
Probabilistic Timing Analysis on Time-Randomized
Platforms for the Space Domain

Mikel Fernandez†, David Morales†, Leonidas Kosmidis†, Alen Bardizbanyan∗, Ian Broster‡, Carles Hernandez†,
Eduardo Quinones†, Jaume Abella†, Francisco Cazorla†,§, Paulo Machado¶, Luca Fossati¶

†Barcelona Supercomputing Center (BSC) ‡Rapita Systems LTD
§Spanish National Research Council (IIIA-CSIC) ¶European Space Agency ∗Cobham Gaisler

Abstract—Timing Verification is a fundamental step in real-
time embedded systems, with measurement-based timing analysis
(MBTA) being the most common approach used to that end.
We present a Space case study on a real platform that has
been modified to support a probabilistic variant of MBTA called
MBPTA. Our platform provides the properties required by
MBPTA with the predicted WCET estimates with MBPTA being
competitive to those with current MBTA practice while providing
more solid evidence on their correctness for certification.

I. INTRODUCTION

The use of increasingly complex hardware (e.g. processors
comprising caches) across all real-time domains challenges
current timing analysis approaches and complicates deriving
reliable and tight WCET estimates [1]. This confronts industry
with a dilemma of enjoying high computing performance,
which in the space domain allows more autonomous and
ambitious space missions, increasing competitive edge; but at
the cost of incurring higher risk of delivering less reliable
WCET estimates, creating potential safety risks.

We focus on MBTA that has a considerable presence in
current industrial practice in domains such as automotive and
space due to its good benefit/cost ratio [11]. In particular we
focus on Measurement-Based Probabilistic Timing Analysis
(MBPTA), a variant of MBTA. MBPTA [3][9][10] derives a
probabilistic WCET (or pWCET) distribution that describes
the highest probability (e.g. 10−15) at which one instance
of the program may exceed the corresponding execution
time bound. This probability is set in accordance with the
corresponding safety standard [4]. MBPTA aims at reducing
the control the end user has to exercise on the conditions of
the experiments performed during the analysis phase so as to
ensure that the worst-case execution conditions that can occur
during system operation are properly covered. Exercising such
control incurs massive effort for the original MBTA, especially
in the presence of cache memories.

MBPTA combines probabilistic timing analysis and the
injection of randomization in the timing behavior of certain
hardware resources. On the one hand, randomization ensures
that, if enough runs are performed, the impact of all platform
events with a relevant probability are captured in the test mea-
surements. On the other hand, probabilistic analysis captures
the impact that events observed in different test runs appear
in the same run at operation (with the corresponding increase
in execution time) without requiring the end user to construct
a test case forcing all those events to arise in a single run.

MBPTA academic literature covers, among others, foun-
dational aspects, probabilistic analysis and the impact of
randomization. On the industrial side, some works assess
MBPTA with avionics case studies [9], [10] on simulation
environments, limiting the evidence on their applicability to
real industrial setups. This paper helps covering this gap by
performing, to the best of our knowledge, the first evaluation
of MBPTA with a Space case study executed on a FPGA
platform implementing a version of the LEON3 [8] processor
which was modified so it is MBPTA compliant. We perform

Fig. 1. Reference Architecture.

the timing analysis evaluation with a commercial timing
analysis tool [7] that has been properly enhanced to support
probabilistic analysis.

II. HARDWARE-RANDOMIZED PLATFORM

Background: MBPTA aims at providing guarantees that the
execution time observations at analysis time capture applica-
tion’s worst-case behavior during operation. MBPTA controls
the jitter caused by hardware resources. Jitterless resources
are naturally compliant with MBPTA since their impact in
execution time is constant, so analysis-time measurements
already capture their behavior during operation. This is the
case, for instance, of the integer arithmetic unit given that
all types of integer operation have fixed latency. For jittery
resources MBPTA applies two solutions: forcing resources to
work on their worst latency at analysis time or randomizing
their timing behavior. The former solution, makes that the
worst impact that the resource may have on execution time
arises at analysis, hence making them MBPTA compliant.
This is the case of some FPU operations, whose latency
depend on the values operated. Meanwhile, randomization
makes latencies of a resource to have a probabilistic behavior
and thus, allows MBPTA to reliably upper-bound its impact by
collecting enough number of measurements so that its worst-
case behavior can be predicted with probabilistic means. This
is the case of time-randomized caches [6].

Platform: We focus on a 4-core LEON3 [8] with 7-stage
pipelined cores comprising first level instruction (IL1) and data
(DL1) caches, with the DL1 implementing write-through no
write allocate policies; and a bus that propagates DL1 and IL1
misses to the DRAM shared memory controller, see Figure 1.
In our implementation IL1 and DL1 are 16KB 4-way set-
associative caches. TLBs comprise 64 entries.

Our goal in this board is to control cache jitter and FPU
jitter. To make the baseline platform MBPTA-compliant the
following hardware modifications have been performed.

Cache Modifications. The memory layout of code/data
determines the cache sets where they are placed with large
impact on program’s execution time. Random placement re-
leases the user from controlling the memory placement of
programs in memory at analysis so that its effect upperbounds
that during operation. With random placement, program’s
data/code are mapped to random sets in each run, regardless
of the memory positions in which data/code are allocated.
Hence, simply making enough runs and applying MBPTA

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or 

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse 
of any copyrighted component of this work in other works.



Fig. 2. pWCET estimates obtained with MBPTA for TVCA
Fig. 3. MBPTA vs. DET observed execution times

gives the end user probabilistic guarantees that all potential
mappings (and their impact on timing) are properly covered.
For that purpose we implemented random replacement for IL1,
DL1, ITLB and DTLB; and random modulo placement [5] for
IL1 and DL1. In both cases we build on a pseudo-random
number generator that has been shown to provide enough
randomization for MBPTA [2].

FPU. FDIV/FSQRT operations take variable latency de-
pending on the values operated. With MBTA this requires the
user to control in the analysis test experiments the latency of
those operations providing evidence that the distribution ob-
served upperbounds that at operation. Since, this is infeasible
in general, for MBPTA we changed the FPU so that during
the analysis phase, both operations exhibit a fixed latency
that matches their highest latency. The net result is that their
jitterless timing behavior at analysis time upperbounds that
during operation, releasing the end user from having to control
the impact on execution time of the particular values operated.

III. EVALUATION

We use a hard-real time Thrust Vector Control Application
(TVCA) developed by the European Space Agency. The appli-
cation comprises C code, automatically generated from a high-
level model of the closed-loop control system, as it is the case
in many critical real-time applications across domains such as
in the avionics and automotive. TVCA, that runs unmodified
on bare-metal, implements a fixed priority scheduler with 3
periodic tasks: sensor data acquisition, actuator control in
x-axis and actuator control in y-axis. We execute TVCA
3,000 times to collect execution times which satisfied the
convergence criteria defined in the MBPTA process. We flush
caches, reset the FPGA and reload the executable across
executions to have the same conditions for each execution.
We also set a new seed for each experiment after the binary
has been reloaded. Further we make per-path analysis taking
the maximum across paths.

Fulfilling the i.i.d properties. MBPTA requires the execu-
tion times to have certain statistical properties to be indepen-
dent and identically distributed. We test independence with the
Ljung-Box test and a 5% significance level (a typical value for
this type of tests). For identical distribution we use the two-
sample Kolmogorov-Smirnov test also with a 5% significance
level. This means that i.i.d. is rejected only if the value for
any of the tests is lower than 0.05. We obtained 0.83 and 0.45
for each test respectively. As these values are largely above
0.05 both tests are passed, enabling MBPTA.

pWCET estimates. The X-axis in Figure 2 shows the exe-
cution time while the Y-axis shows probabilities in logarithmic
scale. We observe that the prediction, straight line, tightly
upper-bounds the observed values.

We compare our approach with an industrial practice based
on MBTA applied to the baseline non-randomized, i.e deter-
ministic (DET) platform. This approach consists in increasing
by an engineering factor (e.g. 50%) the highest value ob-
served for the non-randomized architecture [1]. The use of
this approach is used for its cost/benefit ratio but for this

method to be used with sufficient confidence requires ensuring
that the worst-case conditions have been exercised or closely
approximated (e.g. the worst cache placement of objects). In
Figure 3 we observe that pWCET estimates are within the
same order of magnitude than the actual execution times,
starting with an increase of 50% for a cutoff probability of
10−6. Naturally, as we decrease the cutoff probability, i.e.
the probability that once instance of the program overruns its
budget, the pWCET estimate increases to reduce the overrun
probability. The particular cutoff probability is to be chosen
based on the applicable domain standard, the task criticality
level and the task frequency of execution.

Average performance. The observed average execution
times for DET and RAND architectures (first two bars) show
that there is not noticeable difference. Hence, our hardware
changes did not affect the average performance of TVCA.

Conclusions. MBPTA results are competitive w.r.t. MBTA
while providing more confidence than just increasing the high
watermark execution time by an engineering factor to cover
the uncertainty of factors like cache placement.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Community’s FP7 [FP7/2007-2013] un-
der the PROXIMA Project (www.proxima-project.eu), grant
agreement no 611085. This work has also been partially
supported by the Spanish Ministry of Science and Innovation
under grant TIN2015-65316-P and the HiPEAC Network of
Excellence. Jaume Abella has been partially supported by
the Ministry of Economy and Competitiveness under Ramon
y Cajal postdoctoral fellowship number RYC-2013-14717.
Carles Hernandez is jointly funded by the Spanish Ministry
of Economy and Competitiveness and FEDER funds through
grant TIN2014-60404-JIN.

REFERENCES

[1] J. Abella et al. WCET analysis methods: Pitfalls and challenges on their
trustworthiness. In SIES, 2015.

[2] I. Agirre et al. IEC-61508 SIL 3 compliant pseudo-random number
generators for probabilistic timing analysis. In DSD, 2015.

[3] L. Cucu-Grosjean et al. Measurement-based probabilistic timing analysis
for multi-path programs. In ECRTS, 2012.

[4] Z. Stephenson et al. Supporting industrial use of probabilistic timing
analysis with explicit argumentation. In INDIN, 2013.

[5] C. Hernandez et al. Random modulo: a new processor cache design for
real-time critical systems. In DAC, 2016.

[6] L. Kosmidis et al. A cache design for probabilistically analysable real-
time systems. In DATE, 2013.

[7] Rapita Systems Ltd. Rapita verification suite. http://www.rapitasystems.
com/products/rvs. Accessed Jan 2015.

[8] http://www.gaisler.com/cms/index.php?option=com content&task=
view&id=13&Itemid=53. Leon3 Processor. Cobham Gaisler.

[9] F. Wartel et al. Measurement-based probabilistic timing analysis:
Lessons from an integrated-modular avionics case study. In SIES, 2013.

[10] F. Wartel et al. Timing analysis of an avionics case study on complex
hardware/software platforms. In DATE, 2015.

[11] R. Wilhelm et al. The worst-case execution-time problem overview of
methods and survey of tools. ACM TECS, 7:1–53, May 2008.


