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ABSTRACT

This paper proposes a novel way of doing audio synthesis at the
waveform level using Transformer architectures. We propose a
deep neural network for generating waveforms, similar to wavenet
[1]. This is fully probabilistic, auto-regressive, and causal, i.e.
each sample generated depends on only the previously observed
samples. Our approach outperforms a widely used wavenet archi-
tecture by up to 9% on a similar dataset for predicting the next
step. Using the attention mechanism, we enable the architecture
to learn which audio samples are important for the prediction of
the future sample. We show how causal transformer generative
models can be used for raw waveform synthesis. We also show
that this performance can be improved by another 2% by condi-
tioning samples over a wider context. The flexibility of the current
model to synthesize audio from latent representations suggests a
large number of potential applications. The novel approach of us-
ing generative transformer architectures for raw audio synthesis
is, however, still far away from generating any meaningful music
similar to wavenet, without using latent codes/meta-data to aid the
generation process.

1. INTRODUCTION AND RELATED WORK

Audio synthesis has long fascinated musicians, computer scien-
tists, and researchers and has been one of the core building blocks
of computer music. FM synthesis by John Chowning [2] is an ex-
ample of distortion-based frequency domain synthesis with which
complex, time-varying spectra can be modeled. An early time-
domain technique that generated a particular class of realistic au-
dio was the Karplus Strong algorithm [3]. An early example pre-
saging physical modeling, it could generate transient waveforms
using a filtered delay line loop for the synthesis of plucked string
and percussion-like sounds. These are examples of techniques that
generate waveforms given a set of parameters. The difficulty of
modeling musical structure at longer time scales has been well
summarized in [4]. In this paper, we propose a generative frame-
work using transformers to synthesize audio waveforms. We show
how the approach can outperform the classic wavenet model [1]
that has become a fundamental building block for a variety of au-
dio synthesis frameworks. Wavenet, based upon causal dilated
convolutional filters, is an auto-regressive architecture. By condi-
tioning on the desired metadata, it surpassed state-of-the-art Text-
to-Speech synthesis in 2016. Wavenet-based sub-block architec-
tures have been used subsequently in problems such as speech
denoising [5], instrument conversion [6], and as a vocoder [7]
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to go from spectral to time-domain signals. For problems such
as source separation and denoising the generative process is con-
ditioned implicitly on a learned latent representation, where for
vocoder-based application, it is conditioned explicitly on a spec-
tral representation (typically mel-spectrum) which guides the gen-
eration process. An end-to-end architecture, proposed in [8, 9]
used a dilated convolution-based generator for end-to-end source
separation. High-fidelity synthesis was proposed in [10] using a
teacher-student framework, by utilization of the idea of distillation
to guide the training of neural architecture. Using self-supervised
learning, where the goal is to predict the next sample given the
previous context, wavenet can also learn latent representations in
problems such as speech recognition. Representation learning has
been an active area of research in supervised and self-supervised
setups [11, 12, 13]. As we can see, there are a variety of applica-
tions encompassing a broad spectrum that employ wavenet-based
generators for waveform synthesis. The main advantage of end-
to-end learning is to mitigate the transformation from spectrogram
to waveform for audio signals. Spectral inversion has been ex-
plored in a variety of ways, with the classic work [14] which con-
verts magnitude STFT spectra to time-domain signals. The idea of
synthesis/generation conditioned on the external application has
been explored for a variety of domains and applications. It en-
ables the fixed-parameter neural architectures to be more expres-
sive in terms of controlling/guiding the output. It was shown in
[15, 16, 17] that by conditioning wavenet-inspired architectures,
audio can be converted from one domain to another. Wavenet-
inspired models have also shown success in areas such as speech
recognition and latent representation learning from spectral inputs
[18]. Longer-term contexts, captured by latent representation, can
then guide a synthesis network for packet loss concealment ap-
proach as described in [19]. The approach has been explored in
natural language processing too, to guide generated language ac-
cording to metadata such as sentiment and ratings [20]. Problems
such as text-to-speech synthesis, explored conditioning according
to desired characteristics such as speaker ID, prosody, sentiment
to guide the generated spectral representation. [21]. For audio
analysis, early studies have shown how initial layers of neural ar-
chitecture can learn spectral representations in speech recognition
[22] and frequency estimation [23]. The front end adapts accord-
ing to the problem of interest. In [23] the front end adapts to learn
a non-linear non-constant bandwidth filter-bank that outperforms
traditional Fourier representations (which are fixed for all applica-
tions). This gives the network an ability to first implicitly learn an
analysis-synthesis pipeline based upon internal latent representa-
tions. There have been several variants and advancements improv-
ing on shortcomings of the wavenet architecture. Researchers in
[24] proposed an architecture that could do raw waveform auto-
regressive synthesis on raw waveforms using CPU only, almost in
real-time.
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Figure 1: An overview of the proposed method in the paper. Classical wavenet architecture(left) and our proposed conditioned generative
transformer architecture(right) for raw audio synthesis.

The core idea in this paper is to apply Transformer architec-
tures. First proposed in [25], these have revolutionized modern
deep learning by providing an ability for modeling long-term se-
quences. The basic premise is first to learn important parts of the
input via the technique’s attention mechanism, followed by feed-
forward architectures that can map them to a separable appropriate
latent space. This can be repeated at multiple levels to learn a hi-
erarchy of features. The idea was proposed in 1991 [26]. With
this simplicity, it turns out these architectures can have enormous
power to model a variety of modalities, such as music [27], audio
[28], text [29, 13], protein sequences [30], videos[31, 32] and vi-
sion [33, 34] to name a few. The main drawback comes with the at-
tention block which scales quadratically both in terms of computa-
tional and memory constraints. This reduces their effectiveness at
scale, such as when attempting much longer sequences, for exam-
ple, 5 minutes of music at the waveform level [4]. It is however an
active area of research with possibilities that remain to be explored.
Imposing sparsity [35] has been shown to improve the capability of
these architectures over longer-term sequences. Other techniques
have tried learning latent representation using VQ-VAEs [36]. The
idea of learning on latent representations of the input can be used
to encapsulate various attributes of the input signal in a compact
code, like pitch, timbre, and rhythm for music, as shown in [11].
It enables to model audio signal at a much smaller scale which the
techniques used in [25] can easily capture. By modeling the la-
tent representations of the future with a transformer, one can guide
a conditioned waveform generator on these future latent predic-
tions. This was done by [37] to produce compelling results. It
was, however, based on heavy conditioning, and was not an end-
to-end approach. Similar approaches were used for problems such
as speech recognition [38, 39] to mimic BERT [13] pre-training for
speech signals. The main reason for the good performance of these
architectures are i) The ability of these architectures to model long
sequences ii) self-supervised training enables the performance to
scale well with data [40]. Recent approaches of improving Trans-
formers by combining ideas from Mixture of Expert models [41]
using up to a trillion parameters makes the current work and the
road ahead even more exciting.

The contributions of the current work are as follows:

i) We propose a state-of-the-art neural network architecture

that outperforms the traditional wavenet architecture by 6-11% on
a similar dataset with the task of prediction of the next sample.

ii) We propose conditioned Transformer-based generative mod-
els that show that they can give a further performance boost over
the unconditioned Transformer. This has the potential for a variety
of setups and conditions in the future.

iii) As with the classic wavenet architecture, this provides a
new method for many applications that rely on neural architectures
for a conditioned audio generation like TTS, instrument/voice trans-
formation, speech denoising, source separation, music generation,
spectral inversion to name a few.

Section I gives a brief introduction and outlines related work in
the field, Section II describes the dataset used for the current prob-
lem, followed by the methodology used in our paper. Section 4
compares the results with baseline wavenet architectures followed
by the conclusion and future work in Section 6.

2. DATASET

In this work, we use real-world piano recordings from Youtube.
The choice of the piano was made as it contains a mixture of both
monophonic and polyphonic (playing more than one note at a time)
thus yielding complex audio waveforms. The piano also provides
a wide range of pitches. However, it does have a relatively con-
strained timbre space as opposed to more choices we could have
made, such as symphonic performances. The flexibility of condi-
tioning the generation on a latent code makes it adaptable to further
datasets. We collected about 840 piano tracks of covers of popular
songs amounting to about 56 hours of data. The reason for select-
ing real-world recordings over a standard dataset [42, 43] was to
account for differences in room acoustics, playing styles, timbral
differences, loudness, and microphones to name a few. The tracks
included artists ranging from Pink Floyd and Billie-Eilish to some
works from Rahman and Coke-Studio among many others. Forty
randomly chosen tracks were set aside as a test set for which all
the results in the paper are reported. The URLs are shared here at
https://tinyurl.com/6cjxffa8

For training, we worked with a 16KHz sampling rate and 8-
bit resolution. All the tracks were read and converted to the cho-
sen resolution using [44, 45]. Any tracks having lower original
sampling rates were discarded. The context duration was 100ms,
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a choice required by computation cost and memory constraints
for the resources available, and because of the quadratic scaling
of transformers. The same setup and context were used for the
wavenet comparisons, too. Since this is a form of self-supervised
learning where the data itself is used, the input vocabulary con-
sisted of the raw waveform representation, values ranging from 0-
255. The output target was the same waveform but shifted by one
so that at each time step we predict the next sample. This is simi-
lar to a recent language modeling project [29]. All of the models
discussed in the current paper are causal attention dilation-based.
Given that we used such a large dataset, we expect the results and
improvement of Transformer over wavenet to hold on to a standard
dataset. 1

3. METHODOLOGY

This work proposes a generative model for audio synthesis. This is
done by directly modeling the probability distribution of the sam-
ples of the waveform of an audio signal. The audio signal repre-
sents changes in the amplitude of a signal over a certain time as
sound waves traverse through space. There are two main charac-
teristics of the waveform beyond the amplitude, when we choose
to digitize the signal, i.e the sampling rate which measures how
often we sample the continuous signal, and the bit-resolution, i.e.
how many bits we allocate to represent the signal in the range of
-1 to 1. For our current work, we choose to have an 8-bit resolu-
tion (similar to classic wavenet) and 16kHz. Raw audio synthesis
at higher bit rates becomes a difficult problem due to the sheer
amount of states involved (65536 and 16M states respectively for
16-bit and 24-bit audio signals) and is the subject of an ongoing
current work.

We model the probability of a waveform as follows. Let x
denote the joint probability of any observed waveform of length
T , as described in [1]. The joint probability of a waveform, x =
x1, x2, ....xT is modelled as,

p(x) =
T∏

t=1

p(xt|x1, x2, ....xt−1) (1)

3.1. Baseline: Wavenet architecture

To compare our method with classic neural network-based autore-
gressive wavenet architecture, we describe here the two variants
that were implemented and compared against. This is done mainly
due to the lack of significant implementation details in the origi-
nal paper [1]. The main ingredients of the paper are causal dilated
convolutions, which ensures that at each time step, the model only
looks into the past samples to generate the future sample. By using
dilated convolutions, we enable the model to learn longer contexts
through large receptive fields. The figure below shows, the ar-
chitecture of dilated convolutional model for waveform generation
taken from [1].

As seen from Figure 2, the architecture consists of increasing
the receptive field size at higher layers by dilating (skipping) the
convolution at each layer by a fixed factor. At the very outset,
we can see the advantage attention-based architectures might have
over the classic wavenet architecture as described in Figure 1. A
Transformer model iterates over all the possible connections that

1We have shared our code for models, the youtube-URLs, and the train-
ing and testing tracks here https://tinyurl.com/6cjxffa8

Figure 2: Wavenet architecture showing how dilated convolutions
can model long term dependencies. The figure is from [1]

can happen with the context and chooses which ones are important
over others as opposed to fixed connections that look over a pre-
defined topology in wavenet. By using multiple layers of Trans-
former modules the networks learn to also learn higher-order de-
pendencies across the learned representations in the previous layer.
This is explained in more detail in the next section.

3.2. Wavenet Implementation details

In our work, we increase the dilation rate by a factor of 2 in each
layer. In our baseline model, we had a total of 10 layers, with 128
convolutional filters in each layer thus yielding an effective recep-
tive field size of 1024 in the final layer. Similar to the wavenet
paper, our second model consists of stacking three such layers of
causal dilated convolutions, with the filter size of 2, dilated by
a factor of 2 in each of the subsequent layers. This in total re-
sulted in about 30 layers of causal convolutions with dilation rate
repeated as 1,2,4, .... 512, 1,2,4....512, 1,2,4,...512. This is a very
strong baseline system to compare. This results in more param-
eters and an increase in the receptive field size and model capac-
ity. Skip connections were used for better convergence, speedup,
and the ability of the network to learn residual inputs as it has
shown to improve across images, text, and audio. A dense layer is
used to convert the output of the final layer to that of a fixed 256-
dimensional encoding. A soft-max layer converted the logits to
a probability distribution, and cross-entropy loss was minimized
between the ground-truth bit level and the predicted one. This
setup is maintained for all of the models discussed in this work.
A reason for selecting softmax over traditional other error criteria
such as Euclidean Loss, is due to i) as described in [1] "categori-
cal distribution" is more flexible can more easily model arbitrary
distributions because it makes no assumptions about their shape."
and ii) categorical distributions impose much stricter penalty than
Euclidean distance as the error penalty is the same if the predic-
tions are even off by a single bit level than say by larger numbers.
This is also a type of self-supervised architecture in the sense that
data itself is used for training. For all of the current models, the
context chosen was 100ms, i.e. 1600 samples. This was primarily
because of the huge memory costs that Transformer Architectures
fail to mitigate for longer context, and the constraints of the GPUs.
Additionally, the original wavenet architecture had a context of
240ms, which is twice as large, but all of the current results are
reported on the same dataset, with the same context of 100ms for
all the three architectures in a similar experimental setup.
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Figure 3: Generative Transformer over Raw waveforms. Notice
how the attention mechanism can learn which parts of the inputs
are important at every layer, as opposed to fixed topology of the
dilated convolutional based approaches.

3.3. Generative Transformer Architecture over Waveforms

This section describes the Generative Transformer Architecture as
described in [25] that we used to train the system as shown in Fig-
ure 3. A detailed explanation is given in [46], but for the sake
of clarity and completeness, we describe it here. As a black-box,
which we would describe in more detail in this section, it takes as
an input vector sequence of a fixed length T during training, and
produces the same length but with a chosen dimension, which we
call E, which denotes the size of the latent space. More specif-
ically, it maps a sequence of vectors x = (x1, x2, ....xT ) to a
sequence of vectors of same length T , namely z : (z1, z2, ....zT ),
where each of the dimensions of (z1, z2, ....zT ) is the chosen hyper-
parameter E, which in our case is 128, the size of the embedding.
For the sake of brevity, we would explain only one Transformer
Encoder, and for a model with layers, L, each of the stacks is
super-imposed on the other one.

Each Transformer module consists of an attention block and a
feed-forward block. The output of each of them is passed through
a layer norm and a residual layer. So after both the attention block
and the feed-forward block, if the input to a sub-block (attention
Fa or feed-forward Fff block) is a sequence xb, instead of passing
the output directly to the next module/sub-block, we pass along the
block layer norm and the residual output xbo

xbo = LayerNorm(xb + Fa/ff (xb))

This follows the notion that layer-norm/skip connections help in
better convergence/improved performance. We now describe each
of the two sub-blocks that are part of the transformer block namely,
i) multi-headed causal attention ii) feed-forward architecture

3.3.1. Multi-Headed Causal Attention

In layman’s terms a multi-headed causal attention function can be
described as a weighting function that decides how to get the out-
put of each step. We weigh the rest of the inputs that are fed onto
it. In other words, it assigns a probabilistic score of how impor-
tant each of the embeddings is while predicting the output. Multi-
headed attention consists of first learning a probabilistic score. It
is then multiplied with each of the inputs to determine how impor-
tant each of the inputs is for the prediction of the embedding for
a position pos belonging to 1, 2, 3....T . The attention mechanism
used in our case is scaled-dot product attention. With each of the

inputs at every position, we learn a query, key, and a value vector.
This is done by implicitly learning matrices, WQ, WK , and WV to
produce a query vector q, key vector k, and value vector v for each
of the inputs for a single attention head. We take the dot product of
query and key vectors, the result is multiplied by a normalization
factor (the inverse of the square root of the size of the vector as
done in [25]), before taking a soft-max across all the inputs. Each
of the value vectors is multiplied by this score to get the output of
the attention module. Mathematically, for a query matrix Q, key
matrix K, and a value matrix V , it is defined as,

Attention(Q,K, V ) = softmax(
QKT

√
dk

)

We can also learn multiple such attention maps for h attention
heads, defined as,

MultiHeadAttention(Q,K, V ) = Concat(h1, h2, ...hh)Wo

, where each of the attention heads hi is defined as

Attention(Qi,Ki, Vi) = softmax(
QiK

T
i√

dk
)

and Wo is a matrix learned during training. In this work, we focus
on a causal attention map which is made possible by multiplying
with a mask of a triangular matrix so that each of the attention head
only gives weightage to the previous sample at position pos and all
the future entries are set to zero. This is critical as our output is
the input signal shifted by one as the norm is for training language
models. [29]

3.3.2. Additional Architecture Details

Once we have weighted the importance of each of the input via
multi-headed attention for passing at a position pos, we pass the
input embedding at each position pos through a feed-forward ar-
chitecture. For the dimension of feed-forward layers dff , we have
the output of the feed-forward layers xbo for an input xb for a 2-
layer network as,

FF(xb) = max(0, xbW1 + b1)W2 + b2.

This function is identically applied to each position of the in-
put. As described in [25], we add positional encodings to the input.
The model does not take into account the relative positions of the
waveform and the input is passed on as a list. For any position pos
for the dimension i of the latent space, we use a sinusoidal func-
tion, i.e. to each position pos and embedding dimension i in E,
we add,

PEpos,2i = sin(pos/10000(2i/E))

PEpos,2i+1 = cos(pos/10000(2i/E))

This adds positional information for each point in time and
embedding dimension E as input before passing thorough self-
attention layers. The output of the last Transformer block is then
passed through a dense layer, typically representative of the size
of the output space in our case 8-bit waveform levels. Finally, the
logits are converted to probability distribution using softmax acti-
vation. We also minimize cross-entropy loss as mentioned in the
previous section, and also to be consistent with wavenet training.
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Figure 4: Our proposed conditioned transformer architecture.
This improves performance, and helps mitigate the quadratic
memory constraint of the classical transformers marginally

3.4. Conditional Generative Transformer

Conditional generative transformers have been shown to guide the
generative output according to the desired attributes. They have
been deployed in areas such as NLP [20], to condition the gener-
ation of text according to sentiment, bias to reviews, or any other
meta-data we choose to have. In our current work, to give more
context to the generation process, we condition it with the previ-
ous context as shown in Figure 4. Due to the quadratic scaling
of the attention mechanism, it is difficult to attend to long-term
sequences, and thus scale this to higher context sizes say 4000
samples or beyond. To circumvent this, we use a convolution ar-
chitecture to learn a latent space, which might be suitable. We
achieve this by using a 6-layer convolutional architecture on the
past 250ms, i.e. 4000 samples, each having 128 filters and down-
sampling by 2, followed by a dense layer to learn a latent space of
size 128. There are a variety of ways we can condition an implic-
itly or explicitly learned latent space. We follow the late fusion
approach. Our model combines the output logits and the latent
space learned through a convolutional net through a dense layer,
and every output prediction is conditioned on the latent space.

3.5. Unconditioned Raw Waveform Generation

We explored, similar to char-rnn models if we can generate new
audio purely by sampling from the trained models iteratively. To
synthesize new audio, since the model is probabilistic, we feed
just the input as random noise or start with a note/snippet of a pi-
ano sound, and do a probabilistic sampling of the next waveform
sample. This next sample is fed back into the model to generate a
sample again. We do not obtain meaningful sounding audio in this
unconditioned setup, which can be due to several factors. Primar-
ily, we do have a smaller context window of 100ms as compared
to 240ms used in wavenet. It might also be a function of tuning
temperature factor T , which also plays a major role in generating
diverse sound rather than simple repetitions [1]. Interestingly, for
speech [4] unconditioned models also fail to produce meaningful
sounds. Most of the compelling results are conditioned on meta-
data, timing, phonemes, etc. to name a few. However, similar
to the theme in natural language processing as shown in [47], we
outperform dilated convolutional-based models with transformer
architectures for a next step prediction task for raw waveform gen-
eration as will be described in the next section. Some of the result-

ing audio examples can be found at: https://tinyurl.com/6cjxffa8

3.6. Transformer Implementation Details

Heavy data augmentation was carried out like amplitude scaling,
time shifts, etc. on the input data. The input one hot representa-
tions corresponding to the level of the bit representation was first
passed through a positional encoding layer to add positional in-
formation before passing it to the Transformer architecture. For
both the wavenet and Transformer architecture, the goal is to pre-
dict the next sample. Cross entropy loss was minimized between
the ground-truth bit level and the predicted one over 256 levels.
Adam optimizer [48] was used with an initial learning rate of 1e-4
for the first 10 epochs, followed by 1e-5 and 1e-6 every time the
loss values began to plateau. The training was performed on the
Google Cloud Computing Platform for a maximum of 30 epochs
for millions of data points. Dropout regularization was used for
the feed-forward architecture to avoid over-fitting. For every train-
ing instance, instead of choosing to have a fixed dataset, we ran-
domly shuffle training data at every epoch. The development and
tuning were performed for a held-out validation set, and the best-
performing models are evaluated. For every model, a batch size
of 32 was chosen. For larger-scale experiments, we use NVIDIA
V100 GPUs2, and all of the frameworks were developed using
open-source Tensorflow [49], using distributed training. This will
enable the work to be easily reproduced. For each of the specific
architectures, the readers are advised to see Table 1 for further
details for the number of attention heads, size of feed-forward ar-
chitecture, and the embeddings.3

4. RESULTS AND DISCUSSION

For comparison against baseline neural generative models, we have
chosen the prediction of the next sample as a criterion to compare
different models. To quantify the performance, we choose to have
top-5 accuracy as a metric. By this, we say that the model is ac-
curate if one of the levels out of the top-5 predictions matches that
of the ground truth. Such metrics have been used in error perfor-
mance where there are many output categories e.g. [50] [51]. For
all the numbers reported in Table 1, we randomly subsample about
30min of data in total duration out of the 50 test tracks. No data
augmentation or any other pre-processing was carried out. This is
in contrast to what was reported in wavenet, which relied on Mean
Opinion Scores (MOS) to quantify the performance of wavenet
with that of other generative/audio synthesis algorithms. We rea-
son that the output of a system such as a text-to-speech system
is dependent on several variables. For example, how well can a
model handle external attributes/conditioning, the performance of
spectral synthesis over waveform synthesis, etc. There can also be
errors introduced due to the generation of waveforms from spec-
tral representations too. Additionally, there can be different errors
introduced due to different applications e.g. a mean opinion score
metric for the TTS system might not be a good metric for other
perceptual tasks such as speech denoising/enhancement. Finally,

2The work is not necessarily predicated on the capacity of a specific
GPU and can be run on slower GPUs as well, with smaller batch sizes.
The only difference would be the time to train and iterate.

3All of the code was written using an open-source frame-
work Tensorflow and can easily be reproduced. There are sev-
eral examples of Transformer implementations that can be tried from
https://www.tensorflow.org/tutorials
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concerning the quality of generated audio in unconditioned setup
without meta-data, it again is a function of how to sample the pre-
dictions, how we modify the temperature function. We evaluate it
against the wavenet model as it is state-of-the-art in raw waveform
synthesis.

Due to these reasons, we focus on the synthesis of waveform
alone and report raw accuracy numbers. Since for both wavenet,
the objective for training is how good the model is in the next step
prediction using cross-entropy loss, we believed that instead of
giving negative log-likelihood scores, we give the accuracy as to
how each of them does in the objective criteria they are trained on.
Table 1 compares the performance of all the systems tried. For the
vanilla wavenet system, we fix the hyper-parameters according to
the one implemented by Google in [1]. The vanilla wavenet archi-
tecture consists of 10 layers of causal convolutions with each layer
having 128 filters, and the receptive field was dilated by a factor
of 2 in each layer with the initial filter size being 2. The second
variant of this model stacked 3 such modules yielding a total of 30
layers. We see that with depth the model achieves a performance
of about 76% as opposed to 74% with the vanilla model. This is
because the stacked model learns even longer context as opposed
to the vanilla architecture. We did not tune on the filter sizes, the
number of filters, and these parameters were chosen from the paper
as described in [1].

For the Transformer architecture, we first choose the parame-
ters to have 4 attention heads, with the size of latent space being
128, and the size of the feed-forward architecture was chosen to be
256. For most of the Transformer implementation seen across liter-
ature [33] typically the number of attention heads are chosen to be
either 4 or 8 and we adhered to such a choice. We see that the net-
work already outperforms even the large-scale 30-Layer wavenet
architecture by a significant margin of about 4%. One of the main
reasons we attribute the success of these models is because atten-
tion models learn which parts of the waveform are important. This
enables learning a much more complex topology than the causal
convolutional filters learned by wavenet architectures. Addition-
ally, when we condition it on the past waveform, it outperforms the
same architecture without conditioning by 2 %. Even though this
is a small number, it is as significant of a jump as between a Vanilla
wavenet implementation and a Stacked 30-Layer wavenet model.
One of the hypotheses as to why this happens is the fact that we
are in some manner able to capture even longer contexts by con-
ditioning the generation on past samples. For example, the latent
code can learn pitch patterns, chord distributions, which can guide
the output predictions better. In the future, speaker/instrument-
specific conditioning can be carried out to generate a diverse range
of audio signals. This flexibility of conditioning via convolutional
architectures can be modified in future for a variety of applications
e.g. Packet Loss Concealment [19, 52], instrument transfer [15, 6]
to name a few. Finally, to see how much we can improve the per-
formance with large deeper Transformer architectures, we train an
8-Layer Transformer model, with 8 attention heads keeping the
size of embeddings and the architecture of feed-forward architec-
ture the same. We see that the performance increases significantly
yielding 5% absolute improvement over the baseline Transformer
architecture. This is in line with what has been seen in the liter-
ature of improved performances with the size of the models[41].
The improvement over traditional wavenet architectures with com-
parable architecture by such significant margins is exciting for the
future of raw audio synthesis.

Table 1: Comparison of various proposed architecture as shown
in the table below for top-5 prediction accuracy. H: The number
of attention heads used in our model, E: the size of the embedding
at each layer of Transformer. d: dilation rate at every level for
wavenet architecture, N: Number of Layers, F: Number of filters
in each layer. The Transformers here refer to Transformer archi-
tecture with Causal Attention where prediction at each time step
depends on previously seen values.

Neural Model Architecture Accuracy
Vanilla Wavenet: d = 2, N = 10, F = 128 74%
Stacked Wavenet: d = 2, N = 30, F = 128 76%

3-Layer Transformer: H = 4, E = 128 80%
Conditioned 3-Layer Transformer: H = 4, E = 128 82%

Large 6-Layer Transformer: H = 8, E = 128 84%
Large 8-Layer Transformer: H = 8, E = 128 85%

5. CONCLUSION

With the advent of the success of generative Transformer based
models in a variety of domains, this paper presents how they have
outperformed state-of-the-art architecture for raw audio synthesis.
We show how using conditioned generative models, we outper-
form a classical wavenet architecture for raw audio synthesis on
the next step prediction task. By combining classical latent rep-
resentation with that of a Transformer architecture, we show we
can incorporate even longer contexts with current architectures.
This has the potential to improve the classical pipelines where a
wavenet-based generator was used e.g. audio synthesis, source
separation, denoising, audio transforms, vocoders to name a few.
It is flexible to incorporate conditioning on external attributes, as
in our case, the past context.

6. FUTURE WORK

Several future research directions can be explored with the cur-
rent work. It will be interesting to compare the performance of
waveform-based generative models for applications such as TTS,
audio source separation, denoising, packet loss concealment. An-
other future direction would be to use variants of a standard trans-
former architecture to improve the performance further e.g. sparse
transformers, switch transformers. It would also be interesting to
see what the Transformer architecture learns in the attention maps,
and better interpret them. We kept getting improved performance
as we increased the model complexity, which makes the prospect
of further increasing the depth and size of the Transformer mod-
ule for improved performance. As future work, we want to explore
synthesis by giving more context than 100ms, which will make the
unconditioned generation of audio possible as shown in wavenet
work. Further, we want to push the envelope of how far we can
get, both in terms of modeling longer-term dependencies of the
past samples over several seconds on a waveform level to pave
way for more exciting applications.
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