
Computing with Nano-Crossbar Arrays: Logic

Synthesis and Fault Tolerance

Mustafa Altun

Dept. of Electronics and Communication Engineering

Istanbul Technical University, Turkey

altunmus@itu.edu.tr

Valentina Ciriani

Dipartimento di Informatica

Università degli Studi di Milano, Italy

valentina.ciriani@unimi.it

Mehdi Tahoori

Karlsruhe Institute of Technology

Karlsruhe, Germany

tahoori@ira.uka.de

Abstract—Nano-crossbar arrays have emerged as a strong
candidate technology to replace CMOS in near future. They
are regular and dense structures, and can be fabricated such
that each crosspoint can be used as a conventional electronic
component such as a diode, a FET, or a switch. This is a
unique opportunity that allows us to integrate well developed
conventional circuit design techniques into nano-crossbar arrays.
Motivated by this, our project aims to develop a complete syn-
thesis and performance optimization methodology for switching
nano-crossbar arrays that leads to the design and construction
of an emerging nanocomputer. First two work packages of the
project are presented in this paper. These packages are on logic
synthesis that aims to implement Boolean functions with nano-
crossbar arrays with area optimization, and fault tolerance that
aims to provide a full methodology in the presence of high fault
densities and extreme parametric variations in nano-crossbar
architectures.

I. INTRODUCTION

In 1965, Gordon Moore made an influential prediction
about CMOS size shrinking, formulated as the Moore Law
stating that the number of transistors on a chip doubles every
18 to 24 months. His prediction has kept its validity for
decades. Nowadays this trend has reached a critical point
and it is widely accepted that the trend will end in the next
decade [1]. Even Gordon accepted that his prediction would
lose it validity in near future [8]. At this point, research is
shifting to novel forms of nanoarchitectures including nano-
crossbar arrays [13]. Nano-crossbar arrays are regular and
dense structures that are generally fabricated by self-assembly
as opposed to lithography based conventional and relatively
costly CMOS fabrication techniques [16].

This study targets nanoarrays where each crosspoint be-
haves as a switch, either two-terminal or four-terminal. This
is illustrated in Figure 1. Depending on the used technology
mostly with nanowires, a two-terminal switch based crosspoint
can behave as a diode [10] or a FET [12]. Additionally,
a four-terminal switch based crosspoint can be implemented
with a crossed nanowires with an addition of an insulated
controlling input [2]. Note that both diode and FET based
crosspoints conduct current in one direction. However, four-
terminal switches conduct current in multiple directions. In
this study, we implement Boolean functions by considering
array sizes. We propose synthesis techniques with performing
area optimization. The results show that four-terminal switch
based implementations offer favorably better crossbar sizes.

Along with the advantages in terms of circuit size and
fabrication, nano-crossbar arrays have drawbacks including re-

Two-terminal switch

Closed Open

Four-terminal switch

Closed Open

Switching nano array

Fig. 1. A switching crossbar nanoarray modeled with two-terminal
and four-terminal switches.

liability issues, standing against commercial production. While
reliability of nano-crossbars have been satisfactorily improved
using new defect tolerance techniques [15], architectural level
of reliability is still a problem. To tolerate high defect rates
and variations, our approach is to integrate defect tolerance to
improve the manufacturing yield (for fabrication defects), fault
tolerance to ensure the lifetime reliability (for errors during
normal operation), and variation tolerance to ensure the pre-
dictability and performance (for parametric variations), in the
design methodologies. Adaptive and built-in defect, variation
and fault tolerant design flows, fundamentally different from
conventional approaches, are proposed in which the objective
is to ensure high manufacturing yield and runtime reliability
of the circuit at extremely low costs. We plan to exploit the
opportunities created by the nano-crossbar technology such as
reprogrammability and abundance of programmable resources
to provide defect, variation and fault tolerance.

Organization of the paper is as follows. Section II pro-
vides a general overview of our EU-H2020-RISE project
NANOxCOMP # 691178. The following sections summarize
the obtained results and the main objectives identified in the
first two work packages of the project. In particular, Section III
investigates logic synthesis techniques for two-terminal and
four-terminal switch based nanoarrays by comparing array
sizes needed to implement given Boolean functions. Section IV
discusses the development of defect, variation and fault toler-
ant techniques in the presence of high defect densities and
extreme parametric variations for nano-crossbar architectures.
Section V concludes the paper with future directions.

278978-3-9815370-8-6/17/$31.00 c©2017 IEEE

Fig. 2. Project overview with main objectives.

II. OVERVIEW OF THE PROJECT

The main goal of this project is developing a complete
synthesis and optimization methodology for switching nano-
crossbar arrays that leads to the design and construction of
an emerging nanocomputer. New models for diode, FET, and
four-terminal switch based nanoarrays are developed. The pro-
posed methodology implements both arithmetic and memory
elements, necessitated by achieving a computer, by considering
performance parameters such as area, delay, power dissipation,
and reliability. With combination of arithmetic and memory
elements a synchronous state machine (SSM), representation
of a computer, is realized. The proposed methodology targets
variety of emerging technologies including nanowire/nanotube
crossbar arrays, magnetic switch-based structures, and crossbar
memories. The results of this project will be a foundation
of nano-crossbar based circuit design techniques and greatly
contribute to the construction of emerging computers beyond
CMOS. The topic of this project can be considered under the
research area of “Emerging Computing Models” or “Computa-
tional Nanoelectronics”, more specifically the design, model-
ing, and simulation of nanoscale switches beyond CMOS. The
project overview with main objectives is illustrated in Figure 2.

One of the major promises of emerging nanotechnologies
for on-chip applications is ultimate integration density, and
the reduction of manufacturing and power consumption costs.
However, there is a big gap in 1) extending the existing
electronic design automation (EDA) flow for emerging tech-
nologies in order to introduce them in the architecture and
system design in a systematic-way, and 2) novel computer ar-
chitecture systems based on emerging technologies to provide
high performance and minimize power consumption at the
same time. This project includes the introduction of hybrid
EDA flow as well as emerging computer architectures by
gathering well respected experts working in these broad fields.

The proposed research methodology involves all aspects
of computer-aided circuit and system design that constitutes
the “computational part” of the project. The methodology also
involves electrical and physical characteristics of the applicable
emerging technologies that constitutes the “technological part”
of the project. This project is interdisciplinary in nature.
There will be a continuous information flow between its
technological and computational parts. European beneficiary
organizations’ expertise is mostly on computational part and
collaborations will be made for the technological part.

III. LOGIC SYNTHESIS TECHNIQUES

In this section, we investigate two-terminal or four-terminal
switch based implementation methodologies.

A. Two-terminal Switch based Implementations

These implementations consider each crosspoint of an array
as a two-terminal switch that behaves like a diode or a FET.
Since diodes and FET’s conduct current through their two
terminals that are anode & cathode for diodes and source &
drain for FETs, they are fundamentally two-terminal switches.
Boolean functions are implemented by mainly using con-
ventional techniques that are diode-resistor logic and CMOS
logic with an important constraint: Boolean functions should
be implemented in their sum-of-products (SOP) forms; other
forms such as factored or BDD (Binary Decision Diagram)
cannot be used since these forms require manipulation/wiring
of switches that is not applicable for nanoarrays [11].

Array sizes for diode and FET based nanoarrays: Given
a target Boolean function f , we derive formulas of the array
sizes. This is shown in Figure 3. For diode based implemen-
tations, each product of f requires a row (horizontal line),
and each literal of f requires a column (vertical line) in an
array. Additionally, one extra column is needed to obtain the
output. For FET based implementations, each product of f
and its dual, fD, requires a column, and each literal of f
requires a row in an array. As an example, consider a target
function f = x1x2 + x1x2 having 4 literals and 2 products;
fD = x1x2+x1 x2 has 2 products. This results in array sizes
of 2× 5 and 4× 4 for diode and FET based implementations,
respectively. Note that both formulas always result in optimal
array sizes; no further reduction is possible.

����� ���	��
����
�����	��������	���
������ �	
���
�����
��
�����	��� �� �

���� �	
���
���� ����
���� �	��� ��
��� �

Fig. 3. Size formulas for diode and FET based implementations.

B. Four-terminal Switch based Implementations

Four-terminal switch based implementation considers each
crosspoint of an array as a four-terminal switch [2]. Four termi-
nals of the switch are all either mutually connected (ON-logic
1 applied) or disconnected (OFF-logic 0 applied). Boolean
functions are implemented with top-to-bottom paths in an array
by taking the sum (OR) of the product (AND) of literals along

2017 Design, Automation and Test in Europe (DATE) 279

each path. This makes Boolean functions implemented in their
sum-of-products (SOP) forms. An example of a four-terminal
switch based implementation is given in Figure 4.

x4

x5

x6

x1

x2

x3
BOTTOM

TOP

Fig. 4. Four-terminal switch based array/lattice implementing the
Boolean function x1x2x3 + x1x2x5x6 + x2x3x4x5 + x4x5x6.

The problem of synthesising Boolean functions with four-
terminal switch based arrays or lattices is first presented in [3].
In this study, array size formula is derived by considering that
each product of a target function f and its dual, fD, require
an array column and an array row, respectively. This is given
in Figure 5. As an example, consider a target function f =
x1x2+x1x2 and fD = x1x2+x1 x2 both having 2 products.
This results in an array size of 2× 2.

����� ���	��
����
�����	�����������	���
��

�

��
��	���
�	
���
�����
��
�����	��������	
���
����

�
��
�����	������

Fig. 5. Size formula for four-terminal switch based implementation.

Examining the array size formulas in Figure 3 and Figure 5,
we see that while the formulas in Figure 3 always result in
optimal sizes, the sizes derived from the formula in Figure 5 for
four-terminal switch based arrays are not necessarily optimal.
In the following part, we present two preprocessing synthesis
techniques to reduce sizes of four-terminal switch based arrays.

1) Preprocessing with function decomposition:

In the framework of switching lattices synthesis, the available
minimization tools in [3], [2], [9], [11] are not yet as mature
as CMOS synthesis tools. We show that the computational
cost for the synthesis of a switching lattice could be directly
reduced by decomposing an input Boolean function. We first
implement decomposed functions/blocks in separate lattices
and then we merge them together in a lattice that describes
the entire function. We focus on a particular decomposition
method that gives rise to the bounded-level logic networks
called P-circuits [7]. We recall from [3] that given the
switching lattices implementing the functions f and g, we can
easily construct the lattices representing their disjunction f+g
and their conjunction f · g using a padding column of 0’s and
a padding row of 1’s, respectively. We can use these rules to
derive a lattice describing a P-circuit decomposition [5]:

P-circuit(f) = (xi ⊕ p) f= + (xi ⊕ p) f �= + f I

where I is the intersection of the projections of f onto the two
sets xi = p and xi �= p, and

1) (f |xi=p \ I) ⊆ f= ⊆ f |xi=p

2) (f |xi �=p \ I) ⊆ f �= ⊆ f |xi �=p

3) ∅ ⊆ f I ⊆ I .

This definition can be easily generalized to incompletely spec-
ified Boolean functions. Thus, the synthesis idea of P-circuits

is to construct a network for f by appropriately choosing the
sets f=, f �=, and f I as building blocks.

The same idea can be exploited in the switching lattice
framework: the sub-functions f=, f �=, and f I depend on
n − 1 variables instead of n, they have a smaller on-set
than f , and their lattice synthesis should produce lattices
of reduced area. Therefore, the overall lattice for f derived
composing minimal lattices for f=, f �=, and f I , could be
smaller than the one derived for f without exploiting its P-
circuits decomposition. This expectation has been confirmed
by a set of experimental results, where the utility of the
decomposition-based approach has been evaluated applying the
two synthesis methods presented in [2] and in [9].

2) Preprocessing of regular functions:

Another possible approach to reduce the dimension of a
Boolean function, to be synthesized, is to exploit possible
regularities on its structure. For example, D-reducible functions
are functions completely contained in an affine space strictly
smaller than the entire Boolean space [4]. Therefore, we can
represent a D-reducible function f as f = χA · fA, where A
is its unique associated affine space, χA is the characteristic
function of A, and fA is the projection of f onto A. Notice that
f and fA have the same number of points, but these are now
compacted in a smaller space. The D-reducibility of a function
f can be exploited in the lattice synthesis process [6]. For this
purpose, we can independently find the lattice implementations
for the characteristic function of the affine space A and for the
projection of the function f onto A. Finally, we compose the
obtained lattices in order to construct an overall lattice for f .

IV. BUILT-IN VARIATION, DEFECT, AND FAULT

TOLERANCE

One of the main focuses of this project is development of
defect, variation and fault tolerant techniques in the presence
of high defect densities and extreme parametric variations,
particularly for crossbar array nano-architectures. To tolerate
high defect rates and variations, our approach is to inte-
grate defect tolerance to improve the manufacturing yield
(for fabrication defects), fault tolerance to ensure the lifetime
reliability (for errors during normal operation), and variation
tolerance to ensure the predictability and performance (for
parametric variations), in the design methodologies for future
nanotechnologies. Adaptive and built-in defect, variation and
fault tolerant design flows are proposed

A. Built-in Self-testing (BIST) and Self-diagnosis (BISD)

The main novelties of our proposed BIST are 100% ex-
hasutive coverage of all logic-level faults (including stuck-
at, bridging, open, and functional faults) and minimality of
test vector and configurations set. Our proposed approach is
based on implementing single-term functions in all crossbars
during the test mode which allows propagation of all sensitized
faults to the outputs, and hence, detection [14]. Diagnosis is
achieved by selecting the subset of sensitized fault in each
test configuration in such a way that the pass/fail outcomes of
test configurations uniquely encodes the faulty resources. The
number of diagnosis configurations is also logarithmic to the
number of faults. The subsets of sensitized faults in diagnosis
configurations can be modeled by block codes.

280 2017 Design, Automation and Test in Europe (DATE)

B. Built-in Self-mapping (BISM)

Blind BISM. In this scheme, a random configuration for the
crossbar is generated on-the-fly and then application-dependent
BIST is used to check whether this configuration is defect-
free. Since no application-independent test is performed and
no diagnosis is involved (neither application-independent nor
application-dependent), blind BISM is very fast and effective
for low defect-densities. The self-reconfiguration circuitry is
also very simple and small.

Greedy BISM. When defect density is high, blind BISM
approach becomes ineffective due to too many configuration
retries. In this case, greedy BISM is performed as follows. It
starts with a random configuration followed by BIST. If the
configuration fails, application-dependent BISD is performed
to identify the defective resources utilized in the most re-
cent configuration. The self-reconfiguration uses the diagnosis
information to only bypass (reconfigure) the defective parts
of that configuration. This process is repeated until the last
configuration is defect-free.

Hybrid BISM. This BISM procedure is the combination of the
above procedures and works for all defect densities and also
various defect density distributions across different crossbars in
a nano-chip, i.e. ideal for both global and local defect density
variations. In hybrid BISM, the BISM procedure initially starts
with blind BISM. If it is not successful after a pre-defined
number of retries, it automatically switches to greedy BISM.

C. Application-Independent Defect Tolerant Flow

Most drawbacks of the traditional defect-aware flow, shown
in Fig. 6(a), are due to the fact that this method is application
dependent, i.e. defects are handled in a per-application basis. In
contrast to the defect-aware design flow, we propose a defect-
unaware design flow to tolerate defects in crossbar arrays. This
design flow is shown in Fig. 6(b). In this flow, defect tolerance
is performed once and the same recovered (defect-free) set of
resources are used for all applications. In the proposed flow,
almost all design steps remain unaware of the existence and the
location of defects within the nano-chip. The key idea in the
proposed defect-unaware flow is to identify universal defect-
free subsets of resources within the original partially-defective
nano-chip.

Defect Map

(Huge)

Test and Diagnosis

n x n

crossbars
(with defects)

Modified

Design

Physical

Design

Crossbar Array

R
e
p
e
a
te

d
 f
o
r

e
a
c
h
 c

h
ip

Test and Diagnosis

N x N

crossbars
(with defects)

k x k

crossbars
(no defects)

Design

Defect Map

O(N)

Physical Design

(Defect Unaware)
k

Final Mapping

(Defect Aware)

Process

Defect

Density

samples

k

(a) (b)

Fig. 6. (a) Traditional defect-aware design flow (b) The proposed
defect-unaware design flow

V. CONCLUSION

The main objective of our project is developing a complete
synthesis methodology for nanoscale switching crossbars that
leads to the design and construction of an emerging computer.
To achieve this objective, we follow a roadmap with sub-
objectives. In this paper, we present our preliminary results
corresponding to the first two sub-objectives that are 1) Finding
optimal nano-crossbar sizes, modelling, and optimization, and
2) Achieving reliable computing. As future work, we have the
sub-objectives: 3) Implementing arithmetic and memory ele-
ments by considering reliability, area, delay, and power dissipa-
tion of the crossbars, and 4) Realizing a nano-crossbar based
synchronous state machine (SSM) by integrating arithmetic
and logic elements as well as using technology parameters.

VI. ACKNOWLEDGMENTS

This work is supported by the EU-H2020-RISE project
NANOxCOMP # 691178 and the TUBITAK-Career project
113E760.

REFERENCES

[1] “Overall Technology Roadmap Characteristics,” International Technol-
ogy Roadmap for Semiconductors, Tech. Rep., 2010, retrieved 2013.

[2] M. Altun and M. D. Riedel, “Logic Synthesis for Switching Lattices,”
IEEE Transactions on Computers, vol. 61, no. 11, pp. 1588–1600, 2012.

[3] M. Altun and M. Riedel, “Lattice-based computation of boolean func-
tions,” in Proceedings of the 47th Design Automation Conference.
ACM, 2010, pp. 609–612.

[4] A. Bernasconi and V. Ciriani, “Dimension-reducible boolean functions
based on affine spaces,” ACM Trans. Design Autom. Electr. Syst.,
vol. 16, no. 2, p. 13, 2011.

[5] A. Bernasconi, V. Ciriani, L. Frontini, V. Liberali, G. Trucco, and
T. Villa, “Logic synthesis for switching lattices by decomposition with
p-circuits,” 2016.

[6] A. Bernasconi, V. Ciriani, L. Frontini, and G. Trucco, “Synthesis on
switching lattices of dimension-reducible boolean functions,” 2016.

[7] A. Bernasconi, V. Ciriani, G. Trucco, and T. Villa, “Using flexibility
in p-circuits by boolean relations,” IEEE Trans. Computers, vol. 64,
no. 12, pp. 3605–3618, 2015.

[8] M. Dubash, “Mooreâs Law is Dead, Says Gordon Moore,” Techworld.

com, no. 13, 2005.

[9] G. Gange, H. Søndergaard, and P. J. Stuckey, “Synthesizing Optimal
Switching Lattices,” ACM Trans. Design Autom. Electr. Syst., vol. 20,
no. 1, pp. 6:1–6:14, 2014.

[10] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M.
Lieber, “Logic gates and computation from assembled nanowire build-
ing blocks,” Science, vol. 294, no. 5545, pp. 1313–1317, 2001.

[11] M. C. Morgul and M. Altun, “Synthesis and optimization of switching
nanoarrays,” in Design and Diagnostics of Electronic Circuits and

Systems (DDECS), 2015 IEEE International Symposium on. IEEE,
2015, pp. 161–164.

[12] G. Snider, “Computing with hysteretic resistor crossbars,” Appl. Phys.

A, vol. 80, pp. 1165 – 1172, 2005.

[13] D. B. Strukov and K. K. Likharev, “Reconfigurable nano-crossbar
architectures,” Nanoelectronics and Information Technology, pp. 543–
562, 2012.

[14] M. Tahoori, “Application-Dependent Testing of FPGAs,” in IEEE

Transaction on Very Large Scale Integrated Circuits , 2006.

[15] O. Tunali and M. Altun, “Permanent and transient fault toler-
ance for reconfigurable nano-crossbar arrays,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, DOI:

10.1109/TCAD.2016.2602804, 2016.

[16] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,”
Science, vol. 295, no. 5564, pp. 2418–2421, 2002.

2017 Design, Automation and Test in Europe (DATE) 281

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

