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Abstract—The increased capabilities of modern real-time sys-
tems (RTS) expose them to various security threats. Recently,
frameworks that integrate security tasks without perturbing the
real-time tasks have been proposed, but they only target single
core systems. However, modern RTS are migrating towards
multicore platforms. This makes the problem of integrating
security mechanisms more complex, as designers now have
multiple choices for where to allocate the security tasks. In this
paper we propose HYDRA, a design space exploration algorithm
that finds an allocation of security tasks for multicore RTS
using the concept of opportunistic execution. HYDRA allows
security tasks to operate with existing real-time tasks without
perturbing system parameters or normal execution patterns,
while still meeting the desired monitoring frequency for intrusion
detection. Our evaluation uses a representative real-time control
system (along with synthetic task sets for a broader exploration)
to illustrate the efficacy of HYDRA.

I. INTRODUCTION

Real-time systems (RTS) rely on a variety of inputs for
their correct operation and have to meet stringent safety and
timing requirements. The drive towards remote monitoring and
control, increased connectivity through unreliable media such
as the Internet and the use of component-based subsystems
from different vendors are exposing modern RTS a multitude
of threats. A successful attack on systems with real-time
properties can have disastrous effects — from loss of human
life to damage to the environment and/or hard to replace
equipment. A number of high-profile attacks on real systems,
(e.g., denial-of-service (DoS) attacks from Internet-of-Things
devices [1], Stuxnet [2], BlackEnergy [3], efc.) have shown
that the threat is real. Hence it is essential to retrofit existing
critical RTS with detection, survival and recovery mechanisms.

As the use of multicore platforms in safety-critical real-time
systems is increasingly becoming common, the focus of this
work is on integrating or retrofitting security mechanisms into
multicore RTS. It is not straightforward to retrofit RTS with
security mechanisms that were developed for more general
purpose computing scenarios since, security mechanisms have
to (a) co-exist with the real-time tasks in the system and (b)
operate without impacting the timing and safety constraints of
the control logic. Further, it may not be feasible to adjust
the parameters (such as run-times, period, and execution
order; etc.) of real-time tasks to accommodate security tasks.

This creates an apparent tension between security and real-
time requirements. Unlike single core systems, integrating
security into multicore platforms is more challenging since
designers have multiple choices across cores to retrofit security
mechanisms. For instance, is it better to dedicate a core to
all the security tasks or is it better to spread them out (in
conjunction with the real-time tasks) and if so, to which cores?

Our goal is to improve the security posture of multicore RTS
by integrating security mechanisms without violating real-
time constraints. Security mechanism could include protection,
detection or response mechanisms, depending on the system
requirements — for instance, a sensor correlation task (to
detect sensor manipulation) or an intrusion detection task. As
an illustrative example, consider the open source intrusion
detection mechanisms Tripwire [4] and Bro [5]] that detect
integrity violations in the host and at the network level,
respectivelyﬂ The default configurations of Tripwire and Bro
contain several tasks (see Table [I).

TABLE I
ILLUSTRATION OF SECURITY TASKS"

“The corresponding application for each of the security tasks is specified
in the parenthesis — TR: Tripwire, BR: Bro.
Task Function

Check own binary of the
security routine (TR)

Compare the hash value of

the application binary (e.g.,
/usr/sbin/tripwire,
/usr/local/bro/bin, efc.)

Check hash of the file-system binary
(/bin, /sbin)

Check library hashes (/1ib)

Check hash of peripherals and kernel
information in /dev and /proc
Check configuration hashes (/etc)
Scan network interface (e.g., en0)

Check executables (TR)

Check critical libraries (TR)
Check device and kernel
(TR)

Check config files (TR)
Monitor network traffic (BR)

We propose to incorporate security mechanisms into a
multicore setup by implementing them as separate sporadic
tasks. The challenge then, is to determine the right periods
(viz., minimum inter-execution time) and core assignment for
the security tasks. It is not trivial to determine the execution
frequency and core assignment of security tasks (i.e., what
security tasks will execute on which core and with what
frequency). For instance, some critical security routines may

'We use Tripwire and Bro as examples of security applications to be
integrated into multicore RTS — the ideas presented here apply more broadly.



be required to execute more frequently than others. However,
if the frequency of execution is too high then it will use too
much of the processor time and lower the system utilization
for real-time tasks. Hence, the security mechanism itself might
prove to be a hindrance to the system and reduce the overall
functionality or worse, negatively impact the system safety. In
contrast, if the period is too long, the security task may not al-
ways detect violations since attacks could be launched between
two instances of the security task. Existing work that integrates
security in RTS either focuses on single core systems [[6]—[11]
and/or require modification of system parameters [6]—[9], [[1 L[],
[12] and thus are not applicable for systems where it is harder
to change the real-time task parameters.

In this paper we introduce HYDR a scheme for multicore
RTS that finds a suitable assignment of security tasks in order
to ensure that they can execute with a frequency close to what
a designer expects. The main contributions of this work can
be summarized as follows:

« Integrating security mechanisms in a multicore setup
where changing existing real-time task parameters is not
an option.

« A mathematical model to jointly obtain the assignment
of security tasks to respective cores with execution fre-
quency close to the desired values (Section [[TI-A).

¢ An iterative scheme, HYDRA, that jointly finds the as-
signment and period of the security tasks (Section [[II-B).

o Comparisons of HYDRA with (i) assigning all security
tasks to a single dedicated core and (ii) an ‘optimal’
multicore allocation scheme (Section [IV]).

We evaluate HYDRA with synthetic workloads as well as
a representative real-time control system and security applica-
tions (Section [[V).

II. SYSTEM AND SECURITY MODEL
A. Real-time Tasks

Let us consider a multicore platform comprised of M iden-
tical cores denoted by the set M = {my, 7o, -+ ,mar} Where
we schedule a set I'g = {71, 72, -+ , 7Ny, } of Ng independent
sporadic real-time tasks. Each real-time task 7., € I'p is
characterized by the tuple (C,., T,., D,.) where C.. is the worst-
case execution time (WCET), 7, is the minimum separation
(e.g., period) between two successive invocations and D, is
the relative deadline. In this work, we consider partitioned
fixed-priority preemptive scheduling [13]] since (a) it does not
introduce task migration costs and (b) it is widely supported in
many commercial and open-source real-time OSs (e.g., QNX,
OKL4, real-time Linux, efc.). We assume that real-time task
priorities are distinct and assigned according to rate monotonic
(RM) [14] order. We also assume that tasks have implicit
deadline, e.g., D, = T,,V7,. € I'y.

We assume that real-time tasks are schedulable and as-
signed to the cores using existing multicore task partitioning

’In Greek mythology Hydra is a serpent with multiple heads. We refer to
our scheme as HYDRA since we are trying to maximize the potential across
multiple ‘heads’ (cores).

algorithm [[13]. Since the taskset is schedulable, the following
necessary condition will hold [15]:

Z DBF(7,.,t) < Mt, Vt>0 (1)
T-€l'Rr

where the demand bound function DBF(7,.,t) computes the
cumulative maximum execution requirements of the real-
time task 7. and it is defined as follows: DBF(7,.,t) =

max (0, (| 52| +1) ¢,).

B. Threat Model

In this work we consider a generic threat model where a
malicious adversary can use various techniques to attack the
RTS. For example, the adversary might intercept the infor-
mation over the communication channel, forge messages or
prevent normal requests from being processed. The adversary
can also attack services within the OS, say, could compromise
the file system resulting in corrupted information or could
delay the delivery of control commands that may cause some
tasks to miss deadline. Other than trying to aggressively crash
the system, the adversary may utilize side-channels to monitor
the system behavior and infer certain system information
(e.g., user tasks, thermal profiles, cache information, efc.) that
eventually leads to the attacker actively taking control of the
system. Our focus is on threats that can be dealt with by
integrating additional security tasks. The addition of such tasks
may necessitate changing the schedule of real-time tasks as
was the case in earlier work [6]—[9], [[L1]]. In this work we
focus on situations where added security tasks are not allowed
to impact the schedule of existing real-time tasks as is often the
case when integrating security into existing multicore systems.

C. Security Tasks

Since our goal is to ensure security without any modification
of real-time task parameters, we propose to integrate security
tasks as independent sporadic tasks. Let us consider additional
Ny security tasks denoted by the set I's = {71, 72, -, Tng }-
We follow the sporadic security task model [[10] and character-
ize each security task 7, by the tuple (Cj, T4, T™®) where
C, is the WCET, Tsdes is the best period (minimum inter-
arrival time) between successive releases (i.e., FI° = i
is the desired frequency for 7, effective security monitoring
and/or intrusion detection) and 7;"** is the maximum period
beyond which security monitoring will not be effective. We
assume that periods for security tasks are assigned based on
the desired monitoring frequency. Hence pri(7s,) > pri(rs,)
if Tne® < T where pri(r;) denotes the priority of 7;.
Security tasks also have implicit deadlines (e.g., they are
required to complete execution before its period).

One fundamental problem while integrating security mech-
anisms is to determine which security tasks will be assigned
to which core and executed when. Although security tasks
can execute in any of the M available cores and any period
Tsdes < T, < T is acceptable, the actual task-to-core
assignment and the periods of the security tasks are not known




apriori. The goal of HYDRA therefore is to jointly find the
core-to-task assignment and suitable periods for security tasks.

III. ASSIGNMENT OF SECURITY TASKS WITH PERIOD
ADAPTATION

One way to integrate security mechanisms into existing
systems without perturbing real-time task behavior is to ex-
ecute security tasks with the lowest priority as compared
to the real-time tasks [[L0]. Thus security tasks will execute
opportunistically in the slack time (e.g., when other real-time
tasks are not running). As mentioned earlier, actual periods
of the security tasks are not known and we need to adapt
the periods within acceptable ranges to optimize the trade-
offs between schedulability and defense against intrusions.
We measure the security of the system by means of the
achievable periodic monitoring and our goal is to minimize the
perturbation between the achievable (unknown) period 7’5 and
the given desired period 79 for all security tasks 7, € I's.
Therefore we consider the following metric [10]:

des

T, 2

s
that denotes the tightness of periodic monitoring (e.g., how
close the period ofdthe security task is to the desired period)
and bounded by % <1ns < 1. As mentioned earlier, if the
interval between consecutive monitoring events is too large,
the adversary may remain undetected and harm the system
between two invocations of the security task. On the other
hand, very frequent execution of security tasks may impact
the schedulability of the system (due to higher utilization). The
metric in Eq. (Z) allows us to measure how close the security
tasks are able to get to their desired monitoring frequencies.

Note that arbitrarily setting Ty = 7% for all (or some)
security tasks 7, € I's may lead to the system becoming
unschedulable since low-priority security tasks may miss
deadlines due to interference from higher priority tasks. Also
exhaustively finding all possible acceptable periods for the se-
curity tasks for all available cores is not feasible. It will cause
an exponential blow-up as numbers of tasks and cores increase.
For instance for a given taskset I'g, there is a total of | M x T
assignments possible (where Ax B = {(a,b) | a € ANb € B}
and | - | denotes set cardinality) and for each combination the
period for each security task 7, € I'g can be any value within
the range [T'%¢*, T%*], In order to address this combinatorial
problem we obtain the periods of the security tasks by framing
it as an optimization problem.

A. Formulation as an Optimization Problem

1) Objective Function and Bounds on Period: Let us con-
sider the vector X = [27']§_ er's v, em Where 2t = 1if 7
is assigned to 7, and O otherwise. Recall that our goal is to
find a task assignment that minimizes the difference between
achievable and desired periods (e.g., maximize the tightness)

for all the security tasks. Hence we define the following
objective function:

> Y e, -

TmEM 1€l g

max
X, T

des
> Y et 0

TmEM T,€ g

where T = [T,]), cp, is the (unknown) period vector that
needs to be determined and w, reflects the priority (higher
priority tasks would have large w,). Besides, in order to satisfy
the frequency of periodic monitoring, the security task needs
to satisfy the following constraint:

Tdes < T, <TM* Vr, €T,. 4)

Finally, each security task must be assigned to exactly one
core: y. am=1, Vr,eTls,.

Tm,

2) Schee/c\l/lulability Constraint: Since the security tasks are
executed with a priority lower that all real-time tasks, they
will suffer interference from all real-time and high priority
security tasks executing in the same core. Let hps(7s) C I's
denote the set of security tasks with a higher priority than
Ts. The worst-case release pattern of 7, occurs when 75 and
all high-priority tasks are released simultaneously [16]. Using
response time analysis [[17] we can determine an upper bound
to the interference experienced by 7, for a given core m,, as
follows:

T, T,
=y <1+ T) Cot Y ap <1+ Th> Ch (5)

€lR ThERPs(Ts)

where II"" = 1 if the real-time task 7, is partitioned to core
7, and O otherwise.

The first and second term in Eq. (5) represent the amount
of interference from real-time and high-priority security tasks,
respectively. Note that the assignment of real-time tasks to
cores is known by assumption. In order to ensure that each
security task 75 will complete its execution before its deadline
on its assigned core, the following constraint needs to be
satisfied:

Co+1I7"<Ts, Vis€ls,Vrp, e M2l =1.  (6)

The variables X and T in the above formulation turn the
problem into a non-linear combinatorial optimization problem
that is NP-hard. We therefore propose an iterative algorithm
HYDRA that jointly finds the security tasks’ period and core
assignment.

B. Algorithm Development

As mentioned earlier, jointly finding the security task as-
signment and periods is an NP-hard problem. Even for fixed
periods, finding the assignment for security tasks turns the
problem to a bin-packing problem that is known to be NP-hard
[15]. Existing partitioning heuristics (e.g., first-fit, best-fit, ezc.)
[13] are not directly applicable in our context since the real-
time requirements (e.g., minimize the number of cores so that
all real-time tasks can meet deadlines) are often different from
the security requirements (e.g., execute security tasks more



often to improve intrusion detection rate without violating real-
time constraints).

For a given task 7, and allocation vector X, let us rewrite
the optimization problem as follows:

max 1, Subject to: Tde < T, <TM Cy+IM < Ty. (7)

Notice that for a given assignment X (see Algorithm [I)), the
period T is the only variable (when the Ty, V71, € hps(Ts) is
known) in I7* (see Eq. (3)). Although the period adaptation
problem in Eq. is a constraint optimization problem it can
be transformed into a convex optimization problem (that is
solvable in polynomial time). For details of this reformulation
we refer the readers to the Appendix.

Algorithm 1 HYDRA: Task Allocation and Period Adaptation
Input: Input taskset ' = {I'r UT's} and the partition of real-time tasks
_ T
I=M"vr, er g vrmenm
Output: The security task allocation X = [z7]T o€l g Vmmem and
periods T = [TS]PVFTg erg: if the taskset is schedulable, Unschedulable
otherwise. '

1: Initialize 7" := 0, V7s € I'g, Vmm € M
2: for each security task 75 € I'g (from higher to lower priority) do
for each core 7, € M do
Solve the optimization problem in Eq.
end for
Let M. C M is the set of core(s) for which the optimization
problem is feasible
if M/, = 0 then
/* Unable to find suitable period for ts */
return Unschedulable
end if
Find the core m,,« = argmax 1"
Tm EM’S

SNk W

m
S

TeY xS

——

where 77" is the tightness of 75

obtained for 7y,

12: Set :cg”* =1 /* Assign Ts t0 Ty ¥/

13: Update period Ts := Tsm* where T;’l* is the period obtained by
solving optimization for 7, =

14: end for

15: return (X, T) /* Return the allocation vector and periods */

The proposed HYDRA algorithm (summarized in Algo-
rithm [I) works as follows. We start with the highest priority
security task 7, and try to obtain the best period for all
available core m,, € M by solving the period adaptation
problem introduced in Eq. (Line 4). If there exists a set
of cores M/, C M for which the optimization problem is
feasible (e.g., an optimal period is obtained satisfying the real-
time constraint) we pick the core 7« € MY that gives the
maximum tightness (Line 11) and allocate the security task
to core 7, (Line 12). This will ensure that the more critical
security tasks will get a period close to the desired one. We
repeat this process for all security tasks to jointly obtain the
assignment and periods. If for any security task 7; the set of
available cores M; is empty (e.g., the optimization problem
is infeasible) we return the taskset as unschedulable (Line 9)
since it is not possible to find any suitable core with given
taskset parameters. This unschedulability result will provide
hints to the designers to update the parameters of security tasks
(and/or the real-time tasks, if possible) in order to integrate
security for the target system.

IV. EVALUATION

We evaluated HYDRA along two fronts: (i) on parameters
derived from a real UAV control system (Section and
(ii) synthetically generated tasksets to explore the design space
(Section [[V-B). Recall from Section [] that our goal is to
explore the possible ways in which security could be inte-
grated in multicore-based real-time platforms. The HYDRA
mechanism presented in this paper assumes that the real
time tasks are distributed across all available cores. Another
design choice available is to allocate a dedicated core for
security while the real-time tasks are assigned to the remaining
cores. In this Section, we compare HYDRA to this alternate
mechanism for security task allocation — that we refer to
henceforth as the “SingleCore” allocation mechanism. Given
the taskset is schedulable, one of the benefits of the SingleCore
scheme is that there is no requirement for assigning security
tasks. While evaluating SingleCore, all the real-time tasks are
partitioned into M —1 cores leaving the other core for security
tasks. Notice that in the SingleCore scheme security tasks do
not suffer any interference from real-time tasks (e.g., the first
term in Eq. (5) is zero). For a given assigned core m,, the
decision variable z7* is known for all 75 and the optimization
problem can solved using an approach similar to the one
described in the Appendix.

A. Case-study with a UAV Control System and Security Ap-
plications

The goal of this experiment was to observe the runtime
behavior of HYDRA. For a real-time application, we con-
sidered a UAV control system [18]. It includes following
real-time tasks (refer to earlier work [18, Tab. 1] for the
task parameters): Guidance (selects the reference trajectory),
Slow and Fast navigation (read sensor values according to the
required update frequency), Controller (executes the closed-
loop control functions), Missile control (fires missile) and Re-
connaissance (collects sensitive information and send data to
the control center). For the security application, we considered
Tripwire [4] and Bro [5]] that detects integrity violations in the
system both at host and network level, respectively (refer to
Table [[). We executed the security tasks on an 1 GHz ARM
Cortex-A8 processor with Xenomai 2.6 [19]] patched real-time
Linux kernel (version 3.8.13-r72) and used ARM cycle counter
registers (e.g., CCNT) to obtain the timing parameters (e.g.,
WCET). We used GPkit [20] library and CVXOPT [21]] solver
to obtain the periods.

The work-flow of our experiment was as follows. For each
of the trials, we observed the schedule for 500s and during any
random time of execution we triggered synthetic attacksﬂ (e.g.,
that corrupts the file system and network packets). We assume
that the intrusions are correctly detected by the security tasks
(e.g., there is no false positive/negative errors) and measured
the empirical CDF of worst-case detection time. From Fig. [I|

30ur goal here is to analyze the security from the scheduling perspective.
Thus instead assuming any specific intrusion (or detection capabilities of
security tasks), HYDRA allows designer to integrate any security mechanism
required to defend targeted attack surfaces.
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The empirical CDF is defined as Fi\(5) = é ZH[QSJ]’ where « is the

total number of experimental observations, (; iszﬁllne to detect the attack in
at the i-th experimental observation and j represents the x-axis values (e.g.,
detection time). The indicator function I} outputs 1 if the condition [] is
satisfied and O otherwise.

we can observe that paralleling security tasks across cores
leads to faster intrusion detection time for HYDRA (e.g.,
higher empirical CDF). From our experiment we found that
on average HYDRA can provide 19.81%, 27.23% and 29.75%
faster detection rate for 2, 4 and 8 core system, respectively.
While SingleCore scheme does not experience any interference
from real-time tasks, however, low priority security tasks
can still suffer inference from high priority security tasks.
Therefore running security tasks in a single core leads to
higher periods and consequently poorer detection time.

B. Experiment with Synthetic Tasksets

We used parameters similar to those in related work [10],
[22]. We performed experiments for M = {2,4,8} cores.
Each taskset instance contained [3M,10M] real-time and
[2M,5M] security tasks. Each real-time task had periods
between [10 ms, 1000 ms]. The desired periods for the security
tasks were selected from [1000 ms, 3000 ms] and the maxi-
mum allowable period is assumed to be T/%% = 10T4°, Vr,.
The real-time tasks are partitioned across multiple cores using
a best-fit [13] strategy.

In each experiment, the total taskset utilization was varied
from 0.025M to 0.975M with step size 0.025M . For a given
number of tasks and total system utilization, the utilization
of individual tasks were generated from an unbiased set of
utilization values using the Randfixedsum algorithm [23]]. Total
utilization of the security tasks were set to be no more than
30% of the real-time tasks. For each utilization value, we
randomly generated 250 tasksets. In other words, for each
core configuration a total of 39 x 250 = 9750 tasksets were
tested. We only considered tasksets that satisfied the necessary
condition in Eq. (I), as any taskset that fails the condition is
trivially unschedulable.
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1. Experiment with Core Assignment Schemes: We compared
HYDRA with SingleCore in terms of acceptance ratio. The
acceptance ratio is given by the number of schedulable tasksets
(e.g., that satisfy all real-time constraints) over the generated
ones. The x-axis in Fig. 2] represents the total system utilization
(e.g., utilization of both real-time and security tasks). The y-
axis represents improvement in acceptance ratio comparing
HYDRA with SingleCore for different values of M. For lower
utilization values both schemes have similar performance (e.g.,
improvement is zero) since the system has enough slack to
execute security tasks. However as we see from the figure, for
higher utilization values HYDRA outperforms SingleCore —
when all security tasks share a core, it causes more interference
and reduces the overall schedulability (e.g., unable to find any
solution that respects all the real-time constraintg’).

2. Comparing with Optimal Multicore Assignment: The result
of an empirical comparison of HYDRA with an optimal (ex-
haustive) solution is presented in Fig. [3| where we searched for
all possible combinations for a small setup with M = 2 cores
and up to Ng = 6 security tasks. To find the optimal solution,
we test each of the M Vs possible assignments of security tasks
to cores. For each assignment, we then determine the value of
the period vector T that maximizes the cumulative tightness
by solving a convex optimization problem in polynomial time
(see Appendix).

The x-axis of Fig. [3] represents total system utilization
and y-axis is the difference in cumulative tightness (e.g.,
A, = HOEEZIADRA % 100%) for HYDRA and the optimal
solutions. As shown in the figure, for low to medium utilization
cases, HYDRA'’s performance is similar to the optimal solution
(e.g., the difference is zero). However for higher utilizations
performance degrades. This is because HYDRA follows an
iterative best-fit strategy to find the periods (and assignment).
Hence for higher utilization values the lower priority tasks may
not get periods close to the desired values (and the cumulative

4Note that security tasks also have real-time constraints.
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Fig. 3. Comparing HYDRA with optimal solution: we consider M = 2 and
Ng € [2,6] with other parameters similar to that mentioned in Sectionm
tightness degrades). As we see from the figure, the degradation
(in cumulative tightness) is no more than 22% and that may
be acceptable given the exponential computational complexity
of finding an optimal solution.

V. DISCUSSION

While we take a step towards developing a model for
integrating security mechanisms into multicore RTS, our initial
attempt can be extended into several directions. HYDRA
statically partition the tasks to the cores. However in practice
security tasks can also move across multiple cores if there
is available slack at runtime (for faster detection and better
schedulability). While there exists methods for global schedul-
ing policy [[13] where tasks can migrate across cores, casting
real-time scheduling problems into RTS security domain re-
quires further research.

In this work we consider security tasks are independent
and preemptive. However some critical security task may
require non-preemptive execution to perform desired checking.
In addition, depending on the actual implementations of the
security routines, the scheduling framework may need to
follow certain precedence constraints. For example, in order
to ensure that the security application itself has not been
compromised, the security application’s own binary may need
to be examined first before checking the system binary files.
These aspects will be explored in our future work.

VI. RELATED WORK

There has been some work [6]—[9] on reconciling the
addition of security mechanisms into RTS that considered
periodic task scheduling where each task requires a security
service whose overhead varies according to the quantifiable
level of the service. The issues regarding information leakage
through storage channels also addressed in prior research [[11]].
All of the aforementioned work, however, only consider single
core system and require modification of system parameters.
A similar line of work [10] to our exists where authors used
the concept of hierarchical scheduling proposed to execute the
security mechanisms with a lower priority than the real-time
tasks for a single core system. Unlike prior work we focus on
integrating security in multicore domain.

Although not in the context of security in RTS, there exists
other work [24]], [25]] in which the authors statically assign the
periods for control tasks. While this previous work focused on
single core systems and optimizing period of all the tasks, our

goal is to ensure security without violating timing constraints
of the real-time tasks in a multicore setup.

In contrast to proposed scheduler-level solution, recent work
[12]], [26]], [27] on hardware/software architectural frameworks
aim to protect multicore RTS against security vulnerabilities.
Compared to our scheme that works for any m-core system,
these preceding frameworks mainly focus on dual core archi-
tecture and require architectural modifications that may not be
suitable for existing RTS.

VII. CONCLUSION

This paper presents an evaluation of a good heuristic mech-
anism (HYDRA) for assigning security tasks into a multicore
RTS. Engineers can now evaluate the design choices of such
assignments to improve the overall security (and hence, safety)
of systems with real-time requirements. Since we provide
comparisons of our solution with two extremes — an ‘optimal’
assignment strategy and isolating all security tasks to a single
core — we are able to provide valuable hints to designers on
how to build security into such systems.
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APPENDIX
SOLUTION TO THE PERIOD ADAPTATION PROBLEM

The period adaptation problem given in Section is a
constrained optimization problem and not very straightforward
to solve. Therefore we reformulate the optimization problems
as a geometric program (GP) [28]]. A nonlinear optimization
problem can be solved by GP if the problem is formulated as
follows [28|]:

n%}n fo(y), Subject to: fi(y) <1, i=1,---,z, and
gl(y):]-a Z_la' ‘5 Zm
where y = [y1,92, -+ ,y.]T denotes the vector of z op-

timization variables. The functions fo(x), f1(y), -, f-,(¥)
are posynomial and g1(y), -, gz, (y) are monomial func-
tions, respectlvely A monomial function is expressed as

9:i(y) = ¢ H y;'", where ¢; € R™ and a; € R. A posynomial

=1
function (i. e the sum of the monomials) can be represented

as fi(y) = ZCzy“” R

We can max1mlze a non-zero posynomial objective function
by minimizing its inverse. In addition, we can express the
constraint f(-) < g(-) as % <1

Based on above dlscussmn we can rearrange the objec-
tive function as rr:1F1n (Tdes) . Likewise period bound con-

21t where ¢; € RT and a;; € R.

straint in Eq @) can be represented as T¢T, “1 <1 and
(Tma=)~ T, <1, respectively. In addition, the schedulablhty
constraint in Eq. @ can be rewritten as: (Cs + [T, 1 <1
where I = > I"™(T, + T)T'Cr + Y (T +

€lR ThERPs(Ts)
)T, ' Cy.

The above GP reformulation is not a convex optimization
problem since the posynomials are not convex functions [28]].
However, by using logarithmic transformations (e.g., repre-
senting T, = logT, and hence T, = e+, and replacing

inequality constraints of the form f;(-) < 1 with log f;(-) < 0),
we can convert the above formulation into a convex optimiza-
tion problem that can be solved using standard algorithms,
such as interior-point method in polynomial time [29, Ch.
11].
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