Downloaded from orbit.dtu.dk on: Apr 26, 2024

DTU Library

=
=
—

i

One-way shared memory

Schoeberl, Martin

Published in:
Proceedings of 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Link to article, DOI:
10.23919/DATE.2018.8342017

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Schoeberl, M. (2018). One-way shared memory. In Proceedings of 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE) (pp. 269-72). IEEE. https://doi.org/10.23919/DATE.2018.8342017

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://doi.org/10.23919/DATE.2018.8342017
https://orbit.dtu.dk/en/publications/8db6f80f-c7a3-4435-9119-13b6205d48ac
https://doi.org/10.23919/DATE.2018.8342017

One-Way Shared Memory

Martin Schoeberl

Department of Applied Mathematics and Computer Science
Technical University of Denmark
Email: masca@dtu.dk

Abstract—Standard multicore processors use the shared main
memory via the on-chip caches for communication between cores.
However, this form of communication has two limitations: (1)
it is hardly time-predictable and therefore not a good solution
for real-time systems and (2) this single shared memory is a
bottleneck in the system.

This paper presents a communication architecture for time-
predictable multicore systems where core-local memories are
distributed on the chip. A network-on-chip constantly copies
data from a sender core-local memory to a receiver core-local
memory. As this copying is performed in one direction we call
this architecture a one-way shared memory.

With the use of time-division multiplexing for the memory
accesses and the network-on-chip routers we achieve a time-
predictable solution where the communication latency and band-
width can be bounded. An example architecture for a 3x3 core
processor and 32-bit wide links and memory ports provides a
cumulative bandwidth of 29 bytes per clock cycle. Furthermore,
the evaluation shows that this architecture, due to its simplicity,
is small compared to other network-on-chip solutions.

I. INTRODUCTION

When using multicore processors in real-time systems the
communication between threads, which are executing on dif-
ferent cores, needs to be time-predictable. Current multicore
architectures support data structures allocated in shared main
memory, protected by locks, for communication between
cores. In practice this communication is performed via cache
coherence protocols between first level caches, backed up by
second and third level caches. This avoids going off-chip for
most communication. However, this communication via cache
coherence protocols is hardly time predictable.

For real-time systems, we need to bound execution time
and communication time between threads. Therefore, we need
to provide a solution where communication is more explicit.
Message passing between core-local memories supported by
a time-predictable network-on-chip (NoC) is one option for
time-predictable communication [3], [5].

This paper presents a time-predictable architecture for on-
chip communication between processing cores. The archi-
tecture consists of core-local, distributed, on-chip memories
supported by a simple and time-predictable NoC. The NoC
copies data from a region in the sender’s core-local memory
to the receiver’s core-local memory. This is done continuously,
which means that data is continually updated. This update is
performed in one direction only, therefore we call it a one-way
shared memory.

The main architectural features of the one-way shared
memory are:

« Distributed core-local memories that exchange data via a
time-predictable NoC in an autonomous way to provide
a form of shared memory for multicore processors.

o The NoC uses time-division multiplexing (TDM) to en-
able worst case analysis of the network bandwidth and
latency. Implementation of a NoC with TDM has a
very low cost: there is no need for dynamic arbitration,
buffering, or flow control.

o The proposed NoC stores the schedule in the router.
Therefore, no header with routing information needs to
be moved between routers.

o The granularity of a NoC packet is a single word. When
no routing information needs to be moved along the
packet it is efficient to use single word packets, which
reduce the latency of short messages.

« The resulting router is so simple, just a multiplexer driven
by a static table, that only a single pipeline register be-
tween routers is required. Therefore, the NoC implements
single cycle hops between routers.

o The shared memory is connected via a counter, serving
as the “network interface”, to the NoC. This interface is
very low cost and supports constant copy of data between
processor cores.

o The simplicity of the whole one-way shared memory
results in a very low resource usage and therefore in low
power consumption.

Figure shows the multicore processor, such as T-
CREST [10]], that uses the one-way shared memory. Addi-
tionally to the on-chip memory the cores are connected to a
shared, external memory with a memory arbiter and a memory
controller to support larger programs and larger data structures
that would not fit into on-chip memories. Our general aim
for this work is to build time-predictable architectures [9] to
support real-time systems.

This work builds on top of the S4NOC project [[11]] and the
scheduler for that NoC [2]. The rest of the paper is structured
as follows: the paper is organized in 5 sections: The following
section presents related work. Section [lII| presents the design
and architecture of the one-way shared memory. Section
evaluates the design with respect to resource consumption and
worst-case communication latency. Section |V| concludes.

One-way memory NoC

TN

Processor Processor Processor
core core core

A
\d
Memory Arbiter

'

Memory
controller

Multicore A

\d

Memory

Fig. 1. The multicore architecture with several processor cores connected to:
(1) the one-way memory NoC and (2) to an arbiter for the shared, external
memory

II. RELATED WORK

For time-predictable on-chip communication a NoC with
TDM arbitration allows bounding the communication delay.
Athereal [3] is such a NoC that uses TDM where slots are
reserved to allow a block of data to pass through the NoC
router without waiting or blocking traffic. We are in line with
the TDM approach of Zthereal, but provide a simpler network
interface to the NoC.

Minimalistic NoCs are not a major topic in research and
only a few projects exist. The paternoster NoC [§]] aims for
a simple design. It avoids flow control and complexity in
the routers by restricting a packet to single standalone flits.
Our NoC is a similar architecture, and uses just single word
packets. However, we use statically scheduled TDM based
arbitration to bound the maximum latency for packets and
avoiding any buffering in the routers. Furthermore, we use a
bidirectional torus instead of a unidirectional torus to achieve
shorter routes.

The A Real-Time Capable Many-Core Model proposes
many cores with a static switched NoC with TDM based
arbitration [6]]. The Reduced Complexity Many-Core architec-
ture [7]] proposes to avoid shared memory at all and to support
timing analysis by using a fine-grain message passing NoC.
We agree on this approach to prefer on-chip communication
between local memories over shared memory communication
and to use TDM based arbitration for the NoC.

Similar to the paternoster NoC, the design of the Hoplite
architecture [4] uses routers without buffers, an unidirectional
torus, and single flit packages that include the destination
address. However, on an arbitration conflict, Hoplite uses
deflection as a resolution mechanism. This design results in
a very small hardware, not so different from our design, but
cannot give any real-time guarantees.

Core

< Z >

{ TX mem |—>
RX mem L ~

<« W >

<« E >

Fig. 2. One processing node consisting of a core, two local memories, a
network interface, and a NoC router

Another NoC, with similar aims as our design, is the Argo
NoC [5]. The Argo NoC aims for time-predictability. It uses
TDM based arbitration in the routers, like our used NoC. It
also uses TDM based DMA transfer of data from the local
memory into the NoC.

The main difference of our work to all above described
NoCs is the direct connection of a local memory to the net-
work, which avoids any complex network interface, resulting
in lower resource usage and better time predictability.

III. ONE-WAY SHARED MEMORY

We propose and present the design of a new form of shared
memory: a one-way shared memory. The one-way shared
memory provides automatic copy of data between core-local
memories in a multicore processor. As this transfer is only
in one direction, we call it one-way shared memory. The
architecture provides one sharing path between each pair of
cores.

A. Distributed Memory

The central components of the one-way shared memory are
distributed dual-ported on-chip memories. These memories are
connected with one port to the processor cores and with the
other port to the NoC. Data is moved by the NoC (and NI)
by continuously reading from a core-local memory, moving
it through a pipelined structure of NoC routers, and writing
it to the destination core-local memory. This transfer happens
continuously without the need to setup any message passing
transfer.

The NoC can read and write one word every clock cycle.
Therefore, the core-local memory is split into two memories:
one for the transmit (TX) channels and one for the receive
(RX) channels. Figure 2] shows one processing node where
a processor core is connected to the TX and RX memories.
The second port of the dual-ported memories are connected
to the NI. The NI is a simple address generator for the local
memories accesses. That NI is connected to a router of the
NoC through the local (L) port. The routers four additional
ports (north (N), east (E), south (S), and west (W)) are
connected to the neighbor nodes to build a bidirectional thorus.

Figure [3| shows the buffer configuration of two local memo-
ries for a 2x2 configuration: the TX memory of core 0 and the
RX memory of core 2. Each memory is divided into blocks,
which represent the communication channels with other cores.

Core 0 TX mem Core 2 RX mem

to core 1 from core 3
to core 2 »| from core 0
to core 3 from core 1

Fig. 3. Transmit (TX) memory of core 0 and receive (RX) memory of core
2

| TDM slot TDM round
L1 [

Fig. 4. Memory address generation with a TDM slot counter and a TDM
round counter.

The order of the blocks is a result of the static schedule. We
can see that core O transmits in the first TDM slot to core 3 and
core 2 receives in the first TDM slot from core 1. The transfer
of data from core 0 to core 2 is scheduled in the second TDM
slot.

B. Time-division Multiplexed NoC

The NoC is based on pipelined multiplexers [11]. Each
router has five ports: north, east, south, west, and local. Local
is connected to the core-local memory, the other ports are used
to build a network of routers. We use a network organized as
bidirectional torus. Each port consists of a 4:1 multiplexer for
the inputs and a single pipeline register at the output. We use
single word packets and the routing information is stored in
the router.

We use TDM to arbitrate the access to the shared resource
(pipeline register and link). That means time is divided into
slots, each is a single clock cycle. A TDM schedule is n slots
long, and is repeated forever. We call these n slots a TDM
round.

The TDM schedule is computed in advance and built into
the router hardware as ROM table. For the general case, we
support an all-to-all schedule, which means that each core
has one communication channel to each other core. In each
TDM round one packet (word) is transmitted from each core
to every other core. A TDM schedule to support all-to-all
communication is very short, as a bi-torus NoC supports high
overall bandwidth. E.g., for a 3x3 NoC it is 10 clock cycles,
and for a 5x5 NoC 28 clock cycles [11]].

C. Address Generation

The local port of the NoC is connected to one side of
the core-local memory. Each clock cycle one word is written
into the core-local RX memory and one word is read from
the TX memory and injected into the NoC. This is done
unconditionally. The address for the memory is generated by
a combination of the TDM slot counter and a TDM round
counter. The TDM slot counter is incremented every clock
cycle and reset at the end of the TDM round. The TDM round
counter is incremented each round.

Figure 4] shows an example of the address generation for the
local memory. The lower bits are counting in TDM rounds,

TABLE I
RESOURCE CONSUMPTIONS OF DIFFERENT COMPONENTS OF THE
ONE-WAY SHARED MEMORY.

Component LE Register Mem
2x2 NoC 415 392 -
3x3 NoC 2324 1448 -
4x4 NoC 5159 2568 -
2x2 one-way memory 958 799 -
3x3 one-way memory 3453 2374 -
4x4 one-way memory 7101 4241 -
Argo router 938 565 -
Argo single node 1775 933 1.3 KB
Argo 3x3 NoC 15146 8342 12.1 KB

the upper bits count in TDM slots. In this example with 10
address bits the whole memory is 1024 32-bit words or 4 KB
large. Each shared memory block is 64 words and the example
supports up to 16 TDM slots, which is enough for a 9-core
system.

In each cycle a word from a different core is read or written.
This address generation is the same for the read address of the
sender and the write address of the receiver. This means that
it takes several TDM rounds to fill one memory block, for
the above example 64 TDM rounds. We can call this time
the hyper period. After one a hyper period we know that all
memories in all cores are updated.

IV. EVALUATION

We have implemented the one-way shared memory in
Chisel, a new hardware construction language [/1]. We evaluate
the one-way memory architecture in two forms: (1) exploring
the functionality with Chisel based test benches and (2) with
synthesize results for an FPGA.

We built unit tests for individual components, the network,
and the whole system. We use the Chisel generated C++ hard-
ware simulation and Scala based test benches for functional
testing.

A. Resource Consumption

Table [I] shows resource consumptions of different compo-
nents of the one-way shared memory. We use a 32-bit datapath
for all experiments. The resource consumption is given in logic
elements (LE) containing a 4-bit lookup table, registers (Reg.),
and memory consumption in bits. We show only memory
consumptions if it is used for tables. The size for the core-local
memory is configurable and therefore not shown in the table.
The synthesize results are for the Intel/Altera Cyclone IV
EP4CE115 FPGA, which is used on the DE2-115 board. All
NoC designs can be clocked above 200 MHz, which higher
than a RISC processor can be clocked in that Cyclone IV
FPGA (in the range of 100 MHz).

The first three row show the resource consumption of differ-
ent NoCs with an all-to-all schedule. A 9-core configuration
(3x3) consumes about 260 LEs and 160 registers per router.
The 16-core configuration uses more often all four links and
results in 320 LEs and 160 registers per router.

The next three rows show complete one-way shared memory
architectures in different configurations. Those designs include
the NoC, the NIs, and the core-local memories. A complete
node (without a processor) consumes between 240 and 440
LEs and between 200 and 270 registers per node. This resource
consumption is in the range of about 10 % of a typical RISC
style processor core.

A TDM based NoC, also optimized for low resource con-
sumption, the Argo NoC [5], is available in open source.
Therefore, we can compare our one-way shared memory with
the Argo NoC. We have synthesized a 3x3 core configuration
for the same FPGA. The Argo NoC contains 3 stage pipelined
routers and a network interfaces with TDM driven reading of
data from a local memory. The last three rows give numbers
for the Argo NoC. One 5-port router needs about 900 LEs
and about 560 registers. A complete node with the network
interface consumes 1780 LEs, 930 registers and 11000 bits
of memory (for the schedule table). However, the Argo NoC,
and the NI provide more functionality than our one-way shared
memory, at a cost of almost 4 times the resources.

B. Bandwidth and Communication Latencies

Our aim for the proposed one-way shared memory ar-
chitecture is to support real-time systems on a multicore
processor. Therefore, we aim to bound the worst-case latency
for exchanging messages. Using TDM scheduling on the NoC
simplifies the worst-case analysis. Within each TDM round we
can send one word from each core to every other core. The
lengths of the TDM schedules (), including the last hop to
the local port, are as follows: 5 clock cycles for a 2x2 system,
10 clock cycles for a 3x3 system, and 19 clock cycles for a
4x4 system.

Those TDM schedules result in the bandwidth for all
communication channels. For example, in a 3x3 system we can
provide channels with a bandwidth of four bytes per 10 clock
cycles. However, this is the bandwidth of a single channel.
The whole system contains one channel from each of the 9
cores to each of the other 8 cores, therefore 72 channels. The
cumulative bandwidth is then 4 x 72/10 = 28.8 bytes per clock
cycle. The worst-case latency / of a single word transfer is:
| =r—1+h with TDM round r and % hops through the NoC.

C. Source Access

We strongly believe that reproducibility of results is a very
important aspect in research. Providing the implementation of
an architecture in open source simplifies or even enables the re-
production of the presented results. Furthermore, open source
simplifies future research on top of the presented ideas. The
source for the architecture presented in this paper is available
at: https://github.com/schoeberl/one-way-shared-memory.

V. CONCLUSION

This paper presents a time-predictable and efficient on-chip
communication architecture for multicore processors: the one-
way shared memory. The one-way shared memory consists
of distributed on-chip memory blocks that are connected to

the processor cores and to a time-predictable network-on-chip.
The network-on-chip continuously copies data from source
core-local memories to destination core-local memories. As
a copy of a single block of data is performed only in one
direction, we call it one-way-shared memory.

We showed in example configurations the low resource
consumption and the achievable and guaranteed bandwidth.
For example, a 3x3 architecture with 32-bit wide memories
supports a bandwidth of 29 bytes per clock cycle.

Acknowledgment

The work presented in this paper was partially funded by
the Danish Council for Independent Research | Technology
and Production Sciences under the project PREDICT (http:
/Ipredict.compute.dtu.dk/), contract no. 4184-00127A.

REFERENCES

[1] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Avizienis, John Wawrzynek, and Krste Asanovic.
Chisel: constructing hardware in a scala embedded language. In Patrick
Groeneveld, Donatella Sciuto, and Soha Hassoun, editors, The 49th
Annual Design Automation Conference (DAC 2012), pages 1216-1225,
San Francisco, CA, USA, June 2012. ACM.

[2] Florian Brandner and Martin Schoeberl. Static routing in symmetric
real-time network-on-chips. In Proceedings of the 20th International
Conference on Real-Time and Network Systems (RTNS 2012), pages
61-70, Pont a Mousson, France, November 2012.

[3] Kees Goossens and Andreas Hansson. The AEthereal network on chip
after ten years: Goals, evolution, lessons, and future. In Proceedings of
the 47th ACM/IEEE Design Automation Conference (DAC 2010), pages
306 -311, 2010.

[4] Nachiket Kapre and Jan Gray. Hoplite: Building austere overlay nocs for
fpgas. In 25th International Conference on Field Programmable Logic
and Applications (FPL 2015), pages 1-8, Sept 2015.

[5] Evangelia Kasapaki, Martin Schoeberl, Rasmus Bo Sgrensen, Chris-
tian T. Miiller, Kees Goossens, and Jens Sparsg. Argo: A real-time
network-on-chip architecture with an efficient GALS implementation.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
24:479-492, 2016.

[6] Stefan Metzlaff, Jorg Mische, and Theo Ungerer. A real-time capable
many-core model. In Proceedings of 32nd IEEE Real-Time Systems
Symposium: Work-in-Progress Session, 2011.

[7]1 Jorg Mische, Martin Frieb, Alexander Stegmeier, and Theo Ungerer.
Reduced complexity many-core: Timing predictability due to message-
passing. In Jens Knoop, Wolfgang Karl, Martin Schulz, Koji Inoue,
and Thilo Pionteck, editors, Architecture of Computing Systems - ARCS
2017: 30th International Conference, Vienna, Austria, April 36, 2017,
Proceedings, pages 139—-151, Cham, 2017. Springer International Pub-
lishing.

[8] Jorg Mische and Theo Ungerer. Low power flitwise routing in an
unidirectional torus with minimal buffering. In Proceedings of the Fifth
International Workshop on Network on Chip Architectures, NoCArc ’12,
pages 63-68, New York, NY, USA, 2012. ACM.

[9] Martin Schoeberl. Time-predictable computer architecture. EURASIP

Journal on Embedded Systems, vol. 2009, Article ID 758480:17 pages,

2009.

Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley,

Raffaele Capasso, Jamie Garside, Kees Goossens, Sven Goossens, Scott

Hansen, Reinhold Heckmann, Stefan Hepp, Benedikt Huber, Alexander

Jordan, Evangelia Kasapaki, Jens Knoop, Yonghui Li, Daniel Prokesch,

Wolfgang Puffitsch, Peter Puschner, André Rocha, Cldudio Silva, Jens

Sparsg, and Alessandro Tocchi. T-CREST: Time-predictable multi-core

architecture for embedded systems. Journal of Systems Architecture,

61(9):449-471, 2015.

Martin Schoeberl, Florian Brandner, Jens Sparsg, and Evangelia Kas-

apaki. A statically scheduled time-division-multiplexed network-on-chip

for real-time systems. In Proceedings of the 6th International Symposium
on Networks-on-Chip (NOCS), pages 152-160, Lyngby, Denmark, May

2012. IEEE.

[10]

(1]

https://github.com/schoeberl/one-way-shared-memory
http://predict.compute.dtu.dk/
http://predict.compute.dtu.dk/

