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Abstract

Spiking Neural Networks (SNNs) are widely deployed to solve complex pattern recognition, function

approximation and image classification tasks. With the growing size and complexity of these networks,

hardware implementation becomes challenging because scaling up the size of a single array (crossbar) of

fully connected neurons is no longer feasible due to strict energy budget. Modern neromorphic hardware

integrates small-sized crossbars with time-multiplexed interconnects. Partitioning SNNs becomes essen-

tial in order to map them on neuromorphic hardware with the major aim to reduce the global communica-

tion latency and energy overhead. To achieve this goal, we propose our instantiation of particle swarm

optimization, which partitions SNNs into local synapses (mapped on crossbars) and global synapses

(mapped on time-multiplexed interconnects), with the objective of reducing spike communication on

the interconnect. This improves latency, power consumption as well as application performance by

reducing inter-spike interval distortion and spike disorders. Our framework is implemented in Python,

interfacing CARLsim, a GPU-accelerated application-level spiking neural network simulator with an

extended version of Noxim, for simulating time-multiplexed interconnects. Experiments are conducted

with realistic and synthetic SNN-based applications with different computation models, topologies and

spike coding schemes. Using power numbers from in-house neuromorphic chips, we demonstrate signif-

icant reductions in energy consumption and spike latency over PACMAN, the widely-used partitioning

technique for SNNs on SpiNNaker.

I. INTRODUCTION

Spiking Neural Networks (SNNs) [1] are powerful and biologically realistic computation

models, inspired by the dynamics of human brain. From implementation viewpoint, SNNs are

collection of neurons that communicate by sending short pulses (spikes) across connections
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(synapses) to other neurons. SNNs are trained to perform variety of tasks, where the training

process involves adjusting connection strengths between neurons. SNNs are increasingly being

deployed to solve complex tasks such as pattern recognition, function approximation and image

classification. Another reason for widespread success of SNNs are their efficient VLSI imple-

mentations, such as TrueNorth [2], CxQuad [3] and SpiNNaker [4] among others. Our work is

based on CxQuad, which is an analog neuromorphic hardware with 1024 neurons clustered into

four crossbars of 256 neurons each. The framework proposed in this work can be extended with

reasonable effort reusing the same concepts to other neuromorphic architectures.

With increasing deployment of SNNs in complex scenarios, the field is rapidly maturing

in terms of applications, algorithms, computation models and hardware. Although significant

research activities in these domains are being conducted separately, the task of a system designer

is to build synergy between these domains i.e., to map realistic SNN-based applications on neu-

romorphic hardware. Although some efforts are made in this direction, the published approaches

still remain mostly ad-hoc [5], specific to a given hardware [6] and are often limited to trivial

applications [7]. The closest technique to our approach is that of PACMAN [8], which is used

to map SNNs on SpiNNaker neuromorphic hardware. Following are the limitations of PACMAN

that motivated this paper. First, PACMAN is primarily targeted for architectures supported on

SpiNNaker such as Deep Belief Networks [9] and Convolution Neural Networks [10]. PACMAN

offers limited flexibility to implement evolving computation models such as the Liquid State

Machine (LSM) [11] or Hierarchical Temporal Memory (HTM) [12]. Second, PACMAN requires

significant modification to support clustered neuromorphic architectures with local and global

synapses. This is because the PACMAN tool is natively developed for SpiNNaker hardware only,

where computing elements are ARM cores with conventional Von-Neumann architecture. Third,

PACMAN determines neuron mapping without considering spike latency related performance

distortions and interconnect energy consumption.

We propose a systematic approach to map trained SNNs on a neuromorphic hardware. Funda-

mental to this is our instantiation of Particle Swarm Optimization (PSO) [13], which partitions

a given SNN into local and global synapses. Local synapses are mapped on fully connected

crossbars and global synapses on time-multiplexed interconnect between the crossbars. The

objective of this optimization is to minimize spike communication on the time-multiplexed

interconnect, saving energy and improving performance (such as accuracy) of the overlaying

application by reducing spike disorder count and inter-spike interval distortion. Our approach
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Fig. 1. A reference neuromorphic hardware

can be used with simulators as well as with real hardware. Although energy consumption for

CxQuad hardware is used to demonstrate the power/performance improvement, our conceptual

approach is however, generic and can be used for a range of devices with memristor-based

synaptic elements.

Contributions: Following are our novel contributions

• a systematic framework for partitioning and mapping a trained SNN on neuromorphic

hardware;

• introduction of performance metrics for mapping SNNs on neuromorphic hardware;

• a PSO-based partitioning of SNN into local and global synapses to reduce spike commu-

nication and congestion on time-multiplexed interconnect;

• a Python-based open-source framework for simulating SNN on neuromorphic hardware;

and

• thorough experimentation with realistic applications, demonstrating the advantage of our

proposed approach.

We build our framework in Python interfacing CARLsim [14], a GPU-accelerated application-

level spiking neural network simulator with an extended version of Noxim [15], for simulating

time-multiplexed interconnect. Results demonstrate the energy, latency and performance gains

in the global communication network using our approach. The remainder of this paper is

organized as follows. Neuromorphic platform description is provided in Section II together

with the introduced metrics. PSO-based partitioning is introduced next in Section III. Our

proposed systematic framework is described in Section IV. Results and discussions are provided

in Section V. Finally, the paper is concluded with future outlook in Section VI.
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II. NEUROMORPHIC HARDWARE AND RELATED METRICS

Figure 1 shows the general architecture of a modern neuromorphic hardware. The architecture

consists of multiple crossbars of fully connected neurons (shown in part b). Implementation wise,

a crossbar is a 3D arrangement of nanowires, with pre-synaptic neurons connected to bottom

nanowires and post-synaptic neurons to the top nanowires (or vice-verse). Each crosspoint of a

top and bottom nanowire, is a two-terminal memristor nanodevice (shown in part c). The synaptic

connection strength between a pair of pre- and post-synaptic neurons is encoded as resistance

value of the memristor connecting them and is adjusted by regulating the flow of current through

it. Crossbars communicate with each other using an interconnect (shown in part a). Traffic on

the interconnect is time-multiplexed. Several interconnect alternatives have been explored in

literature for neuromorphic computing. The commonly used ones are NoC-tree (CxQuad) and

NoC-mesh (TrueNorth, HiCANN).

Analogous to mammalian brain, synapses of a SNN can be classified into local and global

synapses based on the distance information (spike) is conveyed. Local synapses are short distance

links, where pre- and post-synaptic neurons are located in the vicinity. Global synapses are those

where pre- and post-synaptic neurons are farther apart. To reduce power consumption of the

hardware implementation of SNNs, two principles are widely adopted in the community:

• the number of point-to-point local synapses is limited to a reasonable dimension (size of a

crossbar); and

• instead of point-to-point global synapses (which are of long distance) as found in a mam-

malian brain, the hardware implementation usually consists of time-multiplexed interconnect

shared between global synapses.

CxQuad for example, consists of four crossbars, each with 128 pre- and 128 post-synaptic neu-

rons implementing a full 16K (128x128) local synapses per crossbar. The crossbars are intercon-

nected using a NoC-tree, which time-multiplexes global synaptic connections. The spike commu-

nication protocol for the global synapse interconnect is Address Event Representation

(AER) [16]. An example is shown in Figure 2 to explain the principles behind AER. Here four

neurons in the input group (a crossbar) spikes at time 3, 0, 1 and 2 time units, respectively.

The encoder encodes these four spikes in order to be communicated on the global synapse

interconnect. As can be clearly seen from this figure, a spike is encoded uniquely on the global

synapse interconnect in terms of its source and time of spike.
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CHAPTER 2. BACKGROUND KNOWLEDGE

chips. There are several published benchmark reports for different chips. In the following para-
graph, TrueNorth chip is cited as a proof of the significant reduction of power consumption.

TrueNorth is a 5.4-billion-transistor chip with 4096 neurosynaptic cores interconnected via
an intra-chip network that integrates 1 million programmable spiking neurons and 256 million
configurable synapses, designed and fabricated by IBM [24]. Paul A. Merolla et al. ran a multi-
object detection and classification application both on a state-of-art von Neumann computer and
the neuromorphic system built with TrueNorth chip, and compared power consumption. According
to their documented results, TrueNorth consumes 26 pJ per synaptic event with mean neurons
fire at 20 Hz and 128 active synapses, which is 176,000 times less energy per event compared with
the generic-propose microprocessor running the same network [25].

Accelerating neural network applications

Neuromorphic computing is biologically inspired and it is integrating spiking neural networks into
hardware level [8]. As a benefit, the neural network applications, such as image detection and
classification, big data analysis, machine learning etc., are accelerated with the natural imple-
mentation.

TrueNorth continues to be cited as a proof. According to the report of Paul A. Merolla et
al., TrueNorth can deliver 46 billion synaptic operations per second (SOPS) per watt for a typical
network and 400 billion SOPS per watt for networks with high spike rates and high number of
active synapses, whereas todays most energy-efficient supercomputer achieves 4.5 billion floating-
point operations per second (FLOPS) per watt [25]. Although the metric units are different, the
computational capability can by some means be indicated by the number of operations per second.

2.2.3 Synapse communications

This project is conducting the research on communication mechanisms and architecture of neur-
omorphic computing. In this section, some existent and conventional protocols and architectures
are introduced as the basis of this research.

Address event representation protocol

Address-event representation (AER) is a communication protocol originally proposed as a method
to communicate sparse neural events between neuromorphic chips. Massive interconnections
among individual neurons or neuron clusters are allocated to the reduced number of channels
by time division multiplexing. According to the protocol, each spike is represented by its location
and spiking time.

Figure 2.4: A example of AER protocol [2].

Exploration of Dynamic Communication Networks for Neuromorohic Computing 9

Fig. 2. An example showing AER protocol (adapted from [16]).

Following are metric for global synapse interconnect.

• Conventional metric for the global synapse interconnect

– Latency: The delay between transmitting a spike packet (AER) by the encoder and

receiving the packet by the decoder.

– Energy: The energy consumed by spike communication on the global synapse inter-

connect.

• Introduced metric for SNN performance on hardware

– Spike disorder count: This is a measure of information loss in a SNN and is calculated

based on the difference in spike order between sender and receiver neurons. An example

is provided to explain this. Let us assume that neuron A and B need to communicate

spikes to neuron C with spikes from A to be received before the spike from neuron

B. Also let A, B and C are all mapped to different crossbars. If it happens that the

crossbar with B is arbitrated to occupy the interconnect prior to crossbar with A, spikes

from B will be received at C before the spike from A causing a disorder of spikes and

potential information loss.

– Inter-spike distortion: This is a measure for information distortion in temporally coded

SNN and is measured by the difference between the sender neuron’s inter-spike interval

and receiver neuron’s inter-spike intervals. Inter-spike distortion is attributed to spike

congestion on the global synapse interconnect, causing some spike packets to be delayed
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than others.

Based on the above discussions, the problem we aim to solve in this paper is as follows.

Partition a given SNN into local and global synapses, where local synapses are mapped on

the crossbar and global synapses on the global synapse interconnect. The objective of this

optimization problem is to reduce spike communication (congestion) on the interconnect, which

minimizes interconnect energy consumption, spike latency, spike disorder count and inter-spike

distortion.

III. PSO-BASED MAPPING OF TRAINED SNN ON NEUROMORPHIC HARDWARE

In this work we propose to use evolutionary techniques in order to solve the optimization

problem of reducing spike communication on the interconnect, saving energy and improving

SNN performance. We use particle swarm optimization (PSO) [13], an evolutionary computing

technique inspired by social behaviors such as bird flocking and fish schooling. Evolutionary

computing techniques are efficient in avoiding to stuck at local optima. Additionally, PSO is

computationally less expensive with faster convergence compared to its counterparts such as

genetic algorithm (GA) or simulated annealing (SA).

In general, PSO finds the optimum solution to a fitness function F . Each solution is represented

as a particle in the swarm. Each particle has a velocity with which it moves in the search space

to find the optimum solution. During the movement, a particle updates its position and velocity

according to its own experience (closeness to the optimum) and also experience of its neighbors.

We introduce the following notations for PSO.

D = dimensions of the search space

np = number of particles in the swarm

Θ = {θl ∈ RD}np−1

l=0 = positions of particles in the swarm

V = {vl ∈ RD}np−1

l=0 = velocity of particles in the swarm

Position and velocity updates are performed according to

Θ(t+ 1) = Θ(t) + V(t+ 1) (1)

V(t+ 1) = V(t) + ϕ1 ·
(
Pbest −Θ(t)

)
+ ϕ2 ·

(
Gbest −Θ(t)

)
where t is the iteration number, ϕ1, ϕ2 are constants and Pbest (and Gbest) is the particles own

(and neighbors) experience. Figure 3 shows the iterative solution of PSO, where position and
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Fig. 3. Particle swarm optimization to find an optimum solution.

velocity are updated until a predefined convergence is achieved. In the following we describe

the transformation of our partitioning problem to the PSO domain.

Let us consider a SNN with N neurons organized in a topology, specific to a given application

(more details in Section V). The SNN can be represented as a graph G = (A, S), where A =

{ai | 0 ≤ i ≤ N − 1} is the set of nodes of the graph, representing neurons and S = {si,j} is

the set of synapses representing connections between the neurons. Each synapse si,j is a tuple

〈ai, aj,Ti,j〉, where ai is the pre-synaptic neuron, aj is the post-synaptic neuron and Ti,j =

{tli | 0 ≤ l ≤ Li} are the spike times of the pre-synaptic neuron ai. This graph represents

initial specification of a trained SNN in terms of synaptic weights and spike times. This graph

is generated from CARLsim [14].
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Let C be the number of crossbars in the architecture, with Nc being the maximum number

of neurons per crossbar. The specification C is usually provided by a designer for a given

architecture. In Section V-C we discuss how to obtain this specification for a given set of

applications. Let xi,k = {0, 1}, be the variable indicating if neuron ai is allocated to crossbar ck,

where 0 ≤ k ≤ C. These variables xi,k’s are dimensions of our PSO with D = N · C. In order

to transform real-valued xi,k to binary values (for 0-1 assignments), the velocity and position

updates need to be binarized. This is achieved using the following set of equations

ˆvi,k = sigmoid(vi,k) =
1

1 + e−vi,k
=

0 if vi,k < 0

1 otherwise
(2)

ˆxi,k =

0 if rand() < ˆvi,k

1 otherwise
(3)

Constraints for our PSO are as follows

• every neuron is allocated to one crossbar only i.e.,∑
k

ˆxi,k = 1 ∀i (4)

• assignment must satisfy the dimensions of crossbar i.e.,∑
i

ˆxi,k ≤ Nc ∀k (5)

To determine the number of spikes communicated between crossbars k1 and k2, we define

two sets K1 and K2, where K1 (K2) is the set of neurons allocated to crossbar k1 (k2). Elements

of these sets are determined as follows

K1 = {(i · ˆxi,k1)}
N−1
i=0 and K2 = {(j · ˆxj,k2)}

N−1
j=0 (6)

The total spikes between crossbars k1 and k2 is

spikes(k1, k2) =


0 if k1 = k2∑
i,j

i∈K1
j∈K2

Ti,j otherwise (7)

Total spikes on the global synapse interconnect is

F =
∑
k1,k2

spikes(k1, k2) (8)

The objective of the PSO is to minimize F satisfying constraints Equation 4–5. The assignment

information (i.e., outcome of PSO) is used by the global synapse simulator (discussed in Section

IV) to compute global statistics of spike communication. This statistics are then used to compute
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Fig. 4. Systematic partitioning of SNN on neuromorphic hardware.

(1) the spike disorder count as the fraction of total spikes arriving out of order at the

neurons and (2) the Inter-spike distortion as the maximum difference between the

inter-spike interval of source and destination neurons.

IV. SYSTEMATIC PARTITIONING FRAMEWORK FOR SNNS

Figure 4 shows our systematic framework. This framework takes an application implemented

using SNN as input (shown at the top left). Table I provides a set of applications used to evaluate

our partitioning methodology. It is to be noted that the first three applications are based on rate-

coding, while the last one is with temporal coding. This provides a range of applications with

conventional and evolving topologies with different spike coding schemes. Apart from these

realistic applications, we also considered synthetic applications by varying the depth and width

of SNN layers. All applications are first simulated using CARLsim [14], a GPU-accelerated

library for simulating spiking neural network models with a high degree of biological detail.

The output of CARLsim is a trained SNN with spike times of each neuron in the SNN. This

is converted into a dataflow graph as shown at the top right hand of Figure 4. The SNN graph

(format is explained earlier) is presented to the PSO algorithm to partition into local and global

synapses and map them on a neuromorphic hardware. The neuromorphic hardware architecture
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TABLE I

REALISTIC APPLICATIONS USED FOR EVALUATING OUR APPROACH.

Approach Application Topology

CARLsim native [14] hello world (HW) Feedforward (117, 9)

CARLsim native [14] image smoothing (IS) Feedforward (1024, 1024)

Diehl et al. [17] handwritten digit (HD) Unsupervised, recurrent (250, 250)

Das et al. [18] heartbeat estimation (HE) Unsupervised, LSM (64, 16)

is input to Noxim++, which can incorporate details of a real chip (CxQuad in Figure 4). It

is also possible to replace Noxim++ with actual CxQuad or other neuromorphic chip directly,

making the framework similar to PACMAN. The PSO formulation is discussed in the previous

section.

The Noxim++ simulator is an extended version of the originally proposed Noxim simulator

[15], which is highly configurable network-on-chip simulation based on mesh architecture. The

configurable parameters include buffer size, network size, packet size, packet injection rate,

routing algorithm, selection strategy, among others. For the power consumption simulation, users

can modify the power values in external loaded YAML file to benefit from the flexibility. During

a simulation, Noxim calculates latency, throughput and power consumption automatically based

on the statistics collected during runtime. The original Noxim simulator is extended with the

following features for our framework

• addition of different interconnect models for representative neuromorphic hardware

• incorporation of SNN-related metrics (spike disorder count and inter-spike distortion)

• multicast feature, where spike packets can be communicated to a selected subset of crossbars.

Overall, the framework generates different results, a snapshot of which is presented to the

bottom left corner of Figure 4. The full framework will be released upon acceptance of this

work for the benefit of research community.

V. RESULTS AND DISCUSSIONS

All experiments are conducted on Google Cloud Platform configured with 4 CPUs, 26 GB

RAM and NVIDIA Tesla K80 GPU. The platform runs Ubuntu 14.04. Apart from the realistic

applications of Table I, we considered synthetic applications with different number of neural
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Fig. 5. Exploration with synthetic and realistic SNN-based applications.

network layers and number of neurons per layer. Our systematic framework is compared with

PACMAN [8], adapted for CxQuad architecture. Additionally, we also compare our approach

with the ad-hoc mapping technique NEUTRAMS [5], which uses a Network-on-Chip simulator

to determine energy consumption on a neuromorphic architecture, without solving the local and

global synapse partitioning problem and incorporating SNN performance.

A. Energy Comparison on Global Synapse Interconnect

Figure 5 reports the energy consumption on the global synapse interconnect for three ap-

proaches – NEUTRAMS [5], PACMAN [8] and our proposed PSO-based partitioning. We evaluated

8 synthetic topologies (4 are plotted in Figure 5) and are marked on the X-axis with m × n,

where m is the number of layers and n is the number of neurons per layer. Neurons of the

first layer in each of these topologies receive their input from 10 neurons creating spike trains,
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TABLE II

METRIC EVALUATION FOR REALISTIC APPLICATIONS.

Metric
hello_world image smoothing

PACMAN [8] Proposed PACMAN [8] Proposed

ISI Distortion (cycles) 6.6 2.9 8.1 4.7

Disorder count (%) 0.08 0.05 0.32 0.06

Throughput (AER/ms) 0.2 0.16 0.4 0.3

Latency (cycles) 108 70 99 69

Metric
digit recog. heartbeat estimation

PACMAN [8] Proposed PACMAN [8] Proposed

ISI Distortion (cycles) 6.2 4.3 4.9 3.9

Disorder count (%) 0.02 0.01 0.12 0.02

Throughput (AER/ms) 0.5 0.4 0.3 0.33

Latency (cycles) 150 146 216 171

whose inter-spike interval follows a Poisson process with mean firing rates between 10 Hz and

100 Hz. Additionally, these synthetic SNNs implement fully connected feedforward topologies.

Energy numbers for each topology are normalized with respect to NEUTRAMS. It can be seen

clearly from Figure 5, that our proposed PSO-based partitioning achieves the minimum energy

out of the three techniques. The improvement with respect to NEUTRAMS is between 2.4% and

48.7% (average 20.2%), while that with respect to PACMAN is between 1.5% and 45.4% (average

17.2%). It is to be noted that the energy improvement decreases with increase in the number

of synapses. This is observed from results for topology 4x200 (with dense 122000 synapses)

where energy consumption for the three approaches is comparable (energy gains are less than

2%). For topology 1x200 (with 2000 synapses), improvements using our approach is more than

40%. These results indicate that our approach is able to find the best partition for sparse and

dense synapses, with higher improvements for sparse connections. Energy gains observed for

the four realistic applications are in the range (27.0% – 52.1%, average 38%) with respect to

NEUTRAMS and (21.2% – 48.7%, average 33%) with respect to PACMAN.

B. SNN Metric Evaluation on Global Synapse Interconnect

Table II reports results for other metrics relevant to SNNs for realistic applications. Specifically,

the table reports average inter-spike interval (ISI) distortion in terms of interconnect clock cycles
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in rows 3 & 9; the spike disorder count as a fraction of the total spikes in rows 4 & 10; the

average throughput in terms of number of AER packets per ms on the global synapse interconnect

in rows 5 & 11; and finally the maximum latency of spike communication on the global synapse

interconnect in terms of interconnect clock cycles in rows 6 & 12. Furthermore, the table compare

results from our approach with that from PACMAN [8]. As can be seen clearly from this table, our

approach outperforms PACMAN in terms of ISI distortion achieving an average 37% fewer global

synapse interconnect cycles. It is to be noted that ISI distortion significantly impacts application

performance with temporal information coding such as the heartbeat estimation, where

we observe that 20% reduction of ISI distortion improves estimation accuracy by over 5%.

For the other 3 applications which are based on rate coding, the accuracy improvement due to

ISI distortion is insignificant. In terms of spike disorder count, we observe that our approach

achieves an average 63% lower spike arrival disorder compared to PACMAN. It is to be observed

that the throughput in PACMAN is usually higher than that of our approach. This is because the

number of spikes communicated on the global synapse interconnect is usually higher in PACMAN.

Finally, the spike propagation latency on the global synapse interconnect is also lower using

our approach by 22% (2% – 35%). Improvements are consistent for the 8 evaluated synthetic

topologies. These improvements are due to our PSO-based partitioning, which reduces spike

congestion on the global synapse interconnect, improving communication energy and latency.

C. Neuromorphic Architecture Exploration

To further demonstrate the broad usage of our approach and framework, we take an application

(digit recognition [17]) and explore architectural alternatives. We aim to answer the

following question: given an application, which is preferred between an architecture with fewer

number of large crossbars or an architecture with large number of small crossbars? Figure 6 plots

exploration results in terms of local/global synapse energies and latency for spike communication

on the global synapse interconnect. The number of neurons per crossbar is increased from 90 to

1440. The local synapse energy is the total energy for spike communication inside all crossbars

in the architecture. The global synapse energy is the total energy for spike communication on

the global synapse interconnect. The energy numbers are averaged for processing/interpreting a

hand-written digit image of 28x28 pixels. Latencies in this figure are worst-case values for all

spikes communicated on the global synapse interconnect.
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Fig. 6. Architecture exploration with hand-written digit recognition [17].

Following observations can be made from Figure 6. First, as the size of crossbars increases,

more synapses are mapped by our approach inside a crossbar reducing the number of spikes and

hence energy on the global synapse interconnect. Conversely, the local synapse energy increases

due to more spike communication inside a crossbar. Second, the worst-case spike latency on the

global synapse interconnect decreases with increase in the size of crossbars. This is because, as

more synapses are mapped locally, congestion on the interconnect reduces, reducing the latency.

Clearly, the best choice is an intermediate point in between the extremes. So we clearly need

our framework to explore this complex search space. Once the best solution is identified, the

size (and hence the number) of crossbars for a given application can be determined, together

with partitioning the underlying SNN into local and global synapses. The mapping can then be

enforced on the CxQuad board at design-/configuration time.
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D. PSO-Related Exploration Results

In this section we present results related to our particle swarm optimization. Figure 7 plots the

energy consumption on the global synapse interconnect with different number of swarm particles

(in log scale) for four applications – two real and two synthetic, with the number of iterations

fixed to 100. Energy results are normalized with respect to the minimum energy obtained for

these applications. Furthermore, there are no improvements in the energy consumption with more

than 1000 particles. Hence the x-axis is limited to 1000 particles. As can be seen, with more

number of particles, the algorithm is able to find better results for a fixed number of iteration

of the algorithm. For applications synth_2x200, the minimum is reached for a swarm size

of 105. For other three applications, the point of minimum energy is close to 1000. Trends

are consistent for other applications considered. Based on these results, we used a swarm size
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of 1000 for our experiments. The average wall clock time to find an optimum solution using

these settings (swarm size = 1000, iteration = 100) is average 35 minutes on the Google Cloud

platform. Detailed timing results are omitted for space limitation.

VI. CONCLUSIONS AND OUTLOOK

This paper presents an approach to map local and global synapses of a SNN-based application

on a crossbar-based neuromorphic architecture. Fundamental to our approach is the use of particle

swarm optimization, which partitions SNN-based applications, with local synapses mapped to

crossbars and global synapses mapped on a time-multiplexed interconnect. Furthermore, we

proposed two metrics – inter-spike interval distortion and disorder count, specific to SNN per-

formance for spatial and temporal information coding. Using realistic and synthetic applications

we show that our approach reduces spike communication on the global synapse interconnect,

reducing communication energy by an average 33% and spike propagation latency by an average

22%, with respect to PACMAN [8], which is the standard SNN mapping technique for SpiNNaker.

Run-time SNN mapping will be addressed in future.

REFERENCES

[1] W. Maass, “Networks of spiking neurons: the third generation of neural network models,” Neural networks, vol. 10, no. 9,

pp. 1659–1671, 1997.

[2] F. Akopyan, J. Sawada et al., “TrueNorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic

chip,” IEEE transactions on computer-aided design of integrated circuits and systems, vol. 34, no. 10, pp. 1537–1557,

2015.

[3] G. Indiveri, F. Corradi, and N. Qiao, “Neuromorphic architectures for spiking deep neural networks,” in International

Electron Devices Meeting (IEDM). IEEE, 2015.

[4] M. M. Khan, D. R. Lester et al., “SpiNNaker: mapping neural networks onto a massively-parallel chip multiprocessor,”

in International Joint Conference on Neural Networks (IJCNN). IEEE, 2008.

[5] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen, “NEUTRAMS: Neural network transformation and

co-design under neuromorphic hardware constraints,” in International Symposium on Microarchitecture (MICRO). IEEE,

2016.

[6] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient reconfigurable accelerator for deep

convolutional neural networks,” IEEE journal of solid-state circuits, vol. 52, pp. 127–138, 2017.

[7] R. Serrano-Gotarredona et al., “CAVIAR: A 45k neuron, 5m synapse, 12g connects/s aer hardware sensory–processing–

learning–actuating system for high-speed visual object recognition and tracking,” IEEE transactions on neural networks,

vol. 20, no. 9, pp. 1417–1438, 2009.

[8] F. Galluppi, S. Davies, A. Rast, T. Sharp, L. A. Plana, and S. Furber, “A hierachical configuration system for a massively

parallel neural hardware platform,” in International Conference on Computing Frontiers, 2012.



17

[9] E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S.-C. Liu, and S. Furber, “Scalable energy-efficient, low-latency

implementations of trained spiking deep belief networks on spinnaker,” in International Joint Conference on Neural

Networks (IJCNN). IEEE, 2015.

[10] T. Serrano-Gotarredona, B. Linares-Barranco, F. Galluppi, L. Plana, and S. Furber, “ConvNets experiments on SpiNNaker,”

in Circuits and Systems (ISCAS), 2015 IEEE International Symposium on. IEEE, 2015.
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