
Learning to Skip Ineffectual Recurrent
Computations in LSTMs
Arash Ardakani, Zhengyun Ji, and Warren J. Gross

McGill University, Montreal, Canada

Abstract—Long Short-Term Memory (LSTM) is a special
class of recurrent neural network, which has shown remarkable
successes in processing sequential data. The typical architecture
of an LSTM involves a set of states and gates: the states
retain information over arbitrary time intervals and the gates
regulate the flow of information. Due to the recursive nature
of LSTMs, they are computationally intensive to deploy on
edge devices with limited hardware resources. To reduce the
computational complexity of LSTMs, we first introduce a method
that learns to retain only the important information in the
states by pruning redundant information. We then show that our
method can prune over 90% of information in the states without
incurring any accuracy degradation over a set of temporal
tasks. This observation suggests that a large fraction of the
recurrent computations are ineffectual and can be avoided to
speed up the process during the inference as they involve
noncontributory multiplications/accumulations with zero-valued
states. Finally, we introduce a custom hardware accelerator that
can perform the recurrent computations using both sparse and
dense states. Experimental measurements show that performing
the computations using the sparse states speeds up the process
and improves energy efficiency by up to 5.2× when compared
to implementation results of the accelerator performing the
computations using dense states.

I. INTRODUCTION

Convolutional neural networks (CNNs) have surpassed
human-level accuracy in different complex tasks that require
learning hierarchical representation of spatial data [1]. CNN
is a stack of multiple convolutional layers followed by a few
fully-connected layers [2]. The computational complexity of
CNNs is dominated by the multiply-accumulate operations
of convolutional layers as they perform high dimensional
convolutions while the majority of weights are usually found
in fully-connected layers.

Recurrent neural networks (RNNs) have also shown re-
markable success in processing variable-length sequences.
As a result, they have been adopted in many applications
performing temporal tasks such as language modeling [3],
neural machine translation [4], automatic speech recognition
[5], and image captioning [6]. Despite the high prediction
accuracy of RNNs over short-length sequences, they fail to
learn long-term dependencies due to the exploding gradient
problem [7]. Long Short-Term Memories (LSTM) [8] is a
popular class of RNNs, that was introduced in literature to
mitigate the above issue. Similar to CNNs, LSTMs also suffer
from high computational complexity due to the recursive nature
of LSTMs.

The recurrent transitions in LSTM are performed as
ft
it
ot
gt

 =

σ
σ
σ

tanh

Whht−1 +Wxxt + b, (1)

ct = ft � ct−1 + it � gt, (2)

ht = ot � tanh(ct), (3)

where Wx ∈ Rdx×4dh , Wh ∈ Rdh×4dh and b ∈ R4dh denote
the recurrent weights and bias. The hidden states h ∈ Rdh and
c ∈ Rdh retain the temporal state of the network. The gates
ft, it, ot and gt regulate the update of LSTM parameters. The
logistic sigmoid function and element-wise product are denoted
as σ and �, respectively. Eq. (1) involves the multiplication
between the weight matrices (i.e., Wh and Wx) and the vectors
xt and ht−1 while Eq. (2) and Eq. (3) perform only element-
wise multiplications. Therefore, the recurrent computations
of LSTM are dominated by the vector-matrix multiplications
(i.e., Whht−1 + Wxxt). It is worth mentioning that LSTM
architectures are usually built on high dimensional input (i.e.,
xt) or state (i.e., ht−1), increasing the number of operations
performed in Eq. (1). Moreover, the recurrent computations
of LSTM are executed sequentially, as the input at time t
depends on the output at time t − 1. Therefore, the high
computational complexity of LSTMs makes them difficult to
deploy on portable devices requiring real-time processes at the
edge.

To reduce the computational complexity of CNNs, recent con-
volutional accelerators have exploited pruning [9], binarization
[10], and intrinsic sparsity among activations [11], improving
both processing time and energy efficiency. Exploiting pruning
to speed up the recurrent computations of LSTMs has been also
studied in [12]. However, no practical accelerator for recurrent
computations was introduced in literature since the binarization
algorithms developed for LSTMs are limited to certain temporal
tasks such as word language modelling, and do not generalize
well over different temporal tasks [13]. The convolutional accel-
erator introduced in [11] exploits the intrinsic sparsity among
activations incurred by the rectified linear unit (ReLU) in order
to avoid ineffectual multiplications/accumulations with zero-
valued activations. Despite its remarkable performance, this
technique has not been exploited in architectures accelerating
recurrent computations yet, since LSTMs use sigmoid and tanh
functions as their non-linear functions.

Motivated by the above statements, this paper aims to first
introduce a method that learns only the important information
stored in to the state ht−1 as this state contributes the most
in the recurrent computations (see Eq. (1)). Note that the
input vector xt is usually one-hot encoded except for certain
tasks with high dimensional vocabulary sizes such as word
language modelling. In this case, the embedding layer is used
for these tasks to reduce the input dimension [3]. In either cases,

ar
X

iv
:1

81
1.

10
39

6v
2

 [
cs

.L
G

]
 2

9
N

ov
 2

01
8

dh is usually greater than dx. After introducing the learning
method, we show that a large fraction of information coming
from previous time steps are unimportant and can be dropped.
More precisely, the proposed learning algorithm can prune
over 90% of values in the state vector ht−1 over different
temporal tasks such as character language modeling, word
language modeling and sequential image classification without
incurring any performance degradation. We then introduce a
custom hardware accelerator that can perform the recurrent
computations on both sparse and dense representations of
the state vector ht−1. Finally, we show that performing the
computations on the sparse state vector results in up to 5.2×
speedup and energy improvement over the dense representation
when both running on the proposed accelerator. To the best
of our knowledge, this work is the first attempt to skip the
ineffectual recurrent computations incurred by pruning the
hidden state ht−1.

II. LEARNING INEFFECTUAL RECURRENT COMPUTATIONS

During the past few years, it has been widely observed that
deep neural networks contain numerous redundant operations
that can be removed without incurring any accuracy degradation
[12]. In [12], [9], it was shown that exploiting pruned weights
can speed up the computations of LSTMs and CNNs by
skipping the multiplications/accumulations with zero-valued
weights. In [11], the intrinsic sparsity among the activations
in CNNs was exploited to speed up the convolutional compu-
tations. In fact, CNNs commonly use the ReLU as their non-
linear function, which dynamically clamps all negatively-valued
activations to zero. Unlike CNNs, LSTMs use sigmoid and tanh
units as their non-linear function. As a result, in order to use
the latest technique to speed up the recurrent computations, we
first need a training method to learn ineffectual computations
among the activations (i.e., the state ht−1) in LSTMs.

A. Pruning Method

The total number of operations required to perform Eq. (1)
is equal to 2× (dx× 4dh+dh× 4dh)+4dh when considering
each multiply-accumulate as two operations. In temporal tasks
such as character-level language modeling, where the input
vector xt is one-hot encoded, its size (i.e., dx) is limited to
a few hundreds. In this case, the vector-matrix multiplication
of Wxxt is implemented as a look-up table and its number of
operations is equal to 4dh, similar to the number of operations
required for biases. Eq. (2) and Eq. (3) also require 3dh and
dh operations, respectively. Therefore, the computational core
of LSTMs is dominated by the matrix-vector multiplication of
Whht−1 +Wxxt.

In order to reduce the computational complexity of LSTMs,
we train LSTMs such that they learn to retain only the important
information in their hidden states ht−1. In fact, we train LSTMs
with a sparsity constraint: all values below the threshold T are
pruned away from the network, as shown in Fig. 1. During the
training phase, we prune the state vector ht−1 when performing
the feed-forward computations while its dense representation
is used during the update process of the LSTM parameters.
In fact, the feed-forward computations of LSTMs remains the

Prune

Hidden State Pruned Hidden State

-T T

Weight

Loss

Inference

Feed
Forward

Back
Propagate

Fig. 1. The pruning procedure.

same as the conventional computations except for Eq. (1) which
can be mathematically formulated as

ft
it
ot
gt

 =

σ
σ
σ

tanh

Whh
p
t−1 +Wxxt + b, (4)

where hpt−1 denotes the sparse state vector and is obtained by

hpt−1 =

{
0 if |ht−1| < T

ht−1 if |ht−1| ≥ T
. (5)

Maintaining the dense representation of the state vector
during the update process allows the state values initially lied
within the threshold to be updated. This technique was first
introduced in [14] to binarize the weights, while we use it to
prune the state vector in our work. During the update process,
we need to compute the gradient on the hidden state h0. Due
to the discontinuity of the rectangular function used to obtain
hpt−1 at the threshold value, we approximate the derivatives on
the hidden state h0 by computing

∂L

∂h0
≈ ∂L

∂hp0
. (6)

B. Experimental Results

In this section, we evaluate the performance of the proposed
training algorithm that prunes away the noncontributory in-
formation of the hidden state vector ht−1 to the prediction
accuracy on different temporal tasks: classification of hand-
written digits on sequential MNIST [15] and both character-
level and word-level language modeling tasks on Penn Treebank
corpus [16]. Since the pruning threshold is empirical, we report
the prediction accuracy of the above tasks for different sparsity
degrees while using an 8-bit quantization for all weights and
input/hidden vectors. Of course, we cannot always retain the
prediction accuracy at the same level of the dense model for
any sparsity degree, as pruning too much hurts the prediction
accuracy.

1) Character-Level Language Modeling: The main goal
of character-level language modeling is to predict the next
character. For this task, the performance is measured by the
bits per character (BPC) metric, where a low BPC is desirable.
For this task, we use an LSTM layer with 1000 units (i.e., dh)
followed by a classifier. The model is then trained on the Penn
Treebank dataset with a sequence length of 100. We minimize
the cross entropy loss using stochastic gradient descent on
mini-batches of size 64. The update rule is determined by
ADAM with a learning rate of 0.002.

0 20 40 60 80 100
1.4

1.45

1.5

1.55

1.6

sweet spot

Sparsity Degree (%)

B
its

Pe
r

C
ha

ra
ct

er
(B

PC
)

Penn Treebank

Fig. 2. Prediction accuracy of character-level language modeling on the test
set of the Penn Treebank corpus for different sparsity degrees over a sequence
length of 100.

0 20 40 60 80 100

86

88

90

92

94

sweet spot

Sparsity Degree (%)

Pe
rp

le
xi

ty
Pe

r
W

or
d

(P
PW

) Penn Treebank

Fig. 3. Prediction accuracy of word-level language modeling on the test set
of Penn Treebank for different sparsity degrees over a sequence length of 35.

0 20 40 60 80 100

2

4

6

8

sweet spot

Sparsity Degree (%)

M
is

cl
as

si
fic

at
io

n
E

rr
or

R
at

e
(M

E
R

) Sequential MNIST

Fig. 4. Misclassification error rate of image classification task on the test set
of MNIST.

For the data preparation, we use the same configuration as
[3]: we split this dataset into 5017k, 393k and 442k training,
validation and test characters, respectively. Penn Treebank
corpus has a vocabulary size of 50. For the character-level
language modeling task, the input vector is one-hot encoded.

Fig. 2 reports the prediction accuracy on the test set for
different sparsity degrees in terms of BPC. The experimental
results show that over 90% of information in the hidden states
can be pruned away without incurring any degradation in the
prediction accuracy. We can also see some improvements in the
prediction accuracy in the pruned models. In fact, the pruning
algorithm acts as a form of regularization that prevents the
model from over-fitting. For implementation purposes, we focus
on the model with the sparsity degree of 97% (i.e., the sweet
spot), which results in no accuracy degradation compared to
the dense model.

2) Word-Level Language Modeling: For the word-level task,
we use Penn Treebank corpus with a 10K vocabulary size.
Similar to [3], we split the dataset into 929K training, 73K
validation and 82K test tokens. We use one LSTM layer of
size 300 followed by a classifier layer to predict the next word.
The performance is evaluated on perpelexity per word (PPW).
Similar to character-level tasks, the models with lower PPW are
better. We also use an embedding layer of size 300 to reduce

the dimension of the input vector [3]. Therefore, the input
vector xt contains real values as opposed to the character-level
modeling task in which the input vector is one-hot encoded.

We train the model with the word sequence of 35 while
applying the dropout probability of 0.5 on the non-recurrent
connections similar to [17]. We train the network using the
learning rate of 1 and the learning decay factor of 1.2. We also
clip the norm of the gradients to 5. Fig. 3 shows the predication
accuracy of the pruned models performing the word-level task
on the test set of Penn Treebank. From the experimental results,
we observe that over 90% of information in the hidden state
can be pruned away without affecting the prediction accuracy.

3) Image Classification: We perform an image classification
task on MNIST dataset containing 60000 gray-scale images
(50000 for training and 10000 for testing), falling into 10
classes. For this task, we process the pixels in scanline order:
each image pixel is processed at each time step similar to
[15]. To this end, we use an LSTM layer of size 100 and a
softmax classifier layer. We also adopt ADAM step rule with
the learning rate of 0.001. The misclassification error rate of
the models with pruned states is illustrated in Fig. 4. Similar
to the language modeling tasks, the MNIST classification task
can be performed with the models exploiting over 80% pruned
hidden state without affecting the misclassification error rate.

III. HARDWARE IMPLEMENTATION

So far, we have shown that over 90% of the hidden vector
ht−1 can be pruned away without any accuracy degradation
over a set of temporal tasks. This observation suggests that
over 10× speedup is expected when performing the matrix-
vector multiplication Whht−1. However, exploiting the sparse
hidden vector in specialized hardware to speed up the recurrent
computations is nontrivial and introduces new challenges. The
first challenge is to design a dataflow to efficiently perform the
recurrent computations, as the LSTM network involves two
different types of computations: the matrix-vector multiplication
(i.e., Eq.(1)) and the Hadamard product (i.e., Eq. (2) and
Eq. (3)). Secondly, the bandwidth of the off-chip memory
is limited, making the fully exploitation of the parallelism
difficult. Finally, a customized decoding scheme is required
to denote the indices to the unpruned information. In this
section, we propose a dataflow for recurrent computations and
its architecture, which efficiently exploit the pruned hidden
vector to skip the ineffectual computations under a bandwidth
limited interface with the off-chip memory.

A. Recurrent Computation Dataflow

As discussed in Section II-A, the main computational core
of LSTM involves two vector-matrix multiplications. A typical
approach to implement a vector-matrix multiplications is a
semi-parallel implementation, in which a certain number of
processing elements (PEs) are instantiated in parallel to perform
multiply-accumulate operations. In this approach, all the PEs
share the same input at each clock cycle and the computation is
performed serially. Fig. 5(a) illustrates an example performing
a vector-matrix multiplication on an input vector of size 6
and a weight matrix of size 4×6. In this example, 4 PEs are

h0

h1

h2

0

h5

W0x0 W0x1 W0x2 W0x3

W1x3W1x2W1x1W1x0

W2x3W2x2W2x1W2x0

W4x3

W5x3W5x2

W4x2W4x1

W5x1W5x0

W4x0

W2x0

h2

PE0

PE3

h3 W3x3W3x2W3x1W3x0

Skip
Reg

Reg

Reg

Reg
PE1

PE2

W2x1

W2x2

W2x3

CC #1

CC #2

CC #3

CC #4

CC #5

CC #6

(a)

W0x0 W0x1

W0x2 W0x3

W1x3W1x2
W1x1W1x0

W2x3W2x2
W2x1W2x0

W4x3

W5x3W5x2

W4x2
W4x1

W5x1W5x0

W4x0
W3x3W3x2

W3x1W3x0

0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0

h0
h0
h1

h2

h2

h1

h3

h3
0

h5
h5

0

CC #1
CC #2
CC #3
CC #4
CC #5
CC #6
CC #7
CC #8
CC #9
CC #10
CC #11
CC #12

Skip

(b)

CC #1
CC #2
CC #3
CC #4
CC #5
CC #6
CC #7
CC #8
CC #9
CC #10
CC #11
CC #12

W0x0 W0x1

W0x2 W0x3

W1x3W1x2
W1x1W1x0

W2x3W2x2
W2x1W2x0

W4x3

W5x3W5x2

W4x2
W4x1

W5x1W5x0

W4x0
W3x3W3x2

W3x1W3x0

0 0

W0x1W0x0

W0x3W0x2

W1x1W1x0

W2x1W2x0

W3x1W3x0

W4x1W4x0

W5x0 W5x1

W1x3W1x2

W2x2 W2x3

W3x3W3x2

W4x2 W4x3

W5x3 W5x2 W2x2 PE0

PE3

PE1

PE2

W2x3

W2x0

W2x1h2

h2

Reg

Reg0 Reg1

Reg1 Reg0

Reg1 Reg0

Reg1 Reg0
h0

h0

h1

h2

h2

h1

h3

h3

0

h5

h5

0

h0

h0

0

h2

h2

0

h3

h3

0

h5

h5

0

CC #13

(c)

Cannot
Skip

CC #1
CC #2
CC #3
CC #4
CC #5
CC #6
CC #7
CC #8
CC #9
CC #10
CC #11
CC #12

W0x0 W0x1

W0x2 W0x3

W1x3W1x2
W1x1W1x0

W2x3W2x2
W2x1W2x0

W4x3

W5x3W5x2

W4x2
W4x1

W5x1W5x0

W4x0
W3x3W3x2

W3x1W3x0

0 0

W0x1W0x0

W0x3W0x2

W1x1W1x0

W2x1W2x0

W3x1W3x0

W4x1W4x0

W5x0 W5x1

W1x3W1x2

W2x2 W2x3

W3x3W3x2

W4x2 W4x3

W5x3 W5x2

h0

h0

h1

h2

h2

h1

h3

h3

0

h5

h5

0

h0

h0

0

h2

h2

0

h3

h3

0

h5

h5

0 Skip

CC #13

(d)

Fig. 5. A vector-matrix multiplication: (a) under an unlimited data bandwidth with a batch size of 1, (b) under a limited data bandwidth with a batch size of 1
and (c) under a limited data bandwidth with a batch size of 2. (d) Skipping is allowed only when both batches contain zero-valued inputs at the same position.

required in parallel to perform the computations serially within
6 clock cycles. Clearly, the computation of the zero-valued
elements of the input vector can be skipped to speed up the
process. However, in a larger scale, this approach requires high
memory bandwidth to provide weights for the PEs in parallel.
Let us consider that the memory bandwidth provides only a
single input element and two weight values at each clock cycle
as an example. In this case, 12 clock cycles are required to
perform the computations when using 4 PEs in parallel. In fact,
the latency is doubled for the bandwidth limited scenario while
the utilization factor of PEs are reduced to 50% as shown in
Fig. 5(b).

To increase the throughput and utilization factor of the
bandwidth limited scenario, we use a higher batch size. In
this case, we need to use more memory elements to store the
partial values for each batch. For instance, we use a batch
size of 2 to fill the empty pipeline stages in Fig. 5(b). More
precisely, the first input element of the first batch and the
first two weights for the first two PEs are read. The weights
for the PEs are then stored into the registers to be used for
the first input element of the next batch. Meanwhile, the first
two PEs perform the multiply-accumulate operations between
the weights and the first input element of the first batch. The
partial result is stored into the scratch memory cells. In the
second clock cycle, the first input element of the second batch
along with the weights for the second two PEs are read from
the off-chip memory. Meanwhile, the first element of the first
batch is passed to the second two PEs through the pipeline
stages. Therefore, the computations of the second two PEs
are performed with the first element of the first batch and the
computations of the first two PEs with the first element of the

second batch. After 2 clock cycles for this example, all the
PEs process the multiply-accumulate operations in parallel and
the pipeline stages are full, resulting in a high utilization factor
as shown in Fig. 5(c).

While using a higher batch size results in a higher utilization
factor and throughput, each positional element of all the
batches has to be zero in order to skip the computations of
its corresponding clock cycles. Let us consider the previous
example again. If the second input element of the first batch
is zero while the second input element of the second batch is
non-zero, we cannot skip its corresponding clock cycles since
both batches share the same weights as depicted in Fig. 5(d).
Therefore, we can only skip those computations in which all
the input elements of the all batches are zero (see Fig. 5(d)).

B. Zero-State-Skipping Accelerator

Since this paper targets portable devices at the edge with
limited hardware resources and memory bandwidth, we use the
aforementioned scheme to exploit the sparse hidden vector in
order to accelerator the recurrent computations. Fig. 6 shows
the detailed architecture of the proposed accelerator for LSTM
networks. To this end, we exploit four tiles: each tile contains
48 PEs performing multiply-accumulate operations. In fact,
each tile is responsible to obtain the values of one gate by
computing Eq. (4). Therefore, the first three tiles and the fourth
tile are equipped with sigmoid and tanh functions, respectively.
We also adopt LPDDR4 as the off-chip memory, which easily
provides a bandwidth of 51.2 Gbps [18]. More precisely, this
data bandwidth provides 24 8-bit weights and a single 8-bit
input element for 24 PEs at a nominal frequency of 200 MHz.
As a result, we associate each PE with a 16×12-bit scratch

G
lo

ba
l R

ou
te

r

Tile #1

Tile #2

Tile #3

Tile #4W
ei

gh
t/I

np
ut

 R
eg

is
te

rs

En
co

de
r

Controller

O
ff-

C
hi

p
D

R
AM

PE #1 PE #2 PE #48

sig./tanh sig./tanhsig./tanh

Local Router

Tile

16 12bit
SRAM

PE

Fig. 6. The proposed LSTM accelerator.

1 batch 8 batches 16 batches
0

50

100

150

9
7

8
1

6
6

9
3

6
3

4
1

8
3

5
5

4
3

Sp
ar

si
ty

D
eg

re
e

(%
)

PTB-Char PTB-Word MNIST

Fig. 7. Sparsity degree of the hidden state vector over different batch sizes.

memory to store the partial products for 16 batch sizes. For
the Hadamard products of Eq. (2), the first tile performs the
element-wise product of the first term (i.e., ft�ct−1) by reading
the values of ct−1 from the off-chip memory. Meanwhile, the
computations for the second term (it � gt) is performed in
the second tile. Then, the results of the both terms are passed
to the fourth tile to perform the addition and obtain tanh(ct).
It is worth mentioning that all the PEs can take inputs from
either the off-chip memory or the scratch memory of the same
tile or others through the global and local routers (see Fig.
6). Finally, the computations of Eq. (3) are performed in the
third tile to obtain ht. The obtained results are then passed to
an encoder that keeps track of zero-valued elements using a
counter. More precisely, the encoder counts up if the current
input value of all the batches is zero. Afterwards, the obtained
offset is stored along with the hidden state vector into the
off-chip memory. During the recurrent computations of the
next time step, the offset is only used to read the weights that
correspond to the non-zero values. Therefore, no decoder is
required in this scheme. The weight/input registers in Fig. 6
are also used to provide the pipeline stages for the batches.

C. Methodology

We implemented the proposed accelerator in Verilog and
synthesized via Cadence Genus Synthesis Solution using TSMC
65nm GP CMOS technology. We also used Artisan dual-port
memory compiler to implement the scratch memories for PEs.

1 batch 8 batches 16 batches
0

100

200

300

400

9
.6

7
6
.4

7
6
.4

3
1
4
.7 3
9
5
.5

2
2
3

9
.6

7
6
.2

7
6
.2

1
7
.9

1
1
0
.8

9
5
.6

9
.6

7
4
.3

7
4
.3

5
0
.5

1
5
4
.3

1
2
4
.9

Pe
rf

or
m

an
ce

(G
O

PS
)

PTB-Char(Dense) PTB-Char(Sparse) PTB-Word(Dense)
PTB-Word(Sparse) MNIST(Dense) MNIST(Sparse)

Fig. 8. Performance of the proposed accelerator over dense and sparse models.

1 batch 8 batches 16 batches
0

2,000

4,000

1
1
5
.7 9
2
0
.5

9
2
0
.5

3
,7
9
1
.6

4
,7
6
5
.1

2
,6
8
6
.7

1
1
5
.7 9
1
8
.1

9
1
8
.1

2
1
5
.7 1
,3
3
5

1
,1
5
1
.8

1
1
5
.7 8
9
5
.2

8
9
5
.2

6
0
8
.4

1
,8
5
9

1
,5
0
4
.8

E
ne

rg
y

E
ffi

ci
en

cy
(G

O
PS

/W
)

PTB-Char(Dense) PTB-Char(Sparse) PTB-Word(Dense)
PTB-Word(Sparse) MNIST(Dense) MNIST(Sparse)

Fig. 9. Energy efficiency of the proposed accelerator over dense and sparse
models.

The proposed accelerator occupies a silicon area of 1.1 mm2

and yields a peak performance of 76.8 Gops and performance
efficiency of 925.3 Gops/W over dense models at a nominal
frequency of 200 MHz. For evaluation purposed, we perform
the recurrent computations on the proposed accelerator at its
nominal frequency over a set of temporal tasks when using both
dense and sparse representations for the hidden state vector
ht−1.

D. Implementation Results

In Section II-B, we showed that the accuracy curves of
different temporal tasks for different sparsity degree when using
a batch size of one. However, due to the limited bandwidth
of the off-chip memory, we use higher batch sizes to increase
the utilization factor of PEs and improve the throughput of
the accelerator (see Section III-A). To exploit the sparsity
among information of the hidden state in order to speed up
the recurrent computations, all the elements of all the batches
must be zero. For instance, all the third elements of all the
batches must be zero to skip their ineffectual computations.
As a result, such a constraint incurs a sparsity degradation.
Fig. 7 shows the sparsity degree of the models with the most
sparse hidden state for different batch sizes while incurring
no accuracy degradation (i.e., the sweet spots). The run-time
energy efficiency and performance of the proposed accelerator
for both dense and sparse models and different batch sizes
are reported in Fig. 8 and Fig. 9, respectively. Performing the
recurrent computations using the sparse hidden state results
in up to 5.2× speedup and energy efficiency compared to the
most energy-efficient dense model.

This work ESE CBSR
0

2

4

4
.8

2
.5

3
.3

Pe
rf

or
m

an
ce

(T
O

PS
)

Fig. 10. Peak performance of the state-of-the-art accelerators.

IV. RELATED WORK

During the past few years, many works have focused on
designing custom accelerators for CNNs. For instance, DianNao
exploits straight-forward parallelism by adopting an array of
multiply-accumulate units to accelerate the computations of
CNNs [19]. However, such an approach requires numerous
memory accesses to the off-chip memory, which dominates
its power consumption. DaDianNao was introduced in [20]
to eliminate the memory accesses to the off-chip memory
by storing the weights on-chip. Cnvlutin [11] relies on
DaDianNao architecture and exploits the intrinsic sparsity
among activations incurred by using the ReLU as the non-linear
function to speedup the convolutional process. Cnvlutin showed
that skipping the ineffectual computations with zero-valued
activations can improve the performance by up to 1.55×. In [9],
a custom accelerator was proposed to perform vector-matrix
multiplications of fully-connected networks using sparse and
compressed weights. While all the aforementioned architectures
have proven to be effective, they accelerate only either CNNs
or fully-connected networks, not LSTMs [12].

In [12], a custom architecture, called ESE, was introduced
to accelerate the computations of LSTMs. ESE exploits the
sparsity among the weight matrices to speed up the recurrent
computations. More precisely, it was shown that performing
the recurrent computations on the model with sparse weights is
4.2× faster than the model with dense weights when running
both models on ESE. In [21], a new sparse matrix format and
its accelerator called CBSR were introduced to improve over
ESE architecture. This work showed that using the new sparse
format improves the performance by 25%∼30% over ESE. The
two above works exploited the sparsity among the weights in
LSTMs to speed up the recurrent computations. However, our
work in this paper takes a completely different approach by
first learning the ineffectual information in the hidden state
and then exploiting the sparsity among them to accelerate the
recurrent computations while using dense weights. Fig. 10
compares the proposed accelerator in this paper with ESE and
CBSR. In fact, our work outperforms both ESE and CBSR in
terms of performance by factors of 1.9× and 1.5× respectively.
It is worth mentioning that we have used the improvement
factor of CBSR over ESE to estimate the performance of
CBSR architecture in Fig. 10. Moreover, ESE yields a peak
energy efficiency of 61.5 GOPS/W on a Xilinx FPGA while our
accelerator results in a peak energy efficiency of 4.8 TOPS/W
on an ASIC platform. Therefore, a direct comparison in terms
of energy efficiency does not construct a fair comparison.

V. CONCLUSION

In this paper, we first introduced a new training scheme that
learns to retain only the important information in the hidden
state ht−1 of LSTMs. We then showed that the proposed
method can prune away over 90% of the hidden state values
without incurring any degradation on the prediction accuracy
over a set of temporal tasks. We also introduced a new
accelerator that performs the recurrent computations on both
dense and sparse representations of the hidden state vector.
Finally, we showed that performing the recurrent computations
on the sparse models results in up to 5.2× speedup and energy
efficiency over their dense counterparts.

REFERENCES

[1] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 5 2015.

[2] Y. LeCun, B. Boser et al., “Backpropagation Applied to Handwritten
Zip Code Recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, Dec.
1989.

[3] T. Mikolov, M. Karafiát et al., “Recurrent neural network based
language model,” in Eleventh Annual Conf. of the International Speech
Communication Association, 2010.

[4] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in NIPS ’14. Cambridge, MA, USA: MIT Press,
2014, pp. 3104–3112.

[5] A. Graves, A. rahman Mohamed, and G. E. Hinton, “Speech Recognition
with Deep Recurrent Neural Networks,” CoRR, vol. abs/1303.5778, 2013.

[6] O. Vinyals, A. Toshev et al., “Show and Tell: A Neural Image Caption
Generator,” 2014, cite arxiv:1411.4555.

[7] R. Pascanu, T. Mikolov, and Y. Bengio, “On the Difficulty of Training
Recurrent Neural Networks,” in Proceedings of the 30th International
Conference on Machine Learning - Volume 28, ser. ICML’13. JMLR.org,
2013, pp. III–1310–III–1318.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] S. Han, X. Liu et al., “EIE: Efficient Inference Engine on Compressed
Deep Neural Network,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), June 2016, pp. 243–254.

[10] A. Ardakani, C. Condo, and W. J. Gross, “A Convolutional Accelerator for
Neural Networks With Binary Weights,” IEEE International Symposium
on Circuits & Systems (ISCAS), 2018.

[11] J. Albericio, P. Judd et al., “Cnvlutin: Ineffectual-neuron-free Deep
Neural Network Computing,” in Proceedings of the 43rd International
Symposium on Computer Architecture, ser. ISCA ’16. IEEE Press, 2016,
pp. 1–13.

[12] S. Han, J. Kang et al., “ESE: Efficient Speech Recognition Engine
with Sparse LSTM on FPGA,” in Proceedings of the 2017 ACM/SIGDA
International Symposium on FPGA, ser. FPGA ’17. New York, NY,
USA: ACM, 2017, pp. 75–84.

[13] C. Xu, J. Yao et al., “Alternating Multi-bit Quantization for Recurrent
Neural Networks,” in ICLR ’18, 2018.

[14] M. Courbariaux, Y. Bengio, and J. David, “BinaryConnect: Training
Deep Neural Networks with binary weights during propagations,” CoRR,
vol. abs/1511.00363, 2015.

[15] Q. V. Le, N. Jaitly, and G. E. Hinton, “A simple way to initialize recurrent
networks of rectified linear units,” CoRR, vol. abs/1504.00941, 2015.

[16] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini, “Building a Large
Annotated Corpus of English: The Penn Treebank,” Comput. Linguist.,
vol. 19, no. 2, pp. 313–330, Jun. 1993.

[17] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent Neural Network
Regularization,” CoRR, vol. abs/1409.2329, 2014.

[18] Micron Technology Inc., “DDR4 SDRAM for Automotive.” [Online].
Available: http://www.micron.com

[19] T. Chen, Z. Du et al., “DianNao: A Small-footprint High-throughput
Accelerator for Ubiquitous Machine-learning,” in Proceedings of the
19th ASPLOS. New York, NY, USA: ACM, 2014, pp. 269–284.

[20] Y. Chen, T. Luo et al., “Dadiannao: A machine-learning supercom-
puter,” in 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture, Dec 2014, pp. 609–622.

[21] J. Park, J. Kung et al., “Maximizing system performance by balancing
computation loads in lstm accelerators,” in 2018 Design, Automation
Test in Europe Conference Exhibition (DATE), March 2018, pp. 7–12.

http://www.micron.com

