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Abstract—Embedded control systems are an important and
often safety-critical class of applications that need to operate
reliably even in the presence of faults. We show that intermittent
fault scenarios caused by wear-out effects due to a higher density
and a smaller geometry of the embedded electronic components
may become a reliability concern for real-time embedded control
applications. To mitigate the effects of such intermittent faults,
we propose a novel fault-tolerant controller design method such
that the resulting controllers ensure closed loop stability (i.e.,
guarantee safety) with only possibly degraded performance under
such fault scenarios.

In order to measure the amortized performance offered by the
software implementations of such fault-tolerant controllers, we
provide a program analysis methodology that statically estimates
the quality of control guaranteed by the C code implementation of
the fault-tolerant control law. This combination of fault-tolerant
controller design followed by performance feedback computed
using a formal analysis is illustrated with a case study from the
automotive domain.

I. INTRODUCTION

As feature sizes of semiconductor technologies shrink, faults

in the hardware of the embedded computing platform become

a rising threat to the correct execution of embedded applica-

tions [1]. For example, it is foreseeable that electronic control

units (ECUs) in cars will use processors in the near future

that are susceptible to intermittent faults. This situation will

be aggravated by the fact that such ECUs might be subjected

to extreme temperatures and electromagnetic radiations and

cannot be equipped with active cooling mechanisms. Feedback

control applications running on such ECUs often implement

safety critical functionality (e.g., brake, autopilot), which

should remain operational under all circumstances. Thus, the

design of the control law and the computation platform must

assure correct functionality even in the presence of faults.

Intermittent faults are caused by wear out effects such

as semiconductor aging degradation due to Negative Bias

Temperature Instability (NBTI), Hot Carrier Injection (HCI)

or Time-dependent Dielectric Breakdown (TDDB) [1]. In

domains where cooling features cannot be provided (e.g.,

automotive), the thermally induced faults are dramatically

rising. They indicate that a certain part of the hardware is about

to fail permanently. Intermittent faults can become extremely

critical for the execution of safety-critical control applications.

They are detected by integrating built-in checker hardware

or by regularly executing checker software on the embedded

platform. In this work, we consider a computation platform

(illustrated in Fig. 1) with dual modular redundancy (DMR).

The input is replicated, the control signal is computed on both

compute units and the outputs are compared by a checker
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Fig. 1. Embedded control systems with DMR.

module. If an intermittent fault affects the computation of the

control signal, the output of the compute units will differ. In

this case, the computed control signal is not forwarded to the

actuators and the old control signal is held.

Contributions: In this work, we design fault-tolerant control

laws [2] that guarantee stability and control performance on

the type of computation platform shown in Fig. 1 in the face

of intermittent faults. Our contributions are as follows.

We evaluate the implication of intermittent faults on plat-

forms like Fig. 1 and estimate the probability that hardware

faults impact the execution of a control algorithm. Given such

quantitative knowledge about the impact of faulty behavior of

the hardware on the execution of control laws, we propose a

fault-tolerant controller design method such that resultant con-

trollers are robust against such quantified intermittent faults.

Such fault-tolerant controllers take into account the derived

intermittent fault model to ensure closed loop stability (i.e.,

safety), albeit with degraded performance compared to non-

faulty scenarios. Our method imposes minimal timing/cost

overhead by suitably designing appropriate control algorithm,

which only requires to adapt the software implementation

without adding further hardware redundancy.

We formally validate the actual performance guarantee

offered by the fault-tolerant controller under faulty execu-

tions. While the control theoretic performance guarantees are

mathematically verifiable for the underlying control law at the

time of design, such guarantees do not really hold true for

the actual implementation [3]. Also, there does not exist any

standard methodology which may formally verify performance

guarantees offered by a fault-tolerant controller over the actual

program implementation of the controller software executing

on an unreliable hardware. Our methodology performs a

source level formal analysis of the fault-tolerant software

controller implementation and estimates the risk involved

in deploying the implementation on an unreliable hardware.

Based on these estimates, we can synthesize alternate fault-

tolerant controllers when the analysis reports unacceptable

levels of performance degradation.

Overall scheme: The proposed scheme is composed of three

components: (i) a parameterized intermittent fault model that
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captures the failure behavior of the underlying hardware with

a high probality – Section III. (ii) a controller design which

is tailored to guarantee stability for the derived fault model

(i) – Section IV. (iii) a source code level formal analysis

of the fault-tolerant control software implementation of (ii)

to guarantee a given performance requirement – Section V.

The guarantees on stability and performance from (ii) and

(iii) hold as long as fault model (i) is satsified by the un-

derlying hardware (which has a sufficiently high probability).

Essentially, it is similar to design risk involved with failure

probability (usually, very low) of system components (e.g.,

sensors, actuators) which is common in real-life.

II. CONTROL LAWS AS SOFTWARE

Let P = (A,B) be a discrete, linear time invariant (LTI)

plant derived from a continuous time dynamics with sampling

period h. The state-space equation of P can be given as

x(t+1) = Ax(t)+Bu(t). Following usual notations, the plant

state at the t-th time instant is given by the vector x(t) and u(t)
defines the control input at the t-th time instant. A stabilizing

feedback controller Ki for P senses the state vector of the

plant x and decides the control action by computing the value

of control variables in u following some state feedback control

law, u(t) = Kix(t). The dynamics of the resulting closed loop

system is obtained as x(t + 1) = (A + BKi)x(t) = Aix(t).
In that way, for a given set {Ki | i ∈ I � {1, 2, · · · , n}} of

independent stabilizing controllers for P , we may obtain a set

{Ai | i ∈ I � {1, 2, · · · , n}} of closed loop dynamic matrices.

We consider a control software implementation as an impera-

tive program T defined over the state variables ∈ x executing

over a computation platform with dual modular redundancy

illustrated in Fig. 1. T is considered as a loop free program

where switching conditions among Ki-s are expressed using

if-then-else constructs. The program computes updates

of the control action u using a set {Ki | i ∈ I} of control

matrices as defined earlier. We now formalize the intermittent

fault model affecting the control law computation.

III. MODELING FAULTS AND CONTROL ERRORS

Studies on wear out failures [1] reveal that the duration

w between activations of intermittent faults can be modeled

with an Exponential distribution given by CDFEXP
w (w, β) =

1 − e
w
β where β is the Mean Time Between Activations

(MTBA). However, not every activation of a fault corrupts the

computation being implemented by the software [4]. In the

scope of this paper, a fault causes a control error, whenever

it corrupts the output of the control software. In this case, the

voter in the DMR platform as depicted in Fig. 1 will block the

command to be written to the actuator. Given an intermittent

fault model, we can calculate the probability of computation

error Perror in any control loop iteration (length is the

sampling period h) as Perror = CDFEXP,w(h, β)(1 − Pmc)
where Pmc is the probability that the fault gets masked. The

masking probability Pmc for a computation platform can be

derived through extensive fault injection campaigns carried out

on actual hardware or representative RTL simulation setups.

However, the details of such fault injection campaigns are out

of the scope of the current work.

There are two corner cases for the MTBA β of intermittent

fault scenarios [4]. For very large values of the MTBA β,

the intermittent faults are rare, i.e., similar to transient faults.

Thus, the time between faults affecting the control loop is very

long. Because of the inherent ability of feedback loops to reject

disturbances, such intermittent faults will not cause instability.

In contrast, for very low values of β, i.e., with intermittent

faults happening very frequently similar to permanent errors,

the faulty compute unit can be quickly detected by any error

detection module before endangering stability and is switched

off. Thus, the redundancy is removed, and the remainder

correct compute unit is used to move the system to a safe

state as soon as possible for repair. In the scope of this work

we assume that β ranges between [1, 100] ms. Above 100 ms,

the error can be treated as transient, below 1 ms the error is

detected and handled similar to a permanent error. In this light,

we modify our fault probability Perror computation as

Perror =
1

99
(1− Pmc)

∫ 100

1

CDFEXP,w(h, β)dβ. (1)

It should be noted that the computation of the control action

can take (actually does take) much less time than the sampling

period h. But, intermittent faults can affect the stored value

of the control action in memory registers in a similar manner

as it affects the actual computation. Hence, we calculate the

probability of intermittent faults causing erroneous control law

computations over the total sampling period h.

We now adapt this intermittent fault model in closed control

loop iterations. One or more continuous erroneous closed loop

executions are referred to as an error period. Let m denote the

number of such consecutive control errors, i.e., the length of

an error period. We refer to the number of error-free sampling

periods following an error period as an error recovery period.

Let n be the minimum number of error-free executions after

any error period, i.e. the length of error recovery period ( >
sampling period by definition).

Based on the probability of error in each iteration as

computed in (1), it is possible to select a maximum value

M for the control design such that only error periods shorter

or equal to m ≤ M are regularly encountered in any error

scenario. For this, M must be selected such that error periods

with m > M appear only with very low probability. During

run time, the exact length of a specific error period is known

because it can be monitored. In contrast, the length of the

recovery period is unknown because the occurrence of the next

control error happens randomly in the future. For n, we must

assure stability in the case of recovery period with minimal

length n ≥ N . Hence, the intermittent fault model can be

summarized as follows:

• The maximum length of an error period is M . i.e. there

can be maximum M consecutive control errors.

• The minimum length of error recovery period is N . i.e.

any error period is followed by a minimum N error-free

control loop executions.

Our proposed fault-tolerant controller design methodology
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uses these as design parameters.

IV. FAULT-TOLERANT CONTROLLER DESIGN

Having formalized our fault model, we now present the

design of a fault-tolerant controller under the assumption that,

the number consecutive erroneous control loops will be less

than M and any such error period will be followed by a

minimum of N error-free control loop executions with the

following design objectives:

O1: The closed-loop system meets the stability and perfor-
mance requirements in the non-faulty scenarios.

O2: The closed-loop system should be stable under all cir-

cumstances (even in faulty scenarios).

O3: In the faulty scenarios, the performance can potentially

degrade without violating some minimum performance

requirement.

A. Control Application at Error Periods

x(k) x(k + 1) x(k + 2) x(k + 3) x(k + 6)x(k + 5)x(k + 4)
x(k) x(k) x(k) x(k) x(k + 4) x(k + 5)

Gain
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States
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(M)
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KM

(N−1)

Error Recovery PeriodError Period

Fig. 2. Fault Scenario with M=3 and N=3.

At the occurrence of errors, the control system does not

forward the computed control law to the actuators. Therefore,

the old control input based on the older feedback signal is

applied to the plant. Thus, in an erroneous execution, the

control law becomes
u(k) = Kx(k − 1). (2)

For subsequent occurrence of erroneous executions in a

single error period, the control law (2) gets further delayed,
u(k) = Kx(k − i), (3)

where 1 < i ≤ M . Fig. 2 shows an example with three

consecutive erroneous executions, i.e., i = 3. Note that for

a given erroneous execution sequence (as shown in Fig. 2),

the control law (3) can also be described as,
u(k + i) = Kx(k). (4)

With a single erroneous execution and control law (2), the

closed-loop system becomes,
x(k + 2) = Ax(k + 1) +BKx(k). (5)

Hence, we have a closed-loop system,
x(k + 2) = [A2 + (AB +B)K]x(k). (6)

A generalized form of system closed-loop dynamics with an

error period of i consecutive errors is given by,
x(k + i+ 1) = [Ai+1 + (AiB +Ai−1B · · ·+B)K]x(k), (7)

where 1 < i ≤ M . Thus, we have (M + 1) (sub)systems:

one system for error-free execution and M systems for various

categories of error periods. All these switching subsystems are

modeled by (7) with 0 < i ≤M . Depending on the occurrence

of errors these (M + 1) systems switch among themselves

with time. Such arbitrary switching can potentially result in

instability [5]. Essentially, the major challenge in fault-tolerant

design is to make sure that such switching does not lead to an

unstable system, i.e., to a safety failure.

One of the strongest possible ways to ensure stability of

a switched systems is to design the switching systems such

that a common quadratic Lyapunov function (CQLF) exists

among all the (M +1) systems [6]. In this work, we propose

a novel design method for the feedback gains that ensure the

existence of a CQLF among the switching systems resulting

from various error periods.

B. Background: CQLF

Consider the discrete-time switching LTI (sub)systems,
x(k + 1) = Aix(k) (8)

where i ∈ {1, 2, 3...} and the Ai are stable. That is, x(k) → 0
as k → ∞. Discrete-time LTI systems (8) are stable iff

all eigenvalues of matrix Ai lie inside the unit circle (or

magnitude less than unity).

Theorem IV.1. (Discrete-time Lyapunov equation [7]) Let
Ai ∈ R

n×n. If there exist P = PT > 0, Q = QT > 0
satisfying AT

i PAi − P = −Q, then Ai is stable.

Theorem IV.2. ( [5], [6]) Consider Ai to be discrete-time LTI
systems of the form (8). V (x) = xTPx is the CQLF of the
systems Ai if there exist P = PT > 0, Q = QT > 0 and
P is the simultaneous solution of the discrete-time Lyapunov
equation, AT

i PAi − P = −Q < 0. The existence of a CQLF
is a necessary and sufficient condition for the stability of the
system with switching subsystems.

In the fault model described in Section III, the error period

with i (i ≤M) consecutive faulty executions will be followed

by a minimum of N error-free executions (see Fig. 2). We

exploit this fact to design several error recovery gains for

N post-error control inputs (or executions) such that the

overall closed-loop system recovers and ensures stability. The

challenge is to ensure stability in presence of switching due to

the error periods. The identification of switching subsystems is

an important aspect in the design and analysis of such systems.

The occurrence of these errors can be modeled by considering

arbitrary switching between two subsystems (see Fig. 2): (i)

Si consisting of i erroneous executions and (N − 1) error-

free executions in the error recovery period. (ii) Snf with one

error-free execution at the end of error recovery period. As

long as switching between Si and Snf is stabilized, we can

guarantee safe operation in the presence of such error periods.

In an error-free execution we use feedback gain Klqr

designed using LQR [8] method. As indicated in Fig. 2, the

system continues to use the LQR gain Klqr in the error period.

From (7), we obtain,
x(k + i+ 1) = A

(i)
F · x(k). (9)

where A(i)
F = [Ai+1 + (AiB +Ai−1B · · ·+B)Klqr].

Next, in the error recovery period, we first consider the

following control law with the old feedback signal x(k),
u(k + i+ 1) = K(i)

r · x(k). (10)

With control law (10), we have,
x(k + i+ 2) = Ax(k + i+ 1) +Bu(k + i+ 1),

= AA
(i)
F x(k) +BK

(i)
r x(k)

= [AA
(i)
F +BK(i)

r ]x(k).

(11)

Similarly, in the subsequent error-free executions in the error

recovery period, we have,
x(k + i+ 3) = [A2A

(i)
F + (AB +B)K

(i)
r ]x(k),

x(k + i+ 4) = [A3A
(i)
F + (A2B +AB +B)K

(i)
r ]x(k), · · ·

x(k + i+N) = [AN−1AF + (AN−2B · · ·AB +B)K
(i)
r ]x(k)

(12)
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Therefore, we have,
Si : [AN +BNK

(i)
r ] and Snf : A+BKlqr = Acl (13)

where AN = AN−1A
(i)
F and BN = AN−2B · · ·AB +B

The following theorem states the design of feedback gain K
(i)
r

such that Si and Snf have a CQLF.

Theorem IV.3. (Design of K
(i)
r ) Consider the subsystems Si

and Snf in (13). If there exist Y = Y T > 0 and Z such that
the following LMIs hold,[

Y Y ATN + ZTBTN
ANY +BNZ Y

]
> 0,

A−1
cl Y − Y ATcl > 0.

(14)

then Si and Snf have a CQLF with the feedback gain K(i)
r =

ZY −1.

Proof. By pre- and post-multiplying (14) by

[
Y −1 0
0 Y −1

]
,

we obtain[
Y −1 ATNY

−1 + Y −1ZTBTNY
−1

Y −1(AN +BNZY
−1) Y −1

]
> 0.

Further, substituting P = Y −1,K
(i)
r = ZY −1, we obtain,[

P (AN +BNK
(i)
r )TP

P (AN +BNK
(i)
r ) P

]
> 0. (15)

Equation (15) gives
P − (AN +BNK

(i)
r )TP (AN +BNK

(i)
r ) > 0. (16)

We replace Y in equation (14) and obtain,
A−1
cl P

−1 − P−1ATcl > 0 → A−1
cl − P−1ATclP > 0

→ PA−1
cl −ATclP > 0 → P −ATclPAcl > 0

(17)

From (17) and (16), it is clear that Si and Snf have a CQLF

and this completes the proof.

The above theorem shows the design of controller K
(i)
r with

constant control input,
u(k + i+ n) = K(i)

r · x(k) (18)

where 1 ≤ n ≤ (N − 1). That is, no updated feedback x(k+
i+n) is utilized in the error recovery period in the control law.

In the following, we present a gain transformation to utilize

the latest feedbacks. Using Equation (9), we have,
u(k + i+ 1) = K(i)

r · x(k) = K(i)
r (A

(i)
F )−1x(k + i+ 1) (19)

Equation (19) gives us the transformed gain,

K
(i)
1 = Ki

r(A
(i)
F )−1.

Similarly, using (11) and (12), we obtain the transformed gains

in the other error-free executions in the error recovery period,
K

(i)
2 = K(i)

r [AA
(i)
F +BK(i)

r ]−1,

K
(i)
3 = K(i)

r [A2A
(i)
F + (AB +B)K(i)

r ]−1, · · ·
K

(i)
N−1 = K(i)

r [AN−2A
(i)
F + (AN−3B · · ·AB +B)K(i)

r ]−1.

(20)

In summary, in an error period with i consecutive erroneous

executions, we propose to use Klqr in the erroneous executions

and controllers K
(i)
j with 1 ≤ j ≤ N − 1 are used in the first

(N − 1) error-free executions in the error recovery period.

With M categories of error periods, we further need to

consider arbitrary switching between systems: (i) Si in (13)

for 1 < i ≤ M and, (ii) Snf in (13). With the above

design of fault-tolerant controllers for each category of error

period, the switching between Si and Snf are taken care

of. Further, it should be noted that the choice of subsystems

(see Fig. 2) ensures that there is no switching between Sis –

switching only happens between Si and Snf . Since the above

controller guarantees switching stability between Si and Snf ,

the individual controller for each i and 1 < i ≤M guarantees

stability of the overall system.

While we guarantee stability of the system under error sce-

narios by the design of the proposed fault-tolerant controller,

the design does not ascertain the quality of control QoC of the

fault-tolerant controller with respect to a typical performance

requirement such as settling time, e.g., x1 ≤ 4 within 2sec.
A testing based approach for simulating the closed loop for

all possible fault scenarios and all possible initial states is

also infeasible. To this end, we provide a toolflow based on

‘backward reachability analysis’ [9] and ‘volume computation’

of convex polyhedra [10] which gives a safe probabilistic

estimate of QoC for the actual software implementation.

We consider the performance criteria for a discrete time

closed loop system to be given in the form of a linear relation

defined over some set {x1, · · · , xn} of state variables with

a timing threshold provided in terms of number of closed

loop iterations. More specifically, we restrict our attention to

performance constraints of the form ∧
i
xi(l) < ci for i ∈ [1, n]

where ci is a constant. Though limited in expressiveness, these

template of constraints is capable of capturing a wide class of

real world control performance constraints.

For specifications with real time thresholds, the correspond-

ing number of closed loop iterations are extracted using the

sampling rate. We consider an input profile V as some compact

set V ⊆ R
n such that for any v ∈ V , v[i] is a possible value

for x[i](0), i.e. x[i] at t = 0, 1 ≤ i ≤ n. An input profile is

essentially a collection of possible initial states.

The quality of control Q(T ) (QoC) of a control software
implementation T is considered as the probability with which
the system satisfies a given control performance requirement
for a given intermittent fault model I and an input profile V .

V. FORMAL ESTIMATION OF QOC

We now present a formal approach towards estimating

the QoC of software implementations of control laws in the

lines of [11]. We first generate all possible L length error
scenarios from the intermittent fault profile (L,M,N). Here

M and N are the error and error recovery periods respectively

and the performance guarantee is defined over L control

loop iterations. To this end we generate all L length binary

encodings where 0 denotes fault free control law computation

and 1 denotes that an intermittent fault has occurred thus

resulting in erroneous control law computation. The strings

are generated with the following restrictions.

1) Every substring comprising only 1’s will be of maximum

M length, the maximum error period.

2) Every substring comprising only 1’s will be followed by

at least N 0’s which is the minimum length of error

recovery period.

Let E be the set of all possible intermittent fault scenarios of L
length encoded as binary strings and generated using the rules

as defined above. We use the function GENENC to generate

the set E of all possible error encodings for the intermittent
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fault profile I = (L,M,N). Using Perror computed in (1),

the probability Pre of a fault scenario e ∈ E is computed as

Pre =

L∏
i=1

{e[i] ∗ Perror + (1− e[i]) ∗ (1− Perror)}

For each intermittent fault scenario e ∈ E, we generate an

error annotated program Se (see Algorithm 1) that captures L
consecutive closed control loop iterations which are effected

by the specific fault scenario e via the following steps.

Algorithm 1 Error Annotated Program Se

Require: Error Scenario e,Plant Description T , Control Law P ,
Intermittent Fault Profile I

1: m := 0;n := 0; � Initialization
2: for each itr ∈ [1, L] do � Compute Control Law
3: if (e[itr] = 0) then � No error
4: if (m �= 0) then
5: n++;

6: switch (m) do
7: case m <=M
8: switch (n) do
9: case n < N

10: T :u(itr) := K
(m)
n X(itr − 1);

11: default
12: T :u(itr) := KlqrX(itr − 1);
13: m := 0;n := 0;

14: default
15: T :u(itr) := KlqrX(itr − 1);

16: else � Error
17: T :u(itr) := u(itr − 1);
18: m++;

19: P : X(itr) := AX(itr − 1) +Bu(itr); � Update Plant

Step 1 The variables m and n are used to represent the last

encountered error period length and the number of recovery

gains applied respectively. Both are initialized to 0 for every

encoding e (Line 2).

Step 2 For any closed loop iteration whose index is denoted

by itr, if e[itr] == 1 then we know that an intermittent fault

has occurred and we use the previously computed control law

for the last iteration (Line 18). We also increase m to keep

track of the length of the error period encountered (line 19).

Step 3 If e[itr] == 0 then we know no intermittent fault has

occurred in the closed loop iteration. At this point, if the value

of m is non-zero, we need to start the error recovery period

and we increase n by 1 (Lines 4-6).

Step 4 Now depending on the length of the last error period m
encountered, the recovery gains are chosen. This is denoted by

a switch statement over m and for the sake of brevity, we abuse

the case notation and denote the M possible case statements

over the value of m as ”case m ≤M” (Line 8).

Step 5 We now compute the control law depending on n which

keeps track of the recovery gain to apply. Here also, we use

a switch statement over n, combine all the cases under ”case
n < N” and select the required gain as K

(m)
n (Lines 9-11).

Step 6 After applying (N − 1) recovery actions, the value of

n becomes N and we apply the original gain Klqr and reset

m and n to 0 to mark the end of error recovery period (Lines

12-14). We now present the formal approach towards QoC

estimation in Algorithm 2.

Algorithm 2 QoC Estimation

Require: Error Scenario e,Plant Description T , Control Law P ,
Intermittent Fault Profile I, Input Profile V , Performance Re-
quirement R

1: E ← GENENC(I); � Generate All Error Scenarios
2: MCA(S,L,Mf ); � Generate Probability of All Error Scenarios
3: Q := 0; � Initialization
4: for each encoding e ∈ E do
5: Compute Se; � Error Annotated Program
6: A← assert(R); � Performance Assertion
7: wp←WP (Se, A); � Generating Weakest Precondition
8: Q(Se) := (V ol(wp ∧ V)/V ol(V)) ∗ Pr(e); � QoC for Se
9: Q := Q+Q(Se); � Overall QoC

In Algorithm 2 we first generate the set E of all possible

error scenario encodings using the function GENENC (Line 1).

For each error scenario e ∈ E, we compute its corresponding

error annotated program Se using Algorithm 1 (Line 5). The

closed range of values of the input profile V induce a convex

polytope. The polytope V captures all possible initial values

of the plant state vector x(0). Let A denote the assertion guar-

anteeing the performance requirement of the system (Line 6).

We compute the weakest pre-condition (WP) [9] of the error

annotated program Se subject to the performance assertion

A as the post condition given by wp =WP (Se, A) (Line 7).

This induces a convex polytope wp∧V ⊆ V which captures the

segment of initial values for the state variables for which the

assertion A is guaranteed to hold under the intermittent fault

scenario e. Let the volume of a convex polytope be computed

by a unary operation V ol. We calculate the volume of the

polytope wp ∧ V and divide it by the volume of the polytope

induced by the input profile V . This ratio multiplied by the

probability of the error scenario Pre serves as the QoC of the

system under the error scenario e (Line 8). The overall QoC

Q of the system is the sum of the QoC Se of all possible error

scenario e ∈ E (Line 9).

We employ the static source code analyzer Frama-C WP

plug-in [12] in order to generate weakest preconditions. The

discrete domain model counting tool ‘LattE’ [10] implements

V ol operations on the generated convex polytopes considering

uniform distribution of variables within a specified region. The

analysis is restricted to linear control systems as LattE is re-

stricted to linear constraints. We employ Volume Computation
instead of Model Checking tools because we are not analyzing

a safety property like stability but a performance property. The

volume of the state space satisfying the performance assertions

formally relates with the QoC metric.

VI. CASE STUDY

We now illustrate the design of our proposed fault-tolerant

controller using an automotive cruise control system as a

case study. We use a discrete-time version of the linearized

continuous-time model of this cruise control system [13] with

sampling period h = 10ms, given by

x(t+1) =

[
1.00 0.01 0.00

−0.0003 0.9997 0.01
−0.0604 −0.0531 0.9974

]
x(t)+

[
0.0001
0.0001
0.0247

]
u.
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The system receives the reference or the commanded vehi-

cle’s speed from the driver and regulates the speed following

the driver’s command. Based on the reference speed and

the feedback signals, the cruise control system regulates the

engine’s speed by adjusting the engine throttle angle (i.e.,

fuel rate) to increase or decrease the engine drive force. The

state x1(t) (output state) indicates the vehicle speed and u(t)
(control input) is the engine throttle angle. We consider the

system in braking mode and the objective is to choose u(t)
such that x1(t) = 0, i.e., to stop the vehicle. The input profile

of the system is x1 ∈ [0, 100], x2 = 50, x3 = 50. Moreover,

we must satisfy a performance requirement that the speed

x1(t) ≤ 4 units in 2sec after the brake is pressed.

When the system is running without error, we design an

optimal controller gain Klqr using LQR [8],
u(k) = Klqr · x(k), (21)

which minimizes the cost function,
Clqr = xT (k)Qx(k) + uT (k)Ru(k), (22)

where Q = QT > 0 and R = RT > 0. With (21) and,

Q =

⎡
⎣ 106 0 0

0 1 0
0 0 1

⎤
⎦ , R = 1, (23)

the LQR gain is found to be
Klqr =

[
−872.5367− 131.4940− 10.0972

]
(24)

Now, consider an intermittent fault profile (20,3,2), i.e., a max-

imum of three consecutive erroneous executions can happen

and every error period is followed by a minimum of two error-

free executions over the control period of length 20.
With M = 3, there are three categories of error periods. For

each error period, the following controller gains are designed
according to Theorem IV.3 and (20)

K
(1)
1 =

[
−2092.6 −190.6 −39.0

]
,

K
(2)
1 =

[
−1457.9 −113.8 −30.6

]
,

K
(3)
1 =

[
1822.1 350.6 3.4

]
.

(25)

The error profile (20, 3, 2) covers 76.98% of all the possible

intermittent fault scenarios over length L = 20 for Pmc = 0.7.

The stability of the system for the error profile (20, 3, 2) is

guaranteed by the design of the fault-tolerant controllers. Apart

from the stability, let the required performance guarantee be

that the speed x1(t) ≤ 4 within 2sec. The sampling period is

10ms. Hence the speed x1(t) should reduce from a maximum

of 100 units to less than 4 units within 200 applications of

control action i.e the plant vector x1(t) should reduce by

a fraction of 4/100 = 0.04 within 200 closed loop control

executions. Hence, any attempt to estimate the quality of

control would have to be defined over 200 closed loop control

executions. As we have to generate all possible intermittent

error scenarios over 200 closed loop iterations, we run into

scalability issues as 2200 is not a tangible number to work

with. In order to improve scalability, we derive a stricter
performance guarantee over 20 closed loop control executions.

In every 20 iterations, we desire that the speed x1(t) should

become
200
20

√
0.04 = 10

√
0.04 = 0.724 times the original value

in order to meet the performance requirement x1(t) ≤ 4 within

2sec. Note that the derived requirement is a stricter one in

the sense that satisfaction of the derived requirement over 20
cycles will imply the satisfaction of the original requirement

over 200 cycles but the opposite need not necessarily hold.

In general, a performance requirement over L control loop

iterations specified as ∧
i
xi(L) < ci can be replaced with a

stricter version over l < L iterations as∧
i

xi((j + 1) · l)
xi(j · l)

<
L
l

√
Ci
Xi
, ∀j ∈ [0,

L

l
− 1]

where xi(0) ∈ [0, Xi]. Note that if the performance criteria is

made stricter, the probability computed is exact for this criteria

and a lower bound for the actual performance criteria.

We formally verify the QoC of the fault-tolerant controller

in (25) for the performance criteria x1(t) ≤ 4 within 2sec
under the input profile ([0, 100], 50, 50). Our QoC estimation

framework takes 55 min on a Xeon E5-2687WO with 192 GB

memory to report that the fault-tolerant controller in (25) offers

a QoC of 91.34% for the intermittent fault profile (20, 3, 2).

VII. CONCLUSION

Traditionally, hardware faults are mitigated either by re-

execution or hardware redundancy – both being expensive in

terms of time or cost. Control applications are often robust

against small number of faulty executions. The relevant re-

search questions addressed in this work are: (i) platform aware

characterization of intermittent faults, (ii) a controller design

method which takes into account a given fault characteriza-

tion while introducing performance-awareness in the control

algorithms and (iii) a formal analysis flow that validates the

performance of a software control implementation in presence

of faults. These steps actually form a design validation cycle

which is the key contribution of the present work.
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