one-subject out testing approach. This means 

using data from different subjects to train the model and dataset 

from completely different subjects as testing data. One of the 

datasets is based on the complex contexts and the other is based 

on the simple contexts. The importance of this approach is to 

avoid overfitting. It also helps to understand how the models 

would behave in real life in terms of generalization. We 

computed the confusion matrices for both ANN models. The 

results for simple and complex contexts are shown in Tables 

2&3, where the diagonals of the matrices represent the actual 

number of context correctly predicted by the models.  We use 

(7) and (8) to compute recall and accuracy of the models     

   𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
            (7) 

 

A𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
         (8) 

Where TP, TN, FN and FP are true positive, true negative, false 

negative, and false positive respectively. Using (7), the recall of 

the model was computed from the confusion matrices in Tables 

2 and 3. 

Where TP is the number of correctly classified classes and FP 

is the number of classes incorrectly predicted.  

    For example, in Table 2, the sensitivity of the model to lying 

context is 98% with the total number of lying context 

recognized was 1673 but classifying lying 25 times as sitting. 

The highest classification errors occurred between lying and 

sitting. On the other hand, the evaluation of the complex 

contexts shows a similar trend in the number of 

misclassifications as observed in the simple context evaluation. 

However, the number of misclassifications increased as shown 

in Table 3. For example, looking at the same lying/Home and 

standing/Train contexts with location (in Table 3), they have 

been misclassified by the model 47 times compared to 2 

misclassifications as shown in Table 2. The sensitivity of the 

same lying context with location label dropped to 97%. This 

result suggests that including location label confuses the models 

more than when location was not included.  

   Using (8), the overall performance of the model, in terms of 

effectiveness, was computed as accuracy from the confusion 

matrices in Tables 2 &3 for both simple and complex contexts. 

In the case of the latter, the accuracy was 87.3%. Whereas in 

the former, the accuracy was 98.1%.  

C. Impact of Features on the ANN Context Classification 

   In the last experiments, we evaluated the sensitivity of the 

MLP classification model. One of the most important factors 

for determining the sensitivity and accuracy of classification 

models is the kind of features fed as inputs to train the model.   

In some cases, there is no need for using many feature vectors 

in the classification processes. In fact, this can also lead to curse 

of dimensionality. In this experiment, we decided to evaluate 

the accuracy of the MLP model for each feature vector. As 

presented in section 3, five temporal statistical features were 

extracted from the sensor data. Thus, we evaluated the 

performance of each feature with respect to the 7 simple 

contexts. The goal of this experiment is to determine if some of 

the selected features individually are sufficient to classify these 

contexts. This knowledge is crucial; it would help to avoid the 

use of redundant features. Table 4 shows the capability of each 

of the five temporal features to serve as inputs to the 

classification model to classify seven contexts (A: Lying, B: 

Driving, C: Running, D: Jogging, E: Walking, F: Sitting, G: 

Standing).  

TABLE 4 

ANALYSIS OF STATISTICAL FEATURES 

 

 

 

Context 

Var Med STD RMS Range 

A √ × × √ √ 

B × × √ × × 

C √ × √ √ √ 

D √ × √ √ √ 

E √ √ √ √ √ 

F √ √ √ √ √ 

G × × × √ √ 

TABLE 2 

 CONFUSION MATRIX for SIMPLE CONTEXT 

EVALUATION 

 

Predicted Class 

 

A
c
tu

a
l C

la
ss 

A B C D E F G  

1673 1 1 1 1 20 1 A 

3 310 0 7 2 1 0 B 

0 2 566 7 4 0 1 C 

3 0 2 456 4 0 1 D 

6 5 10 4 2177 11 0 E 

25 6 0 1 16 2319 3 F 

2 0 0 0 2 2 345 G  

 

TABLE 3 

CONFUSION MATRIX FOR COMPLEX CONTEXT 

EVALUATION 

Predicted Class  

A B C D E F G H I J  A
ctu

al C
lass 

2129 5 3 8 3 4 5 25 6 4 A 

4 321 13 4 2 2 9 26 4 8 B 

8 8 341 18 0 4 6 47 2 18 C 

1 2 32 167 8 2 1 20 2 2 D 

2 3 3 16 60 0 0 12 0 5 E 

3 1 6 0 0 190 0 10 9 0 F 

7 13 4 3 1 1 240 16 3 3 G 

23 19 35 11 7 5 9 980 10 9 H 

5 6 0 1 0 12 8 9 257 4 I  
7 12 33 8 4 2 1 30 9 234 J  

 

Legend: A = Lying;B = Driving;C = Running; D = Jogging;E = 

Walking; F = Sitting; G = Standing 

Legend: A=lying/Home 
B=Standing/Bus;C=Standing/Train;D=Ascending/Elevator 

E=Descending/Elevator; F=DescendingStairs/Office;G=Sitting/Bus 

H=Sitting/Home; I=AscendingStairs/Office;J=Sitting/Train 



The result shows that we do not really need all the five features 

as inputs to the model for context classification. In fact, we only 

needed a combination of two of the features to classify all the 

contexts correctly. Examples of such features are RMS and 

STD, which when combined can effectively classify the 

contexts. However, variance (Var) and median (Med) could not 

identify the entire classes of contexts. 

VI.  CONCLUSION 

In this paper, as part of an ongoing trustworthy IoT based 

context awareness platform project, we have proposed to 

incorporate a context recognition process. The work introduced 

in this paper represents one of the building blocks of the project 

aiming to develop a trust-based context awareness framework to 

support intelligent service delivery in an IoT platform. The 

framework is being developed for integration with our existing 

trust evaluation platforms [19]. 

 The proposed system provides key functionality for context 

sensing, preprocessing, filtering, and classification. We have 

provided an evaluation of the classification functionality of the 

platform with accuracies between 87.3% and 98.1%.  The results 

also show that rather than using all the feature vectors to train 

the predictive model, two statistical feature vectors  can be used 

effectively to classify new contexts.  

Some potential practical applications among others of the 

proposed framework are route recommendation systems, car 

parking, and mobile learning. In mobile learning for example, 

contexts and activities of learners can be determined using IoT 

sensors. This kind of information can then be used to learn the 

preferences of the learners in order to provide relevant learning 

content according to their contexts and preferences. 

In the future, we would evaluate the computational 

requirements of the context classification model considering the 

resource requirements such as execution time. We would also 

like to provide the integration of the context classification 

platform into our trust evaluation and analysis platform for 

deciding what data sources should be considered trustworthy 

when collecting the sensor data.  
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