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ABSTRACT

We release synth1B1, a multi-modal audio corpus consisting of 1
billion 4-second synthesized sounds, paired with the synthesis pa-
rameters used to generate them. The dataset is 100x larger than
any audio dataset in the literature. We also introduce torchsynth,
an open source modular synthesizer that generates the synth1B1
samples on-the-fly at 16200x faster than real-time (714MHz) on
a single GPU. Finally, we release two new audio datasets: FM
synth timbre and subtractive synth pitch. Using these datasets, we
demonstrate new rank-based evaluation criteria for existing audio
representations. Finally, we propose a novel approach to synthe-
sizer hyperparameter optimization.

1. INTRODUCTION

Machine learning (ML) progress has been driven by training
regimes that leverage large corpora. The past decade has seen
great progress in natural language processing (NLP) and vision
tasks using large-scale training. As early as 2007, Google [1]
achieved state-of-the-art machine translation results using simple
trillion-token n-gram language models. Recent work like GPT3
[2] suggests that it is preferable to do less than one epoch of train-
ing on a large corpus, rather than multiple epochs over the same
examples. Even tasks with little training data can be attacked us-
ing self-supervised training on a larger, related corpus followed by
a transfer-learning task-specific fine-tuning step.

Audio ML research tends to lack many large-scale corpora,
instead involving multiple epoch training on comparably small
corpora compared to vision or NLP. Table 1 summarizes various
large-scale and/or synthesizer audio corpora. Using AudioSet [9]
requires scraping 5000 hours of Youtube videos, many of which
become unavailable over time (thus impeding experimental con-
trol). FSD50K [4], a free corpus, was recently released to miti-
gate these issues, but contains only 108 hours of audio. To our
best knowledge, the largest audio set used in published research is
Jukebox [13], which scraped 1.2M songs and their corresponding
lyrics. Assuming average song length is 4:20, we estimate their
corpus is ≈90K hours.

In this paper we introduce synth1B1, a multi-modal audio cor-
pus consisting of 1 billion 4-second synthesized sounds, which is
100x larger than any audio dataset in the literature. The dataset is
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Name Type #hours Multi-modal
Diva [3] synth 12 parameters

FSDK50 [4] broad 108 tags
NSynth [5] notes 333 tags

Amp-Space [6] guitar fx 525 parameters
LibriSpeech [7] speech 1000 text
DAMP-VPB [8] songs 1796 lyrics

Audioset [9] broad 4971 video+tags
YFCC100M [10] broad 8081 video

Libri-Light [11] speech 60000 weak labels
MSD [12] songs 72222 tags+metadata

Jukebox [13] songs 86667 lyrics+metadata
synth1B1 synth 1111111 parameters

Table 1: Large-scale and/or synthesizer audio corpora.

multi-modal in that each sound is paired with the corresponding
synthesizer parameters used to generate it. To create such a large
dataset, we built torchsynth,1 a GPU-based open source modular
synthesizer that builds the synth1B1 samples on-the-fly at 16200x
faster than real-time. In order to compare the scope of sounds cov-
ered by synth1B1, we also generate two other datasets based on
existing synthesizers and their human-made presets, and release
them to the public with this paper: FM synth timbre2 and subtrac-
tive synth pitch.3 Using these datasets, we demonstrate new rank-
based, synthesizer-motivated evaluation criteria for existing audio
representations. Finally, we propose a novel approach to synthe-
sizer hyperparameter optimization, and discuss how perceptually-
correlated auditory distance measures could enable new applica-
tions in synthesizer design.

1.1. Background and Motivation

1.1.1. Pre-training and learned representations

Tobin et al. [14] argue that learning over synthesized data enables
transfer learning to the real-world. Multi-modal training offers ad-
ditional benefits. Multi-model learning of audio—with video in
[15] and semantic tags in [16]—has led to strong audio representa-
tions. Contrastive audio learning approaches like [17] can be used
in multi-modal settings, for example by learning the correspon-
dence between a synthesized sound and its underlying parameters.
However, training such models is limited by small corpora and/or

1https://github.com/torchsynth/torchsynth
2https://zenodo.org/record/4677102
3https://zenodo.org/record/4677097
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the relatively slow synthesis speed of traditional CPU-based synths
(Niizumi, p.c.).

1.1.2. Software Synthesizers

Programming audio synthesizers is challenging and requires a
technical understanding of sound design to fully realize their ex-
pressive power. Many commercial synthesizers have well over
100 parameters that interact in complex, non-linear ways. One of
the most commercially successful audio synthesizers, the Yamaha
DX7, is notoriously challenging to program. Allegedly nine out
of ten DX7s coming into workshops for servicing still have their
factory presets intact [18].

Since the early 90s, researchers have leveraged advances in
ML to develop a deeper understanding of the synthesizer parame-
ter space and to build more intuitive methods for interaction [19].
Recently, deep learning has been used for programming synthe-
sizers. Esling et al. [3] trained an auto-encoder network to pro-
gram the U-He Diva using 11K synthesized sounds with known
preset values. Yee-King et al. [20] used a recurrent network to
automatically find parameters for Dexed, an open-source software
emulation of the DX7.

1.1.3. Neural Synthesis

In contrast to traditional synthesis, neural synthesizers generate
audio using large-scale machine learning architectures with mil-
lions of parameters [5]. Differentiable digital signal processing
[21] bridged the gap between traditional DSP synthesizers with the
expressiveness of neural networks, exploring a harmonic model-
based approach, using a more compact architecture with 100K pa-
rameters. One benefit of synthesized audio is that the underlying
factors of variation (i.e. the parameters) are known. We combine
the ideas of traditional DSP and neural synthesis, yielding a greater
level of simplicity and speed by building a GPU-optional modu-
lar synthesizer. Our default voice has 78 latent parameters, which
model traditional synthesizer parameters.

2. MAIN CONTRIBUTIONS

Our synth1B1 corpus and torchsynth software provide a fast, open
approach for researchers to do large-scale audio ML pre-training
and develop a deeper understanding of the complex relationship
between the synthesizer parameter space and resulting audio. A
variety of existing research problems can use synth1B1, including:

• Inverse synthesis, i.e. mapping from audio to underlying
synthesis parameters. [20, 3]

• Inferring macro-parameters of synthesizers that are more
perceptually relevant. [3, 22]

• Audio-to-MIDI. [23]

• Perceptual research, such as crafting perceptually motivated
auditory representations and inferring timbre dimensions.
[24]

Researchers can also use the synth1B1 corpus to take advantage of
innovations from adjacent ML fields, namely: large-scale multi-
modal, self-supervised, and/or contrastive learning, and transfer-
learning through fine-tuning on the downstream task of interest,
particularly tasks with few labeled examples.

2.1. synth1B1

synth1B1 is a corpus consisting of one million hours of audio: one
billion 4-second synthesized sounds. The corpus is multi-modal
in that each sound includes its corresponding synthesis parame-
ters. We use deterministic random number generation to ensure
replicability, even of noise oscillators. By default, one tenth of the
examples are designated as the test set.

Data augmentation has been used on small-scale corpora to
increase the amount of labeled training data. As discussed in §1,
large-scale one-epoch training is preferable, which is possible us-
ing synth1B1’s million-audio-hours.

Besides sheer size, another benefit of synth1B1 is that it is
multi-modal: instances consist of both audio and the underlying
parameters used to generate this audio. The use of traditional syn-
thesis methods allows researchers to explore the complex interac-
tion between synthesizer parameter settings and the resulting au-
dio in a thorough and comprehensive way. Large-scale contrastive
learning typically requires data augmentation (e.g. image or spec-
trogram deformations) to construct positive contrastive-pairs [25,
26]. However, this sort of faux-contrastive-pair creation is not nec-
essary when the underlying latent parameters are known in a cor-
responding modality.

2.2. torchsynth

synth1B1 is generated on the fly by torchsynth 1.0. torchsynth is
an open-source modular synthesizer and is GPU-enabled. torch-
synth renders audio at 16200x real-time on a single V100 GPU.
Audio rendered on the GPU can be used in downstream GPU
learning tasks without the need for expensive CPU-to-GPU move
operations, not to mention disk reads. Since it is faster to ren-
der synth1B1 in-situ than to download it, torchsynth includes a
replicable script for generating synth1B1. To accommodate re-
searchers with smaller GPUs, the default batchsize is 128, which
requires between 1.9 and 2.4 GB of GPU memory, depending upon
the GPU. If a train/test split is desired, 10% of the samples are
marked as test. Because researchers with larger GPUs seek higher-
throughput with batchsize 1024, 9 · 1024 samples are designated
as train, the next 1024 samples as test, etc. The default sampling
rate is 44.1kHz. However, sounds can be rendered at any desired
sample rate. Detailed instructions are contained in the torchsynth
documentation for the precise protocol for replicably generating
synth1B1 and sub-samples thereof.

2.3. Questions in Synthesizer Design, and New Pitch and Tim-
bre Datasets and Benchmarks

To generate a synthesized dataset, one needs to sample the syn-
thesis parameter space. Typically this is achieved through naïvely
sampling parameters uniformly and rendering the resulting audio.
Due to the complexity of the parameter space and potential interac-
tion between parameters, such an approach would likely lead to a
large number of redundant and/or undesirable sounds (e.g., nearly
silent renders, or those having an extreme fundamental frequency).
The complexity of this parameter space leads to several open chal-
lenges in synthesizer design, specifically focusing on the task of
designing and sampling parameters, including:

• How do you measure the apparent diversity of a synthe-
sizer’s sounds? How do you maximize it?

• Is there a parameter sampling strategy that results in audio
sounds resembly a human-designed preset?
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The main research barrier to solving these tasks computation-
ally is the lack of an objective auditory distance, i.e. a perceptually-
relevant audio dissimilarity measure [27]. A properly weighted
dissimilarity measure could be used, for example, to tune our
hyperparameter space to generate sounds that were maximally
perceptually different, when torchsynth parameters are randomly
sampled. We devise two auditory-distance evaluation methodolo-
gies, and concurrently release two datasets, each representing 22.5
and 3.4 hours of audio respectively, generated by the following
open-source synthesizers: a DX7 clone and Surge, as DOI 10/f7dg
and DOI 10/f652, respectively. Importantly, these datasets rep-
resent hand-crafted synthesizer sounds—i.e. presets designed by
humans, not just a computer randomly flipping knobs—which we
use in two ways: a) New benchmarks for evaluating audio repre-
sentations. b) Evaluating the similarity of different sound corpora.

3. TORCHSYNTH DESIGN

3.1. Synth Modules

torchsynth’s design is inspired by hardware modular synthesiz-
ers which contain individual units. Each module has a specific
function and parameters, and they can be connected together in
various configurations to construct a synthesizer. There are three
types of modules in torchsynth: audio modules, control modules,
and parameter modules. Audio modules operate at audio sampling
rate (default 44.1kHz) and output audio signals. Examples include
voltage-controlled oscillators (VCOs) and voltage-controlled am-
plifiers (VCAs). Control modules output control signals that mod-
ulate the parameters of another module. For speed, these modules
operate at a reduced control rate (default 441Hz). Examples of
control modules include ADSR envelope generators and low fre-
quency oscillators (LFOs). Parameter modules simply output pa-
rameters. An example is the monophonic “keyboard” module that
has no input, and outputs the note midi f0 value and duration.

To take advantage of the parallel processing power of a GPU,
all modules render audio in batches. Larger batches enable higher
throughput on GPUs. Figure 1 shows torchsynth’s throughput at
various batch sizes on a single GPU. GPU memory consumption
≊ 1216+(8.19 · batch_size) MB, including the torchsynth model.
The default batch size 128 requires ≈2.3GB of GPU memory. A
batch of 4 of randomly generated ADSR envelopes is shown in
Figure 2.

3.2. Synth Architectures

The default configuration in torchsynth is the Voice, which is the
architecture used in synth1B1. The Voice is made of the follow-
ing modules: a Monophonic Keyboard, two LFOs, six ADSR en-
velopes (each LFO module includes two dedicated ADSRs: one
for rate modulation and another for amplitude modulation), one
Sine VCO, one SquareSaw VCO, one Noise generator, VCAs, a
Modulation Mixer and an Audio Mixer. Modulation signals gen-
erated from control modules (ADSR and LFO) are upsampled to
the audio sample rate before being passed to audio rate modules.
Figure 3 shows the configuration and routing of the modules com-
prised by Voice. While the Voice is the default architecture of
torchsynth 1.0, any number of synth architectures can be config-
ured using the available modules. A 4-operator frequency modu-
lation (FM) [28] synthesizer inspired by Ableton Live’s Operator
instrument is currently in development.
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Figure 1: torchsynth throughput at various batch sizes.
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Figure 2: Batch of four randomly generated ADSR envelopes.
Each section for one of the envelopes is labelled.
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Figure 3: Module configuration for the Voice in torchsynth
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Figure 4: Examples of parameter curves used to convert to and
from normalized parameter values and the human-readable values
used in the DSP algorithms. The top two curves are non-symmetric
curves, mapping to values in the range [0, 127]. The bottom two
curves are symmetric, mapping to values in the range [-127, 127].

3.3. Parameters

Module parameters can be expressed in human-readable form
with predetermined minimum and maximum values, such as 0 ≤
midi f0 ≤ 127. These values are used directly by the DSP al-
gorithms of each module. Internally, parameters are stored in a
corresponding normalized range [0, 1]. synth1B1 parameters are
sampled uniformly from the normalized range; however, there is
potentially a non-linear mapping between the internal range and
the human-readable range. Besides the fixed min and max human-
readable values, each parameter has two hyperparameters, “curve,”
and “symmetry,” that determine how the internal [0, 1] values are
transformed to the human-readable values. The curve can spec-
ify a particular logarithmic, linear, or exponential sampling ap-
proach. Symmetric curves, which alternately emphasize the center
or edges of the distribution, are used for parameters that are cen-
tered at zero, and take on a range of both positive and negative
values (such as oscillator tuning offset). An example set of non-
linear curves is shown in Figure 4.

In our nomenclature, a particular choice of hyperparameter
settings, which corresponds to a random sample space of markedly
different sonic character, is called a nebula. The initial Voice neb-
ula was designed by the authors based upon intuition and prior
experience with synthesizers. We experiment with tuning the hy-
perparameters of Voice to generate different nebulae in §6.

4. EVALUATION OF AUDITORY DISTANCES

We seek (1) to quantify the diversity of sounds that can be gener-
ated with torchsynth within a particular nebula; and a similar prob-
lem, (2) to quantify to what extent a certain nebula can mimic the
variability of sounds in another dataset. In order to do so, we first
need a reliable measure of dissimilarity between pairs of sounds,
also known as an auditory distance.

Auditory distances typically involve computing some mul-
tidimensional representation of a sound, then computing a dis-
tance over the representation space. Not all auditory distances are
equally informative, depending on what is being measured; the L2
distance between two spectrograms, for example, carries little rela-
tive pitch information [29]. In our case, we are looking to quantify
the perceptual diversity of our dataset.

4.1. Additional Datasets

To find a suitable distance, we devised two experiments using two
new datasets. Sounds in each of the following datasets are RMS-
level normalized using the normalize package.

4.1.1. DX7 Timbre Dataset

Given 31K human-designed presets for the DX7, we generated 4-
second samples on a fixed midi pitch (69 = A440) with a note-on
duration of 3 seconds (using this DX7 clone). For each preset, we
varied only the velocity, from 1–127. This dataset is built on the
assumption that velocity effects a meaningful, monotonic variation
in timbre when it is explicitly programmed into a DX7 patch. Not
all DX7 patches are velocity sensitive, and some are more sensi-
tive than others. In our generation process, sounds that were com-
pletely identical—i.e. each sample matched with error 0—were
removed. 8K presets had only one unique sound. The median was
51 unique sound per preset, mean 41.9, stddev 27.4.

4.1.2. Surge Pitch Dataset

To explore a second dimension of variability, in this case pitch,
we used the Surge synthesizer Python API and the 2.1K stan-
dard Surge presets. The open-source Surge synthesizer is a versa-
tile subtractive synthesizer with a variety of oscillator algorithms.
Here we held the velocity constant at a value of 64, and varied
midi pitch values from 21–108, the range of a grand piano. Only
a small percentage of presets (like drums and sound effects) had
no meaningful pitch variation, and thus no perceptual ordering as
pitch increases. Therefore, a small fraction of presets are unclas-
sifiable, imposing a uniform upper bound in accuracy across the
board for all auditory distances.

4.2. Experiments

4.2.1. Distance Experiment 1: Timbral and Pitch Ordering
Within a Preset

In this experiment, we measure the ability of an auditory distance
to order sounds by “timbre,” or by pitch, in the DX7 and Surge
datasets, respectively. In effect, the experiment is two evaluations
in parallel, run on two separate datasets.

We sample a random preset with at least 3 unique sounds. For
each sound s, we pick a random sound sl from this preset with
a lower rank (using the DX7 set, this would be a sound having
the same pitch but a lower velocity; for the Surge dataset this is
a sound having the same velocity but lower pitch); and a random
sound sh with higher rank.

For each of s, sl and sh, we compute the distance d(·, ŝ) be-
tween this sound and all other sounds ŝ in the dataset. While s is
the sample of interest, distance measures are strictly non-negative.
Therefore, we seek a concurrent metric to determine whether the
compared sound ŝ is “above” or “below” s. If the sound ŝ is closer
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Spearman with a preset DCG across presets
Surge DX7 Surge DX7

Representation model choice normed pitch velocity mean
OpenL3 [30] env, mel256, 6144 0.821 0.746 0.896 0.880 0.908 0.852
OpenL3 [30] env, mel256, 6144 ✓ 0.821 0.747 0.895 0.809 0.883 0.735
OpenL3 [30] music, mel256, 6144 ✓ 0.817 0.732 0.903 0.820 0.916 0.724
OpenL3 [30] music, mel256, 6144 0.813 0.722 0.903 0.892 0.942 0.842

Coala [16] dual_ae_c ✓ 0.813 0.729 0.896 0.555 0.547 0.564
Coala [16] dual_e_c ✓ 0.811 0.737 0.884 0.569 0.576 0.563

NSynth Wavenet [5] ✓ 0.810 0.717 0.903 0.582 0.591 0.573
OpenL3 [30] music, linear, 6144 0.808 0.722 0.895 0.874 0.943 0.805
OpenL3 [30] music, mel256, 512 0.804 0.710 0.899 0.904 0.943 0.864
OpenL3 [30] music, mel256, 512 ✓ 0.801 0.705 0.897 0.585 0.606 0.564

NSynth Wavenet [5] 0.789 0.675 0.903 0.835 0.893 0.777
Coala [16] dual_ae_c 0.776 0.658 0.893 0.748 0.756 0.740
Coala [16] dual_e_c 0.750 0.630 0.871 0.681 0.710 0.652

Multi-scale spectrogram [21, 31] linear+log, [4096 ... 64] 0.792 0.690 0.894 0.543 0.555 0.531
Multi-scale spectrogram [21, 31] log, [4096 ... 64] 0.786 0.689 0.884 0.542 0.566 0.518
Multi-scale spectrogram [21, 31] linear, [4096 ... 64] 0.658 0.410 0.905 0.447 0.343 0.551

Coala [16] cnn ✓ 0.555 0.303 0.806 0.485 0.433 0.537
Coala [16] cnn 0.552 0.297 0.807 0.714 0.614 0.815

Table 2: Performance of representations on experiments defined in § 4.2.1 and 4.2.2. Best scores, and scores within 0.002 of the best, are
bold-faced. ℓ1 distance was used because it outperformed ℓ2. We sort by mean spearman within a preset.

to sl, we determine the sign of the distance to s to be negative.
If ŝ is closer to sh, we determine the sign of the distance to s be
positive. As a result, we have a signed distance metric comparing
the sound s to every other sound in the dataset.

This set of distances is then correlated to the ground-truth in-
dex of pitch, or velocity (depending on the dataset). The cor-
relation, here a Spearman rank correlation, reflects the extent to
which the signed distance can properly order the dataset by vari-
ability in pitch or velocity. One limitation of this methodology
for inducing a forced ranking from simple distance is that if, say,
s = 80, sl = 31, sh = 81, and ŝ = 79, we might judge ŝ as closer
to sh and thus above s. We controlled for this by using the same
choice for every auditory distance of sh and sl given s.

Formally, we estimate:

E
S∈P,s∈S,sl,sh∼S,sl<s<sh

[
ρ

ŝ∈S

(
rank(ŝ), d(s, ŝ) ·

sgn
(
d(sh, ŝ) < d(sl, ŝ

))] (1)

P is the set of presets, S sounds in that preset, and ρ is spearman.

4.2.2. Distance Experiment 2: Determine a Synthesis Preset

In this constrained environment, a good distance measure should
have a relatively low distance between sounds generated by the
same preset. For each trial, we sample 200 different presets. We
sample 2 unique sounds from each preset. For each sound, we
compute its distance against the 399 other sounds, and then com-
pute the discounted cumulative gain (DCG) [32] of the sound from
the same preset, with binary relevance. The DCG is computed for
all 400 sounds in the trial. We perform 600 trials.

In the pitch dataset, to control for the helical nature of pitch
perception [33], the second sound was always an interval of six
semitones (AKA a tritone, diabolus in musica) from the first note.

This ensures that pitches avoid similar partials due to overlapping
harmonics that could be easily matched.

4.3. Evaluation Results

We audition the following distances: a) The multi-scale spectro-
gram distance has been used in a variety of applications, particu-
larly in speech synthesis [34, 35] but also in music [13, 21, 36]; b)
NSynth Wavenet [5] is a Wavenet-architecture trained on NSynth
musical notes; c) OpenL3 [30] was trained multi-modally on Au-
dioSet audio and video, on two distinct subsets: music and en-
vironmental sounds; d) Coala [16] was trained multi-modally on
Freesound audio and their corresponding tags.

We experimented with a variety of hyperparameter settings for
the representations. The best results are in Table 2. We use ℓ1 dis-
tance because it gave better results than ℓ2 across the board. For
Coala and NSynth Wavenet, normalizing improves the spearman
scores, but harms the DCG across presets. Normalization had lit-
tle effect on OpenL3. OpenL3 (music, mel256, 512) achieves the
best score on DCG across presets, and its compactness makes it an
appealing choice for the remaining experiments in the paper.

5. SIMILARITY BETWEEN AUDIO DATASETS

To evaluate the similarity between two datasets of audio samples
X and Y , we use the maximum mean discrepancy (MMD) [37].
We use the following MMD formulation, assuming X and Y both
have n elements:

MMD(X,Y ) =
1

nn

n∑
i,j=0

2·d(xi, yj)−d(xi, xj)−d(yi, yj) (2)

MMD allows us to use our chosen distance measure—OpenL3
(music, mel256, 512) ℓ1—as the core distance d.

For Surge and DX7, we selected sounds with midi pitch 69
and velocity 64. We also generated a set of 4-second samples of
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MMD std corpus 1 corpus 2
4.396 0.123 white white

21.409 4.729 dx7 dx7
23.732 3.615 FSD50K FSD50K
24.130 5.251 torchsynth torchsynth
27.824 9.821 surge surge

2751.519 80.955 torchsynth surge
2884.843 67.264 surge dx7
3001.857 71.888 torchsynth FSD50K
3637.845 79.265 torchsynth dx7
4756.952 112.705 surge FSD50K
7413.105 111.897 dx7 FSD50K

13202.202 61.558 white FSD50K
16985.319 92.992 white torchsynth
18488.926 67.277 white surge
20374.929 78.886 white dx7

Table 3: MMD results comparing different audio sets, including
the stddev of the MMD over the 1000 trials.

white-noise, and used excerpts from the FSD50K evaluation set
[4], which is broad-domain audio, trimmed to 4 seconds. From
each corpus, we randomly sampled 2000 sounds, to match the
size of the smallest corpus (Surge). We performed 1000 MMD
trials, each time comparing n = 1000 sounds from one corpus
to n = 1000 sounds from another, randomly sampled each trial.
To estimate the diversity within a particular corpus, we evaluated
MMD over 1000 distinct 50/50 partitions of the corpus.

Table 3 shows the result of average MMD computations be-
tween different audio corpora. 0.0 would be perfectly identical,
only occurring if the two corpora had identical sounds. Some re-
sults are expected, whereas some are counter-intuitive and sug-
gest potential issues in our use of the OpenL3 distance measure.
These results are sometimes perceptually incoherent, and suggest
that the use of the auditory distance measures explored may im-
pede progress in automatic synthesizer design, as we will illustrate
in the following section.

• White-noise is the most similar to itself of all comparisons.

• FSD50K broad-domain sounds are, strangely, considered to
have less within-corpus diversity than torchsynth or Surge
sounds. However, the variance is high enough that it is hard
to have statistical confidence in this unexpected result.

• More troubling are low-variance estimates that torchsynth
is more similar to FSD50k than it is to the dx7 synth. A pri-
ori, one would expect that synthesizers would sound more
similar to each other than broad domain audio.

• White noise is the least similar to DX7 synth sounds of all
corpora.

6. TORCHSYNTH HYPER-PARAMETER TUNING

How can we guarantee the maximum diversity of sounds within a
particular nebula? Similarly, to what extent can torchsynth adopt
the characteristics of a separate given corpus of audio? Recall from
§3 and Figure 4 that for each module parameter, the choice of scal-
ing curve is a hyperparameter. Initial hyperparameters were cho-
sen perceptually and based upon prior-knowledge of typical synth
design.

In principle, we can use MMD (Equation 2) as an optimization
criterion to tune these hyperparameters a) to maximize sonic diver-
sity; or b) model the characteristics of another dataset. We use Op-
tuna [38], initializing with 200 random grid-search trials, and sub-
sequently using CMA-ES sampling for 800 trials. In each trial, we
generate 256 random torchsynth sounds with the Optuna-chosen
hyperparameters. Hyperameter curves were sampled log-uniform
in the range [0.1, 10]. The top 25 candidates were re-evaluated
using 30 different MMD trials, to pick the best hyperparameters.
However, MMD estimates are only as good as the underlying sim-
ilarity metric (OpenL3-ℓ1) that it uses.

For these experiments, the authors and non-author musicians
conducted blinded listening experiments of the tuned nebula and
our manually-chosen nebula, and listened to 64 random sounds.
Only after independent qualitative evaluation did we unblind the
nebulae.

6.1. Restricting hyperparameters

Many torchsynth 1.0 Voice sounds (the default nebula) have an
eerie sci-fi feel to them. To find the drum nebula, we used Op-
tuna to choose hyperparameters to minimize the OpenL3-ℓ1-MMD
against 10K one-shot percussive sounds [39]. In this experiment,
no hyperparameters were frozen; all were permitted to be tuned
at once. We had hoped to find that OpenL3-ℓ1-MMD would find
appropriate percussive curves.

Overall, we found the sounds of the resulting drum nebula un-
pleasant to listen to. Many of the sounds did not resemble percus-
sion, and others made use of extreme use of high and low oscillator
tunings. We suspect that the many wide pitch-modulation sweeps
present in the resulting audio were an attempt on the part of the
optimizer to match the broadband energy in the target drum tran-
sients.

Curious to see if this negative result was due to a failure of
the distance measure, or instead a systemic limitation in the design
of the torchsynth 1.0 Voice, we next hand-tuned the hyperparam-
eters to create a sensible drum nebula, which is shared as part of
our repository. Many of the resulting sounds have a quality akin
to early drum machines, and the distribution of sounds is overall
much more percussion-like. We encourage the reader to listen to
this nebula, which is available on torchsynth site.

The process of hand-designing this drum nebula revealed to
the authors one clear limitation in torchsynth 1.0: all synth pa-
rameters are sampled independently. In kick drums, for example,
low-tuned oscillators tend to correlate to short, snappy envelope
settings; but such envelopes are not appropriate for all percussive
sounds. In future work, we are interested in investigating mul-
tivariate sampling techniques, which would allow more focused
cross-parameter modal sound sampling.

6.2. Maximizing torchsynth diversity

We also attempted to tune our hyperparameters to maximize torch-
synth MMD, i.e. increase the perceptual diversity of sounds gen-
erated by torchsynth itself. As before, Optuna was used to choose
hyperparameters that maximized the OpenL3-ℓ1-MMD and thus
increase the diversity of sounds. Nonetheless, the “optimized”
nebula exhibited pathologies in pitch, favoring extremely low and
high pitches. It may be that OpenL3-ℓ1 overestimates perceptually
diversity in these frequency ranges. We performed numerous ex-
periments restricting the hyperparameters Optuna was permitted
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to modify, such as prohibiting changes to midi f0 and VCO tun-
ing and mod depth. Consistently, listeners preferred our manually
design nebula to automatically designed ones in blind tests. We
consider this another important negative result that points to the
need for further work in automatic synthesizer design.

7. OPEN QUESTIONS, ISSUES, AND FUTURE WORK

Many of our experiments in automatic synthesizer design hinge on
having a perceptually-relevant auditory distance measure. OpenL3
(music, mel256, 512) ℓ1 performed well on our quantitative syn-
thesizer experiments (Table 2), but exhibited some issues in the
context of this task in qualitative listening tests, in particular its
insensitivity to extreme pitch and inability to model percussion.

Learning a perceptually-relevant auditory distance measure is
an open research question. Manocha et al. [40] use manually-
annotated “just noticeable differences” (JND) trials generated us-
ing active learning to induce a perceptual distance measure. How-
ever, these experiments only work with speech and do not include
pitch variations, so their model was inappropriate for our task.

The lack of a perceptually accurate auditory distance measure,
at least in the context of this task, prevented us from precisely
estimating the perceptual diversity of sounds that is expressible
by torchsynth, as well as other synthesizers like Surge and DX7.
We present, then, the following open question: How do we craft
an auditory distance measure that can perceptually measure (and
thereby optimize) synthesizer diversity, or similarity to an existing
sound corpus?

A perceptually-relevant auditory distance measure for music
opens the door to many possible advances in synthesizer design,
including: estimating and maximizing the diversity of synthesizer,
mimicking existing synthesizers through automation, inverse syn-
thesis, automatic transcription, and the other tasks described in §2.

torchsynth 1.0 focuses on high throughput and creating a di-
verse synth1B1 dataset. There are a handful of improvements we
want to add to torchsynth: 1) Stress-tested differentiable modules,
2) Subtractive filters, 3) Additional architectures including FM
synthesis, 4) Multivariate parameter selection, 5) High-throughput
modules that resemble human speech, and 6) A standardized mod-
ular architecture for high-throughput audio effect research.

Despite these open questions, we believe that the synth1B1
corpus is a significant and useful contribution to the world of au-
dio ML research, for its enormous size, speed, and corresponding
multi-modal latent parameters.

8. CONCLUSIONS

We release synth1B1, a multi-modal corpus of synthesizer sounds
with their corresponding latent parameters, generated on-the-fly
16200x faster than realtime on a single V100 GPU. This corpus
is 100x bigger than any audio corpus present in the literature. Ac-
companying this dataset is the open-source modular GPU-optional
torchsynth package. We hope that larger-scale multi-modal train-
ing will help audio ML accrete the benefits demonstrated by pre-
vious NLP and vision breakthroughs.

We freely release pitch and timbre datasets based upon human-
designed synthesizer presets, and novel evaluation tasks on which
we benchmark a handful of audio representations. We present sev-
eral novel research questions, including how to estimate and max-
imize the diversity of a synthesizer, as well as how to mimic ex-
isting synthesizers. We outline issues and open research questions

that currently impede this sort of experimental work, in particular
demonstrating negative results of auditory distance measures.
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