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Abstract—Guaranteed numerical precision of each elementary
step in a complex computation has been the mainstay of tra-
ditional computing systems for many years. This era, fueled
by Moore’s law and the constant exponential improvement in
computing efficiency, is at its twilight: from tiny nodes of
the Internet-of-Things, to large HPC computing centers, sub-
picoJoule/operation energy efficiency is essential for practical
realizations. To overcome the power wall, a shift from traditional
computing paradigms is now mandatory.

In this paper we present the driving motivations, roadmap,
and expected impact of the European project OPRECOMP.
OPRECOMP aims to (i) develop the first complete transprecision
computing framework, (ii) apply it to a wide range of hardware
platforms, from the sub-milliWatt up to the MegaWatt range,
and (iii) demonstrate impact in a wide range of computational
domains, spanning IoT, Big Data Analytics, Deep Learning, and
HPC simulations.

By combining together into a seamless design transprecision
advances in devices, circuits, software tools, and algorithms, we
expect to achieve major energy efficiency improvements, even
when there is no freedom to relax end-to-end application quality
of results. Indeed, OPRECOMP aims at demolishing the ultra-
conservative “precise” computing abstraction, replacing it with a
more flexible and efficient one, namely transprecision computing.

Index Terms—Approximate Computing; Inexact Computing;
Energy-Efficiency; Low Power Computing; Architecture Design

I. INTRODUCTION

In the last 10-years, the demand for new computing strategies
driven by energy-efficiency has grown exponentially [1].
Flop-per-watt (thus, per-euro) has become de-facto a driving
model in hardware design. Results in this direction have
been significant [2], leveraging first multi-core parallelism
and then recently moving toward heterogeneous architectures

The project OPRECOMP (website: oprecomp.eu) acknowledges the financial
support of the Future and Emerging Technologies (FET) programme within the
European Union’s Horizon 2020 research and innovation programme, under
grant agreement No 732631. IBM, the IBM logo, and ibm.com are trademarks
or registered trademarks of International Business Machines Corporation in
the United States, other countries, or both. Other product and service names
might be trademarks of IBM or other companies.

Fig. 1: OPRECOMP aims at providing a holistic transprecision
framework spanning all layers of computing systems.

(e.g., multicore CPU coupled with GP-GPUs). However, these
evolutions will not be sufficient in the long term. To maintain an
exponential increase in computational efficiency, we rely either
on an unlikely breakthrough discovery in hardware technology,
or on a fundamental change in computing.

The H2020 European project OPRECOMP explores the latter
opportunity, and puts a strong bet on transprecision computing
rooted into the key intuition of exploiting approximation
in hardware and software, from both a statistical and a
deterministic viewpoint. The mission of OPRECOMP is to
build demonstrators that prove that this idea holds (i) in a huge
range of application scenarios in the domains of IoT, Big Data
Analytics, Deep Learning, and HPC simulations, and (ii) from
the sub-milliWatt to the MegaWatt range, spanning nine orders
of magnitude.

To achieve this goal a truly holistic approach covering all
the constitutive layers of complete computing systems must be
followed and integrated in a vertically-orchestrated solution, as
shown in Figure 1. Usable transprecision computing requires
bidirectional cross-layer interaction. Real-life applications are
strongly data-dependent, hence precision cannot be other than

oprecomp.eu


Fig. 2: Transprecision computing enables fine control over
precision in space and time, thereby leading to significant
energy savings without sacrificing overall quality of results.

a controlled open loop. A top-down flow of information is
needed to modulate precision requirements in space and time
and depending on instance-specific data. A bottom-up flow is
also critical to ensure closed-loop adaptation of requirement,
self-tuning and on-line learning.

This paper is organized as follows: in Section II we introduce
and define the transprecision computing paradigm. Then in
Sections IV, III, and V we show how such a concept is going to
be realized through the OPRECOMP roadmap, putting together
re-thinking of algorithms, new hardware design, and special
software packages and environments. Then in Section VI we
unveil first results and forecast impact on real applications.
Concluding remarks are summarized in Section VII.

II. TRANSPRECISION COMPUTING

Transprecision computing is rooted into the key intuition
of exploiting approximation in both hardware and software
(the former due to the presence of variability or unavoidable
physical fluctuations, the latter due to computation with limited
precision) to boost energy efficiency. While this is clearly tied
to the rapidly developing research area known as approximate
computing [3], [4], a transprecision computing framework
goes beyond the state-of-the-art along several axes, and more
precisely:

1) It controls approximation in space and time (when and
where) at a fine grain though multiple hardware and
software feedback control loops, see Figure 2.

2) It does not imply reduced precision at the application level,
even though it is also possible to exploit application-level
softening of precision requirements for extra benefits.

3) It takes inspiration from nature by defining computing
architectures that operate with a smooth and wide range
of precision vs. cost trade-off curve.

The key barrier to a widespread adoption of classic approxi-
mate computing is the lack of an application-to-hardware frame-
work for managing precision without compromising application
quality. More precisely, the lack of guarantees and of tight error
control is the main showstopper. In a transprecision computing
framework this limit is overcomed by a fine-grained and
distributed control of hardware operation coupled with scalable,
feedback based runtimes and a programming model enabling
on-line tracking of error metrics and modulation of operating
parameters to meet quality-of-results at the application level.

III. ARCHITECTURE DESIGN

In the OPRECOMP project, we aim to demonstrate advan-
tages of a transprecision framework from the sub-mW to the
MW range, spanning nine orders of magnitude. To achieve
this goal, we investigate the fundamental physical aspects of
computation, and develop two radically different hardware
platforms that act as proxies to server-grade compute platforms
and low-power IoT nodes, spanning the range from mW to kW.
These demonstrators will be used to showcase our work, and
the obtained measurements will be used to project the results
to a hypothetical MW system.

A. Limits Imposed by the Laws of Physics

In any computational platform, each calculation is performed
by a physical system. As such, the changes in the physical
system determine the energetic cost associated with the act of
computing. It is important to note that while some energetic
costs are due to technological constraints and thus can be
arbitrarily lowered, some others have fundamental bounds set
by the laws of physics. As an example of fundamental cost
is the bound set by any irreversible change in the system
entropy. The most popular connection between computation
and physical system was originally proposed by Landauer
in 1961 [5]. Landauer’s principle states that the operation of
resetting a bit in any physical device generates a minimum
amount of dissipated heat equal to Q = −kBT ln 2, where kB
is the Boltzmann constant and T the temperature of the device.
While in a recent paper [6] it has been shown that computation
with traditional logic gates, per se, can be performed in principle
with an arbitrarily small amount of energy, the reset operation,
typical of computing initialisation or memory writing, requires
that a finite minimum amount of energy is consumed. Such an
energy toll, however can be attenuated by trading precision in
computation with potential energy saving [7]. In this project
we will identify which costs are fundamental and which are
technological, determining trade-offs between accuracy and
cost of computation. The results will set the lower bound of
energetic performances achievable in the project.

B. Targeted Platforms and Hardware Architecture

In order to leverage the full potential of the transprecision
concept, fine grained control over arithmetic precision in
compute units as well as bit error rates in the memory hierarchy
is required. Hence, the level of required hardware support goes
beyond what traditional hardware platforms provide today.
To this end, OPRECOMP leverages the Parallel Ultra Low
Power (PULP) platform [8], which is an open-source many
core platform based on energy-efficient, 4-stage, in-order RISC-
V processor cores [9]. The PULP platform will be extended
with transprecision-capable memory hierarchy, transprecision
accelerators and accelerated processing units (APUs) that are
tightly integrated into the RISC-V cores. As illustrated in
Figure 3, the transprecision-capable PULP platform will be
used as a basis for two demonstrator systems that are optimized
for two different power envelopes and which rely on the same
transprecision capabilities:
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Fig. 3: The Parallel Ultra Low Power (PULP) platform will be extended with transprecision-capable computing units,
accelerators and memory infrastructure, and serve as a basis for two demonstrator systems (kW and mW anchors).

1) mW Demonstrator – technology demonstrator for the
transprecision units: The mW range demonstrator will be based
on an eight-core PULP system geared towards achieving the
highest possible energy efficiency, by making use of aggressive
power saving features and improving the computing efficiency
of individual cores. This base system will be extended to
have transprecision capabilities in its interconnection, data
computation and storage units. The complete platform will
include the transprecision enhanced PULP system and include
various sensors to demonstrate the validity of our approach
in real applications developed using the software environment
developed in this project.

2) kW Demonstrator – scalability and functional demon-
strator for the software stack: Our second platform will be
one node of an HPC system with transprecision capabilities.
In a first phase, this system will be based on an existing
POWER8 - CAPI (Coherent Accelerator Processor Interface)
attached FPGA prototyping system developed by IBM. The
POWER8 processor will be used for precise calculations, and
an interconnected array of PULP based processing units with
controllable precision will be implemented on the FPGA. In a
second phase, we will upgrade the node to a POWER9 with
CAPI 2.0 connection to an advanced version of PULP on a
large-scale FPGA. This system will be used to validate the
approach. The actual power and performance numbers will
be extracted through measurements on a dedicated ASIC that
will be manufactured containing an array of the PULP based
transprecision computation cores. Finally, the results on the
kW system will be projected up to a potential multi-node MW
architecture.

C. Optimal Use of the Memory Subsystem is Crucial

It is well known that many applications are not compute
but memory bandwidth limited. For instance, Google has
recently shown that the Tensor Processing Unit (TPU) [10] is
limited by memory bandwidth in four out of six neural network
inference workloads. Thus, memories play a crucial role in
advanced computer architectures. Today’s most prominent
external memories are Dynamic Random Access Memories
(DRAMs). DRAMs largely contribute to the overall power
consumption and compute performance. For instance, it has
been shown that in natural language processing more than

80% of the energy consumption comes from the DRAMs
and only 18% from the computing itself. A second challenge
is DRAM performance – since DRAMs are optimized for
density, their performance lags behind the performance of the
compute units. Although the peak performance of DRAMs
has increased strongly over the years due to improved internal
data pre-fetching and interface performance, the periodically
required refresh and the timing dependencies can result in up
to 10× access time variations.

In transprecision computing, we address the memory chal-
lenge from several directions for both platform anchors (kW and
mW). First, the concept of approximate computing is extended
to DRAMs [11]. In approximate DRAMs the refresh is lowered
or even completely switched-off and this can result in possible
data errors [12]. Thus, the use of approximate DRAM depends
largely on the DRAM retention error behavior, data lifetimes
and application robustness as described in Figure 4.

Second, we integrate and exploit application knowledge in
the memory subsystem composed of the memory controller
and the DRAMs. Memory controllers are orchestrating the
DRAM accesses from the compute fabric to the DRAMs
itself. The controller is a complex device that is, in contrast to
compute architectures, still general purpose with limited context
information. The context information is restricted to the buffer
size. Here, we follow an application specific memory controller
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approach: for a given application specific access pattern, the
memory controller can be configured in a way such that the data
are optimally mapped into the DRAM banks/ranks/channels.
An optimal mapping minimizes the row misses and, hence,
maximizes the bandwidth and energy efficiency. Third, we use
special power down and refresh strategies that can be tuned
to the application characteristic. We limit our optimizations
not only to DRAMs but also to emerging memories, such as
Resistive RAMs.

IV. ALGORITHM DESIGN AND ERROR PROPAGATION

Transprecision can be applied to the algorithms both at the
low level, introducing approximation in a subset of operations,
as well as at the high level, changing the algorithm workflow
and reducing the complexity of the operations in selected
parts of the computation. The first requires deep understanding
of number format behaviour, the latter is more linked with
algorithm-rethinking. In both cases, new metrics have to be
introduced to assess quality, performance, and energy-savings.
Moreover, error propagation must be carefully controlled.

A. Quality Metrics

Quality metrics (QMs) are selected to (i) test the correctness
of the system and measure the balance between performance
gains versus quality loss, (ii) assess the results over the full life
span of the project and range of architectures, and (iii) enable
closed-loop monitoring with low-weight check overhead. Most
often, the choice of QMs will depend on the target algorithm,
micro-benchmark and application. QMs include performance
metrics (PMs) and quality-of-the-result metrics (QRMs).

Basic PMs are direct performance indicators such
as (execution)-time, energy consumption and, for power-
constrained systems, power dissipation. From these direct PMs,
it is possible to compose several derived metrics such as the
energy consumption-per-work unit. A popular example for a
derived metric is the FLOPS/Watt (floating-point arithmetic
operations per second and Watt, that is, operations per Joule),
promoted by the Green500 ranking [2]. For parallel systems,
two additional relevant PMs are strong and weak scalability.

QR metrics (QRMs) assess the quality of the response in
terms of accuracy. QRMs compare, whenever possible, the
approximate solution (ApS) and the exact solution (ExS) of
the process, to quantify the accuracy (i.e., QR) of the former.
In the case when the ExS is not available, QRMs should help
reach a conformable decision based on the ApS. At this point,
it is worth mentioning that the threshold to qualify an ApS as
acceptable is highly dependent on the application.

B. Computer Arithmetic

Floating point arithmetic is the standard for scientific
applications. Its main advantage over integer arithmetic is that
with a relatively small number of bits, it is able to represent
a large range of numbers with a small relative error. Floating
point numbers y = ±m×βe−t have three integer components:
sign ±, mantissa (significand) m and exponent e, while the
base β is implicit and fixed for all numbers (usually β = 2).

The sign is stored in one bit and the mantissa is maintained
as an integer with t bits in the range 0 ≤ m ≤ βt−1.

The accuracy of any floating point format can be specified
by the smallest number ε = 2t that, when added to one, yields
a result different from one. The maximum relative error when
representing a number using round to nearest is the unit round-
off u = ε/2. Following this model, the result of any basic
arithmetic operation with neither overflow nor underflow is

fl(x op y) = (x op y)(1 + δx op y) |δx op y| ≤ u,

with op ∈ {+,−,×,÷} and δx op y is the relative error.
Fixed point exploits an integer representation to store

fractional numbers, where the number of bits dedicated to
the fractional and non-fractional depend on the scaling factor
s. A number y is stored as an integer i following the relation
y = ±i/s. The main advantage of fixed point over floating
point is that it does not need specific hardware to run efficiently,
and the representation can be easily adapted in software by
simply changing the scaling factor. Usually this factor is a
power of two allowing to use binary shifts for intermediate
operations. The representation precision when using round to
nearest is u = 1/2s.

The main drawback of fixed precision is its very limited
range compared to a floating point representation that uses
a similar number of bits. The result of an operation in fixed
point without overflow can be modelled as

fx(x op y) = x op y + ∆x op y |∆x op y| ≤ u ,

with op ∈ {+,−,×,÷} and ∆x op y is the absolute error. The
relative error can be as large as 1 for the smallest representable
numbers – this is different from floating point where the relative
error is constant for all numbers except denormals.

C. Error Propagation

Multiplication, division and addition are benign operations in
floating point representation; that is, the error in the operation
result is of the same order of magnitude as that present in
the operands. However, error in subtraction can be large due
to cancellation, as a result of the loss of significant digits
when subtracting two similar numbers. For fixed point the
case is just the opposite: addition and subtraction are benign
operations while multiplication and division can incur large
errors. Algorithms should be designed to avoid cancellation in
floating point and overflow/underflow in fixed point arithmetic.
In general, when using different formats for each operand, the
error in the operation result will be as large as the largest
representation error from any of the operands.

V. SOFTWARE ENVIRONMENT FOR TRANSPRECISION

The OPRECOMP application and system software stack
have three key objectives. The first is to offer programmers the
abstractions for expressing structure and disciplined approxima-
tion of data during computation or communication. The second
is to hide the complexity of a full transprecision computing
hardware and system software stack from users, while address-
ing both architectural and intrinsic hardware heterogeneity. The



third is to leverage the full range of approximate computing
technologies available in the OPRECOMP hardware stack.

To achieve these objectives OPRECOMP follows four
methodological approaches:

• The use of dynamic code generators to produce algorith-
mic kernels with variable vector and scalable type depth,
that use variable precision arithmetic or replace floating
point arithmetic with integer approximation on platforms
that lack floating point support. We use runtime code
generation methods that dynamically adapt the precision
of floating point computation to either improve program
performance or reduce energy consumption.

• The introduction of new number formats requiring a
reduced number of bits (i.e., reducing precision and
dynamic range) to increase the energy efficiency of
hardware platforms. Floating-point operations are a major
contributor to the energy consumption of platforms,
due to circuit complexity and data movements (e.g.,
memory-memory, memory-register). In particular, in the
OPRECOMP project we analyse the benefits provided by
extended floating-point type systems, including:
– a technique to emulate non-IEEE floating-point formats

on development environments;
– a methodology to collect statistics (time and power)

related to floating-point operations;
– machine learning techniques for understanding the

relation between variable precision and output error;
– an abstraction layer to integrate different tools for fine-

grain tuning of variable precision.
• The extension of standard programming languages and

standards (i.e., C, OpenMP) with abstractions to express
transprecision arithmetic in a manner that is composable,
dynamic and context-sensitive. The extensions include
abstractions to map computation to specific arithmetic
units, map data to heterogeneous memory subsystems
with capabilities for data compression and control memory
system reliability to enable performance and power
optimisation.

• A Hardware Abstraction Layer (HAL) and associated oper-
ating system to leverage approximation in communication,
data transfers, and error control and recovery. We provide
scheduler extensions to expose affinity for hardware
units with variable precision and perform accuracy-aware
workload allocation. We explore an exact serving scheduler
as an evaluation baseline and a distributed swarm-based
scheduler, where small-scale allocation and accuracy
tuning decisions are taken based on simple probabilistic
rules. We further provide region-based memory allocation
strategies for data that can be approximated in memory and
automatic page allocation and migration policies between
approximate and non-approximate regions, considering
data access patterns and memory access timing. Finally,
we introduce a storage and IPC stack with efficient
compression and decompression paths used on demand.

The system software stack of OPRECOMP is complemented

TABLE I: OPRECOMP micro-benchmark overview.

Micro- Platform Power8 Baselines
Benchmarks mW kW Serial OpenMP CUDA

D
L

CNN ◦ ◦ 3 3 3
GD – ◦ 3 3 3
PCA ◦ ◦ 3 3 ◦
BLSTM ◦ ◦ 3 3 ◦

B
ig

D
at

a PageRank ◦ ◦ 3 3 3
K-Means ◦ ◦ 3 3 ◦
SVM ◦ ◦ 3 ◦ –
KNN ◦ ◦ 3 3 ◦

H
PC

GLQ ◦ ◦ 3 3 –
FFT ◦ ◦ 3 ◦ –
Stencil ◦ ◦ 3 3 3
SparseSolve ◦ ◦ 3 ◦ ◦

3 Implemented ◦ Planned – Not envisioned

with new hardware monitoring capabilities. The software
stack interfaces to novel memory controllers that gather
information about data access patterns, lifetime, access latency,
accuracy, precision, criticality and reliability. Additionally,
the OPRECOMP system software stack leverages low cost
monitoring and corrective functions implemented in hardware.
These include low cost error confinement schemes implemented
for specific instructions.

VI. APPLICATIONS

OPRECOMP aims at demonstrating transprecision benefit
on a wide range of applications. To do that we follow a
micro-benchmark strategy, inspired by the Dwarves [13], [14]:
the first list of micro-benchmarks includes 12 kernels that
are key for a wide variety of real-world applications in the
domains of Deep Learning, Big-Data and Data Analytic, High
Performance Computing (HPC) and Scientific Computing. The
set of micro-benchmarks covers, regular (sequential, single-
threaded CPU) code, OpenMP parallelized code and NVIDIA
CUDA implementations of GPU kernels, as shown in Table I.
We identify at least three different applications from each
of the three domains and provide a stand-alone baseline
implementations of those. We believe that almost all of them
are suitable for execution of the targeted mW- and kW-platform,
when the input dataset for the benchmarks is scaled accordingly.
In what follows, we provide a short overview of the current
micro-benchmarks, as well as of the transprecision computing
techniques that we will exploit during the project.

A. Deep Learning

Over the last few years, the utilisation of deep learning
methods to real problems has grown significantly in many
commercial and industrial domains. To reflect this trend, we
include four common algorithmic patterns from this field in
our benchmark list: Convolutional Neural Network (CNN),
Stochastic Gradient Descent (SGD), Bidirectional Long-Short-
Term Memory (BLSTM) and Principal Component Analysis
(PCA). The BLSTM and CNN micro-benchmarks are two com-
monly used neural network configurations, for analyzing one-
dimensional time sequences, e.g., audio, and two-dimensional
data, e.g., pictures or individual video frames. Furthermore,
neural networks have to be trained on a large data set prior



to deployment, and such training is typically achieved using
SGD algorithms. Finally, PCA is a common step encountered
in many learning and signal processing algorithms, e.g., for
example to reduce the dimensionality.

B. Big-Data and Data Analytics

In this domain, the goal of many applications is to analyze
data to identify trends or extract specific features. In some cases
the data analysis requires a significant amount of computation,
in which case it is performed in the cloud (the kW platform).
In other cases, the goal is to take immediate action based on
the observed data (e.g. in robotics/drones, self-driving cars). In
this case, local embedded processing near the sensor (the mW
platform) is preferred due to privacy or security concerns, or
limitations in the communication bandwidth. For OPRECOMP
we chose four well-known and largely used algorithms in this
field covering different tasks: unsupervised classification (k-
means), supervised classification (KNN and SVM) and web
search (Page Rank).

C. HPC and Scientific Computing

Numerical simulation is nowadays an essential tool for scien-
tific and technological research, widely utilized in industry to
model all sorts of chemical and physical processes. To cover this
domain, we have selected four computational patterns present in
many HPC/scientific computing applications: Gauss-Legendre
Quadrature (GLQ), Fast Fourier Transform (FFT), Stencil and
Sparse Solve. The GLQ solves the 1D numerical integration
problem by approximation, and it is typically employed in
solutions based on Finite-element methods (FEMs). The FFT
is one of the most important algorithms in computational
science and is widely employed in many applications. Stencil
algorithms update array elements according to a fixed pattern
and are common in scientific and engineering applications,
e.g., computational fluid dynamics. Finally, we selected the
Conjugate Gradient (CG) method as a representative Sparse
Solve case study, as CG exhibits a data access pattern that is
common to all other solvers of this family, and, furthermore,
it has been recently proposed to complement the popular
LINPACK benchmark to rank the TOP500 computing systems.

D. Transprecision Computing Optimisations

The benchmark suite contains micro-benchmark kernels
that are used in applications where the output quality of the
final results might be still adequate or good-enough even
if approximate concepts (e.g. less precision arithmetic) are
used for computing them. Those kernels allow us to explore
aggressive approximation techniques which can be translated
into power and/or performance gains.

The exploration space of the transprecision concept addresses
the question on how algorithms can be built to run and take
advantage of four main directions:

1) Data types, especially low precision versions such as half
float (16 bit) or non-standard 8bit floats.

2) Interaction with Transprecision Memory. Memory systems
consume a large part of the system power, and refresh

cycles are major contributor to this power. Lowering
refresh rates allows naturally to save power, however the
read-out error statistic of such a system would change.

3) Iterative Transprecision Concepts. Iterative algorithms
(e.g., the conjugate gradient, page rank) allow transpre-
cision concepts to be explored in the case where no
additional error is permitted at the end of the computation.
The self-correcting property of iterative algorithms with
transprecision concepts might introduce temporary errors
during the early iterations that can be corrected towards
the end of the computation where precision requirements
are gradually increased to meet the final requirements.

4) General Algorithmic Changes. Any general high-level
change of the algorithm can be explored, however, we
note that such optimizations are application-specific.

VII. CONCLUSIONS

The long term scientific goal of OPRECOMP is to develop
concepts, methods, hardware and software building blocks for
practical transprecision computing systems. The foundational
character of the project comes from the key idea that approxi-
mation needs to become a degree of freedom and a controllable
design parameter as opposed to a “necessary evil” as it is seen
in traditional computing systems. OPRECOMP takes a multi-
scale system design approach based on open architectures. We
aim to achieve at least a one order of magnitude improvement
in energy efficiency demonstrating that the transprecision idea
holds in a wide range of application scenarios in the domains of
IoT, Big Data Analytics, Deep Learning, and HPC simulations.
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