
READEX: Linking Two Ends of the Computing
Continuum to Improve Energy-efficiency in

Dynamic Applications

Per Gunnar Kjeldsberg∗, Andreas Gocht†, Michael Gerndt‡,
Lubomir Riha§, Joseph Schuchart¶, and Umbreen Sabir Mian†

∗Department of Electronics and Telecommunications
Norwegian University of Science and Technology, Trondheim, Norway
†Center for Information Services and High Performance Computing

Technische Universität Dresden, Germany
‡Chair of Computer Architectures

Technische Universität München, Germany
§IT4Innovations, Ostrava, Czech Republic

¶High Performance Computing Center Stuttgart
Universität Stuttgart, Germany

Abstract—In both the embedded systems and High Perfor-
mance Computing domains, energy-efficiency has become one
of the main design criteria. Efficiently utilizing the resources
provided in computing systems ranging from embedded systems
to current petascale and future Exascale HPC systems will be
a challenging task. Suboptimal designs can potentially cause
large amounts of underutilized resources and wasted energy. In
both domains, a promising potential for improving efficiency of
scalable applications stems from the significant degree of dy-
namic behaviour, e.g., runtime alternation in application resource
requirements and workloads. Manually detecting and leveraging
this dynamism to improve performance and energy-efficiency is a
tedious task that is commonly neglected by developers. However,
using an automatic optimization approach, application dynamism
can be analysed at design time and used to optimize system
configurations at runtime.

The European Union Horizon 2020 READEX (Runtime
Exploitation of Application Dynamism for Energy-efficient eX-
ascale computing) project will develop a tools-aided auto-tuning
methodology inspired by the system scenario methodology used
in embedded systems. Dynamic behaviour of HPC applications
will be exploited to achieve improved energy-efficiency and
performance. Driven by a consortium of European experts from
academia, HPC resource providers, and industry, the READEX
project aims at developing the first of its kind generic framework
to split design time and runtime automatic tuning while targeting
heterogeneous system at the Exascale level. This paper describes
plans for the project as well as early results achieved during its
first year. Furthermore, it is shown how project results will be
brought back into the embedded systems domain.

I. INTRODUCTION

In the embedded systems domain energy-efficiency has
been a main design constraint for more than two decades.
More recently, this has also become a major concern in High
Performance Computing (HPC). Even though the two domains
are different in many respects, techniques that have proven to
be efficient in one may very well be beneficial also in the other.
The methodology of system scenario based design are being

applied with success in embedded systems both to increase
performance and to reduce power and energy consumption [1]–
[3]. It consists of a split design time and runtime approach
to enable dynamic adaption to changing system requirements
without a prohibitively large runtime overhead. In the HPC
domain auto-tuning is used either at design time to statically
tune the system configuration, or at runtime through compute
intensive estimation of the dynamic requirements [4], [5].
Combining the approaches from embedded systems and HPC
has potential of giving substantial synergies in both domains.

A constantly growing demand for data centre computing
performance leads to the installation of increasingly powerful
and ever more complex systems characterized by a rising
number of CPU cores as well as increasing heterogeneity.
This makes optimization of HPC applications a complex task
demanding severe programming effort and high levels of
expertise. With growing computational performance, there is
typically also an increase in a system’s energy consumption,
which in turn is a major driver for the total cost of ownership
of HPC systems. Limitations to chip temperature and cooling
capabilities can furthermore make the performance of Exascale
HPC systems power-bound. Developers, however, commonly
focus on the implementation and improvement of algorithms
with regards to accuracy and performance, neglecting possible
improvements to energy-efficiency. The fact that programmers
in general also lack the platform and hardware knowledge
required to exploit these measures is an important obstacle
for their use both in the embedded and HPC domains.

The European Union READEX Project [6] (Runtime Ex-
ploitation of Application Dynamism for Energy-efficient eX-
ascale computing) tackles the challenges above by embracing
the significant potential for improvements to performance and
energy-efficiency stemming from the fact that HPC applica-
tions commonly exhibit dynamic resource requirements similar
to those seen in embedded systems. Examples are alternating
application regions or load-changes at application runtime.
We will refer to this as application dynamism throughout the

Per Gunnar
Typewritten Text
Copyright 2017 IEEE



paper. Examples of dynamism can be found in many current
HPC applications, including weather forecasting, molecular
dynamics, or adaptive mesh-refinement applications.

These applications commonly operate in an iterative man-
ner, e.g., using a timestep loop as the main control flow. Each
iteration of such a program loop can be regarded as a phase of
the application execution. Intra-phase dynamism describes the
changes in resource requirements and computational character-
istics between different code regions executed by a single iter-
ation, e.g., the change between memory- and compute-bound
kernels. Intra-phase dynamism can be exploited by adjusting
the system to the resource requirements of the current code
region. Inter-phase dynamism, on the other hand, describes
the changes in application behaviour between iterations or
phases. As the execution progresses, the required computation
can vary, either on single processes – causing imbalances –
or on all processes with a homogeneous rise in computational
complexity on all processing elements.

It is expected that applications running on future systems,
both extreme-scale HPC and embedded, will exhibit even
higher levels of dynamism. This will be mainly due to the
increased demand on data movement between processing ele-
ments, both on intra- and inter-node levels, and more complex
levels of the memory hierarchy. Furthermore, the rise of
many-core co-processors and accelerators are introducing new
degrees of freedom such as offloading and scheduling.

The READEX project will develop and implement a tools-
aided methodology that enables HPC application developers
to exploit dynamic application behaviour when run on cur-
rent and future extreme parallel and heterogeneous multi-
processor platforms. READEX combines and extends state-
of-the-art technologies in performance and energy-efficiency
tuning for HPC with dynamic energy optimization techniques
for embedded systems. Many of the techniques developed for
HPC systems can also be fed back to the embedded systems
domain, in particular with the increasing performance seen in
embedded multi-processor system-on-chip. This will be further
outlined later in this paper.

The general concept of the READEX project is to handle
application energy-efficiency and performance tuning by tak-
ing a complete application life-cycle approach, in contrast to
other approaches that regard performance and energy tuning
as a static activity taking place in the application development
phase. With inspiration from systems scenario based design
in the embedded systems domain, READEX will develop
a (semi)-automatic dynamic tuning methodology spanning
the development (design time) and production/maintenance
(runtime) phases of the application life-cycle. Furthermore, a
novel programming paradigm for application dynamism will be
developed that enables domain experts to pinpoint parts of the
application and/or external events that influence the dynamic
behaviour. This is expected to reduce the energy consumption
even further, compared to a purely automatic approach.

The rest of this paper is organized as follows. After a
review of related work in Section II, the project background in
systems scenario based design and static auto-tuning is given in
Section III. This is followed by a description of the READEX
concepts (Section IV) as well as results from experiments
with a realistic industrial HPC application (Section V). Finally,

we show how results from READEX can be applied in the
embedded systems domain in Section VI and conclude in
Section VII.

II. RELATED WORK

System scenario based design will be described in the next
section. Other related work in the embedded systems domain is
out of the scope of this paper, but a good overview of different
approaches for scenario based dynamic system adaptation can
be found in [7].

While a small number of dynamic auto-tuning methodolo-
gies and tools exist for run-time optimizations [8], [9], no
single standalone dynamic auto-tuning framework currently
exists with the capability to target the full breadth of large-
scale HPC applications being used in academia and industry
both now and on the road to Exascale.

Several leading EU research projects are approaching the
challenge of tuning for performance and energy-efficiency by
either introducing entirely new programming models or lever-
aging existing prototype languages. An example of the latter
approach is the ENabling technologies for a programmable
many-CORE (ENCORE) project [10], which aims to achieve
massive parallelism relying on tasks and efficient task schedul-
ing using the OmpSs programming model [11]. The READEX
project takes a different approach by developing a new generic
programming paradigm allowing to express and to utilize
dynamism of applications in the automatic tuning process.

The Performance Portability and Programmability for Het-
erogeneous Many-core Architectures PEPPHER project [12]
has developed a methodology and framework for programming
and optimizing applications for single-node heterogeneous
many-core processors to ensure performance portability. With
Intel as a key partner of the READEX project, we will go one
step further and provide a framework that supports the hetero-
geneity of the system in the form of tuning parameters that
allows large-scale heterogeneous applications to dynamically
(and automatically) adapt heterogeneous resources according
to runtime requirements.

The ANTAREX project [13] creates a Domain Specific
Language (DSL), which distributes the code between multi-
core CPUs and accelerators. An extra compilation step is
introduced to translate the DSL into the intended programming
language. While our work targets conventional HPC clusters,
the ANTAREX project focuses on ARM-based systems.

To the best of our knowledge, no dynamic auto-tuning
framework exists yet that shows the potential to scale to future
Exaflop machines. Auto-tuning frameworks typically follow
a centralized approach, where the central agent will become
a bottleneck when deployed on these systems. In contrast,
READEX aims to develop the concept of (semi)-distributed
dynamic tuning that minimises centralisation of control.

III. BACKGROUND

READEX synergistically combines and extends two tech-
nologies from opposite ends of the computing continuum,
namely the systems scenario methodology for dynamic tuning
from the field of embedded systems with the automatic static
tuning from the area of HPC.



A. System Scenarios Methodology

In the embedded systems domain a scenario-based method-
ology [1]–[3] has been developed to enable exploitation of
application dynamism through fine-grained system tuning. The
methodology exploits detailed knowledge about the applica-
tion(s) to be run on the system, extracted through profiling
and (semi-)automatic code inspection at design time. Using
these techniques, different runtime situations (rts’s) of the ap-
plication are identified that have different costs related to them,
e.g., execution time, energy consumption, and memory foot-
print. At the same time, identifiers that decide the upcoming
rts, e.g., data and control variables, are determined.

At design time, rts’s are grouped into scenarios with similar
multidimensional system costs. Optimized platform configura-
tions are generated for each scenario using parameters such
as dynamic voltage and frequency scaling, task mapping, and
data and memory reconfiguration. Furthermore, efficient and
possibly application-specific scenario prediction and scenario
switching mechanisms are developed. The prediction is based
on the identifiers that decide the upcoming rts and hence the
corresponding scenario. The switching mechanism compares
the cost and the gain of reconfiguration and decides whether
it is beneficial to switch. It also defines how the actual
reconfiguration shall be performed, e.g., how to change from
one voltage and frequency setting to another.

At runtime, the upcoming scenario is predicted and a
platform configuration switch is performed based on the
mechanisms developed at design time. Should the application
experience an rts that was not seen at design time a backup
scenario guaranteed to satisfy any rts is used. The methodology
also opens for the inclusion of a calibration mechanism but
this is typically too resource demanding for smaller embedded
systems. Examples of more than 30 % reduction of energy
consumption have been reported for the system scenarios
methodology in the embedded systems field [2].

B. Static Auto-tuning of HPC Applications

Most of the current tools for performance engineering
focus on collecting and presenting information for the users,
while only few focus on the automation of the performance
optimization process (auto-tuning), e.g., the Periscope Tuning
Framework (PTF) developed in the EU FP7 ICT AutoTune
project [4], [5]. PTF automatically finds optimized system
configurations for whole application runs, effectively averaging
the benefits of system adaptation over the whole runtime of
the application (static tuning). With these static auto-tuning
techniques, improvements in energy-efficiency of up to 10 %
for application runs have already been achieved while keeping
the performance degradation to a few percent [14].

PTF’s main principles are the use of formalized expert
knowledge and strategies, an extensible and modular archi-
tecture based on tuning plugins, automatic execution of exper-
iments, and distributed, scalable processing. PTF provides a
number of predefined tuning plugins, including:

• Dynamic Voltage and Frequency Scaling (DVFS)
• Compiler flags selection
• MPI runtime environment settings
• Dynamic Concurrency Throttling (DCT) in OpenMP

Fig. 1. Overview of the READEX methodology.

• MPI master-worker pattern settings

PTF also provides the Tuning Plugin Interface for the
development of new plugins. It builds on the common perfor-
mance measurement tools infrastructure Score-P [15], which
has proven scalability on current petascale systems.

IV. THE READEX CONCEPT

The READEX concept combines the system scenarios
methodology with automatic energy and performance tuning
into a holistic tools-aided methodology, spanning over the
major parts of the HPC application life-cycle, i.e., applica-
tion development and performance tuning at design time and
production runs at runtime. Figure 1 provides a high-level
overview of the methodology.

A. Application Instrumentation and Analysis Preparation

During the first step of the methodology, the application
is instrumented through insertion of probe-functions around
different regions in the application code. A region can be any
arbitrary part of the code, for instance a function or a loop
nest. The instrumentation is both done automatically and by
letting the user provide application-domain knowledge using a
new programming paradigm being developed in the project.

The programming paradigm provides a possibility for ex-
posing parameters that define dynamic behaviour of the appli-
cation to the READEX tool-suite. These application domain
parameters, referred to as additional identifiers, will enhance
the distinguishing of different system scenarios and corre-
spondingly adapting system configurations in order to improve
overall application performance and energy characteristics.

An example for exposed parameters are different input
data sets. Exposing these data to READEX will allow de-
tecting different compute characteristics caused by varying
input. The paradigm will also allow developers to expose
additional application-level tuning parameters to the tuning
process, e.g., alternative code-paths that will be chosen based
on the provided identifiers.

In addition to the optional information provided by the
user, probe-functions are automatically inserted around user



code regions and by linking instrumented versions of relevant
programming libraries using existing technologies from the
Score-P infrastructure. This allows for fine-grained analysis
and tuning.

B. Application Pre-analysis

Based on the performance dynamics analysis capabilities of
PTF, the READEX analysis strategy is being developed. It will
automatically characterize present dynamism and indicate the
optimization potential. The latter gives the user an estimate
of the performance and energy-efficiency gains that can be
realized using the READEX methodology.

The application is run once with a representative data
set, during which relevant timing information is recorded.
This performance data will reveal all significant regions of
the application with runtimes above a certain threshold. The
instrumentation of insignificant regions with runtime below
the threshold is then removed, e.g., through the definition
of an instrumentation filter, to reduce the perturbation of the
application. This step prepares the application for all following
steps of the methodology.

In a second iteration, the application is run again with
the same, or extended, data set and relevant performance
and energy metrics are collected. This results in time-series
of measurements representing temporal evolution of each
region’s computational characteristics over multiple applica-
tions phases. According to the system scenario methodology,
each region’s execution, represented by a point in this space,
corresponds to a runtime situation (rts). A first analysis will
reveal whether relevant code regions exist that exhibit enough
dynamism to make the following tuning steps worthwhile. The
dynamism can, e.g., be differences in compute- and memory-
bound operation. If no such dynamism is detected the tuning
should be aborted due to homogeneous application behaviour.
Since the runtime tuning necessarily cause an overhead, a
threshold will be defined for the required dynamism.

C. Derivation of the Tuning Model

In order to build a tuning model that guides the adap-
tation of the system (both application and platform) to the
dynamically changing requirements, PTF, Score-P and the later
described READEX Runtime Library are used to perform an
automatic search for optimal system configurations for the
significant regions identified in the previous step.

Exploration of the space of possible tuning configurations
is controlled by PTF tuning plugins. Each tuning plugin is
responsible for a specific tuning aspect, which can include
one or multiple related tuning parameters. READEX will
support and develop a number of plugins for hardware, system
software, and application aspects.

The architecture of the design time tools required to explore
optimal system configurations is depicted in Figure 2. To
facilitate the determination of optimal platform configurations,
PTF will run the instrumented application. For the identified
rts’s, various system configurations are evaluated in terms of
the requested objective functions and the results are stored in
the RTS Database. The READEX Runtime Library (RRL) is
used to configure the platform according to each experiment.
Details regarding the RRL will be given in Section IV-D.

Fig. 2. Architecture of the design time part of the READEX Tool Suite
(black: existing component; red: new ; yellow: extended).

Since the search space for optimal configurations is po-
tentially large, new search strategies are being developed. A
number of possible search strategies to explore have been
identified, e.g., heuristics based parameter selection, inter-
phase comparisons with an underlying approximation of the
expected objective function, and a simple comparison with the
objective function values taken during a baseline run.

After all relevant system configurations are evaluated for
all rts’s, a scenario identification module groups rts’s with
identical or similar best found configuration into scenarios.
In order to predict upcoming system scenarios at runtime,
it also builds a classifier based on the provided identifiers.
The classifier maps an rts to a scenario based on the current
identifier values, e.g., the call-path that has been followed
to reach the current region. A configuration selector is also
generated. In its simplest form, this is a function returning a set
of tuning parameter values according to a one-to-one mapping
between scenario and configuration. A given scenario can, e.g.,
directly be used to select the voltage and frequency setting
to apply. More advanced selectors can also be envisioned,
taking switching overhead into account as well as selection
between Pareto optimal configurations. The set of scenarios,
the classifier and the selector is stored in the application tuning
model, in the form of a serialised text file, to be loaded and
exploited during production runs at runtime.

D. Runtime Application Tuning

Once the pre-analysis is finished and the application tuning
model is created, the optimized application can be used in
production. For this, the READEX Run-time Library (RRL) is
implemented. This library uses the previously obtained knowl-
edge about application dynamism to optimize the application’s
energy consumption. For the already seen rts’s, the optimal
configuration is directly extracted from the tuning model. For
the unseen rts’s a calibration mechanism will be developed.

The architecture of the RRL is depicted in Figure 3. Note
that even though included in the figure, PTF is not used during
a production run. As mentioned in Section IV-C the RRL is
used at design time to set the system configuration during the
search for optimal configurations. At runtime, the RRL obtains
the set of configurations, in the form of scenarios, classifiers



Periscope 
Tuning 

Framework

Application
Tuning Model

READEX Runtime Library

Parameter 
Controller

Selector

Calibration
RTS 

Handler

Control 
Center

Classifier

OA Event 
Receiver

Parameter 
Control Plugin

Score-P

Online
Access

Interface

Substrate 
Plugin 

Interface

Instrumen-
tation

Metric 
Plugin 

Interface

Energy 
Measurements 

(HDEEM)

Fig. 3. Architecture of the READEX Run-time Library (RRL) (black: existing
component; red: new ; yellow: extended).

and selectors, from the application tuning model generated by
PTF at design time.

A production run of an application starts with a loading of
the application tuning model into the Tuning Model Manager
(TMM). When a new region is entered during the application
execution, Score-P will notify the Control Center, which passes
the information to the RTS Handler. The RTS Handler then
checks if the region is significant and gets the best config-
uration for the current region from the TMM. Finally, the
RTS Handler passes this configuration down to the Parameter
Controller, which configures the different Parameter Control
Plugins (PCPs). PCPs are responsible for setting different
system configurations like the CPU frequency or the number
of OpenMP threads. They are employed both during the
derivation of the tuning model at design time and during a
production run.

In order to qualify for Exascale deployments, the archi-
tecture of the RRL relies on maximal decentralization of
tuning decision making. If it is unavoidable, a scalable tree-like
reduction network will be implemented to determine global
decisions.

During the application run, a calibration mechanism will
handle unseen rts’s and changes to the environment. The
calibration will be based on established Machine Learning
approaches to be investigated in later phases of the project.
Once the calibration detects a new optimal configuration for a
certain scenario, the tuning model will be updated. This will
lead to a constantly improving tuning model.

V. EXPERIMENTS

The READEX project considers two different metrics for
evaluation of the project success: the achieved improvement
in energy-efficiency compared to the default system configu-
ration, measured in energy-to-solution, and the time and effort
required to achieve this improvement compared to the manual
tuning.

For evaluation and validation of the project results,
READEX employs a co-design process in which the auto-
tuning methodology and the tool-suite are developed in parallel
with a manual tuning effort of selected applications and com-
putational libraries. The information exchange will benefit both
the creation of the tools-aided methodology and the manual
tuning efforts.

Since the READEX project is still in an early phase, this
section presents a purely manual application case study. The
goal is to show how application dynamism can be exploited
to improve energy efficiency. The evaluation has been done
on a system installed at Technische Universität Dresden. The
system is equipped with more than 1400 power-instrumented
nodes with two 12-core Intel Xeon E5-2680v3 (Haswell-EP)
processors each. Each CPU has an L3 cache while each core
has local L2 and L1 caches. These are used transparently.
The tests are performed on a single compute node, and
overall interconnect hence does not influence the results. The
power-instrumentation allows for scalable and accurate energy
measurements with a fine spatial and temporal granularity
(CPU, memory, and whole node with up to 1000 Samples/s)
[16].

Partial Differential Equations (PDEs) are often used to
describe phenomena such as sheet metal forming, fluid flow,
and climate modelling. The computational approaches taken to
find solutions to such PDEs typically involve solving a large
system of linear equations. When scientific applications solve
PDEs that are too big to fit in the memory of a single machine
or demand more processing power than a single machine can
deliver, Domain Decomposition Methods (DDMs) are used to
divide the original problem into smaller sub-domains that are
distributed across the compute nodes of an HPC cluster. The
Finite Element Tearing and Interconnecting (FETI) method
forms a subclass of DDM, efficiently blending Conjugate
Gradient (CG) iterative solvers and direct solvers.

The FETI method exhibits both parallel and numerical
scalability and can scale to tens of thousands of CPU cores
as implemented in the ESPRESO library, which employs
both MPI and OpenMP parallelization [17]. The OpenMP
parallelization enables the resource manager to dynamically
change number of threads and therefore number of utilized
CPU cores for different code regions of the application.

The CG solver in FETI calls three key operations: (i)
FETI operator F , (ii) preconditioner Pr, and (iii) projector P
(for more detail see [17]) in every CG iteration. These three
operations takes over 95% of the solver runtime and each
of them uses different BLAS functions. In our experiments,
we have dynamically modified both the number of OpenMP
threads (from 1 to 12 per CPU socket) and frequency settings
(from 1.2 to 2.5 GHz). The supply voltage is automatically
set to the lowest level allowed for a given frequency. The
results are shown in Table I. The best static savings value
shows the best combinations of found frequencies and number
of cores for the entire CG solver without dynamic tuning of
the F , Pr and P regions. The energy saving is given as a
percentage compared to using the default frequency 2.5 GHz
and default number of threads 24. The dynamic savings values
in the table show additional savings when we dynamically
switch the frequency and number of threads for F , Pr and
P regions.



TABLE I. OPTIMAL FREQUENCIES AND ENERGY SAVING FOR
ESPRESO FETI SOLVER.

HW configuration Phase Opt. freq. / # of cores Energy saving
Default: CG solver 2.4 GHz / 12 cores —

Best static: CG solver 1.8 GHz / 10 cores 9 %
Dynamic tuning: F region 1.2 GHz / 12 cores

P region 2.4 GHz / 12 cores
Pr region 1.8 GHz / 10 cores
all regions + 6 %

= 15 % total savings

The table shows that the best static configuration provides
9 % energy savings, dynamic tuning adds extra 6 %, which in
total provides 15 % energy savings. This is exactly the type of
dynamic behaviour that READEX plans to exploit. Note that
in this case we only experiment with two tuning parameters
(DVFS and number of utilized cores) while later in the project
we will work with additional types of platform configuration
alternatives to further reduce the energy consumption.

VI. APPLICATION IN EMBEDDED SYSTEMS

In system scenario based design of embedded systems,
the process of searching for optimal platform configurations
are today a partly manual task based on code inspection and
profiling. Important elements from the design time auto-tuning
process can be adapted to embedded systems. Both the auto-
matic code instrumentation and use of the new programming
paradigm for application domain experts can be transferred.
The concept of plugins that tune for specific tuning aspects,
as well as the novel search strategies, can also be used as
inspiration for future projects in the embedded domain.

For an average embedded system, the RRL will impose a
too large overhead. In this case, a lightweight version compiled
directly into the application at design time is more reasonable.
This can be used to extend current work on scenario platform
adaption units [19]. For high-end multi-processor systems-on-
chip, an RRL-like solution, including the calibration mecha-
nism, may also be explored.

VII. CONCLUSION

Energy-efficiency and extreme parallelism are the major
challenges on the road to Exascale computing. The European
Union Horizon 2020 READEX project will address these by
providing application developers with a tools-aided methodol-
ogy for a combined design time runtime approach for dynamic
adaption to changing resource requirements. The aim is to
significantly improve energy-efficiency and performance by
exploiting the resources available to the application while
reducing the programming effort through the automation.

In order to achieve its ambitious goals, the project builds
on two proven technologies, the static auto-tuning and the
system scenarios methodology, to develop the first of its kind
generic dynamic auto-tuner. This paper has presented the
main concepts being used in the READEX project, as well
as experimental results demonstrating the type of dynamic
behaviour the project will exploit.

Embedded systems of today and the future experience
continuously increasing computational capacities, e.g., through
the use of heterogeneous many-core platforms. Techniques
developed in the READEX project, e.g., for auto-tuning,

parallel decision making, and run-time calibration, can thus
also be transferred back into this domain.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Horizon 2020 Programme under
grant agreement number 671657.

REFERENCES

[1] I. Filippopoulos, F. Catthoor, and P. G. Kjeldsberg, “Exploration of
energy efficient memory organisations for dynamic multimedia ap-
plications using system scenarios,” Design Automation for Embedded
Systems, vol. 17, no. 3-4, pp. 669–692, 2013.

[2] S. V. Gheorghita et al., “System-scenario-based design of dynamic
embedded systems,” ACM Transactions on Design Automation of Elec-
tronic Systems (TODAES), vol. 14, no. 1, pp. 3:1–3:45, 2009.

[3] Z. Ma et al., Systematic Methodology for Real-time Cost-effective
Mapping of Dynamic Concurrent Task-based Systems on heterogenous
Platforms. Springer Science & Business Media, 2007.

[4] S. Benkner et al., “Automatic Application Tuning for HPC
Architectures (Dagstuhl Seminar 13401),” Dagstuhl Reports, vol. 3,
no. 9, pp. 214–244, 2014. [Online]. Available: http://drops.dagstuhl.de/
opus/volltexte/2014/4423

[5] R. Miceli et al., “Autotune: A plugin-driven approach to the automatic
tuning of parallel applications,” in Applied Parallel and Scientific
Computing, Lecture Notes in Computer Science, Eds. P. Manninen and
P. Öster, Springer Berlin Heidelberg, 2013, vol. 7782, pp. 328–342.

[6] Run-time Exploitation of Application Dynamism for Energy-efficient
Exascale computing (READEX), last accessed November 25, 2016.
[Online]. Available: http://www.readex.eu

[7] W. Quan and A. D. Pimental, “Scenario-based run-time adaptive mpsoc
systems,” Journal of Systems Architecture, vol. 62, pp. 12–23, 2016.

[8] E. César et al., “Modeling Master/Worker applications for automatic
performance tuning,” Parallel Computing, vol. 32, no. 7, pp. 568–589,
2006.

[9] A. Tiwari et al., “A Scalable Auto-Tuning Framework for Compiler
Optimization,” IEEE International Parallel & Distributed Processing
Symposium. IPDPS 2009, pp. 1–12.

[10] ENabling technologies for a programmable many-CORE (ENCORE),
last accessed November 25, 2016. [Online]. Available: http://cordis.
europa.eu/project/rcn/94045 en.html

[11] The OmpSs Programming Model, last accessed November 25, 2016.
[Online]. Available: https://pm.bsc.es/ompss

[12] S. Benkner et al. “PEPPHER: Efficient and productive usage of hybrid
computing systems,” IEEE Micro, vol. 31, no. 5, pp. 28–41, 2011.

[13] C. Silvano et al., “The antarex approach to autotuning and adaptivity
for energy efficient hpc systems,” in Proceedings of the ACM
International Conference on Computing Frontiers, CF ’16. New York,
NY, USA: ACM, 2016, pp. 288–293.

[14] “Automatic Online Tuning (AutoTune), http://www.autotune-
project.eu/,” last accessed November 25, 2016. [Online]. Available:
http://www.autotune-project.eu/

[15] A. Knüpfer et al., “Score-p: A joint performance measurement run-time
infrastructure for Periscope, Scalasca, TAU, and Vampir,” in Tools for
High Performance Computing 2011, H. Brunst, M. Müller, W. E. Nagel,
and M. M. Resch, Eds. Berlin: Springer, 2012, pp. 79–91.

[16] D. Hackenberg et al., “HDEEM: High Definition Energy Efficiency
Monitoring,” in Energy Efficient Supercomputing Workshop, E2SC
2014.

[17] L. Riha et al., “Massively parallel hybrid total feti (htfeti) solver,” Pro-
ceedings of the Platform for Advanced Scientific Computing Conference,
PASC ’16. New York, NY, USA: ACM, 2016.

[18] V. Hapla et al., Solving Contact Mechanics Problems with PERMON.
Springer International Publishing, 2016.

[19] Y. Yassin et al., “Dynamic hardware management of the h264/avc
encoder control structure using a framework for system scenarios,” in
The 19th Euromicro Conference on Digital System Design, DSD 2016.




