
LBICA: A Load Balancer for I/O Cache
Architectures

Saba Ahmadian, Reza Salkhordeh, and Hossein Asadi
Data Storage, Networks, and Processing (DSN) Lab, Department of Computer Engineering

Sharif University of Technology, Tehran, Iran
Email: {ahmadian, salkhordeh}@ce.sharif.edu, and asadi@sharif.edu

Abstract—In recent years, enterprise Solid-State Drives (SSDs)
are used in the caching layer of high-performance servers to
close the growing performance gap between processing units and
storage subsystem. SSD-based I/O caching is typically not effec-
tive in workloads with burst accesses in which the caching layer
itself becomes the performance bottleneck because of the large
number of accesses. Existing I/O cache architectures mainly focus
on maximizing the cache hit ratio while they neglect the average
queue time of accesses. Previous studies suggested bypassing the
cache when burst accesses are identified. These schemes, however,
are not applicable to a general cache configuration and also result
in significant performance degradation on burst accesses.

In this paper, we propose a novel I/O cache load balancing
scheme (LBICA) with adaptive write policy management to
prevent the I/O cache from becoming performance bottleneck
in burst accesses. Our proposal, unlike previous schemes, which
disable the I/O cache or bypass the requests into the disk
subsystem in burst accesses, selectively reduces the number
of waiting accesses in the SSD queue and balances the load
between the I/O cache and the disk subsystem while providing
the maximum performance. The proposed scheme characterizes
the workload based on the type of in-queue requests and assigns
an effective cache write policy. We aim to bypass the accesses
which 1) are served faster by the disk subsystem or 2) cannot
be merged with other accesses in the I/O cache queue. Doing so,
the selected requests are responded by the disk layer, preventing
from overloading the I/O cache. Our evaluations on a physical
system shows that LBICA reduces the load on the I/O cache by
48% and improves the performance of burst workloads by 30%
compared to the latest state-of-the-art load balancing scheme.

I. INTRODUCTION

Increasing number of I/O intensive applications such as
Online Transaction Processing (OLTP), High Performance
Computing (HPC), web, and email applications arises the
demand in data-centers for high-performance storage systems.
The most common approach to improving the performance of
storage systems is to employ Solid-State Drives (SSDs) [1]
in the caching layer of the disk subsystems [2], [3], [4], [5],
[6], which are mainly built upon low-performance and low-
reliable Hard Disk Drives (HDD) [7], [8], [9] or mid-range
SSDs (as shown in Fig. 1). Inclusion of SSDs in the I/O
caching layer of systems improves the response time of the
requests supplied by the cache, and hence, a wide range of
enterprise and academic I/O cache architectures are proposed
with the purpose of maximizing the hit ratio of the caching
layer [10], [11], [12], [2], [13], [3], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28]. In
these I/O caching schemes, mainly based on datapath or push
mode cache architectures, the entire accesses are directed to
the caching layer [29] and as such, the highest number of
requests is responded via the caching layer to achieve the

highest performance in terms of hit ratio. In addition, non-
datapath caching schemes [29] have been proposed, which
mainly focus on improving the endurance of the SSD cache
with considerable performance overhead.

Application

W

 Disk
 Subsystem

R

PE

RWEW PRE

PEEE P

I/O
Cache

I/O Cache Queue

Disk Subsystem
Queue

Fig. 1. I/O cache and disk subsystem queue in a write-back cache (R: Read,
W: Write, P: Promote, and E: Evict).

To obtain the highest performance for both read and
write accesses, storage architects offer assigning Write Back
(WB) policy on the caching layer. Doing so, both read and
write accesses are buffered in the cache, which results in
improving the performance of future accesses to the same
blocks. However, recent studies suggested using cache write
policies other than WB, such as Write Through (WT), Read
Only (RO), and Write Only (WO) to provide higher reliability
or improve the endurance of the SSD cache while usually have
performance overheads on the running workloads [2]. Using
WB policy (as enterprise approaches do [10], [11], [12]), in
contrast, imposes unwanted I/O load on both the caching layer
and the disk subsystem (as shown in Fig. 1). For instance,
each missed read request is supplied at the cost of imposing
one read access on the disk subsystem and one write access
to the caching layer (due to promoting new data block). This
becomes worse when an eviction is required to provide free
cache blocks before promoting the newer ones.

Existing caching architectures, mainly with the purpose of
providing the highest hit ratio, cannot overcome the heavy
I/O load of the burst accesses of applications such as boot
storms, OLTP, TPC-C, mail, web, and database servers [30].
The burst accesses of such heavy workloads remain in the
queue of the caching layer (since they will be served by
cache, i.e., cache hit) while the disk subsystem is idle without
serving any request. Thus, the caching layer becomes the
performance bottleneck of the system [30]. Such poor load
balancing between layers of storage hierarchy is due to 1)
ignoring the queue time of the I/O requests in the caching
layer and 2) not considering the impact of promotion and
eviction of data blocks on the cache I/O load. Recent studies
suggest I/O bypassing schemes, in which they estimate the wait
time of in-queue requests and selectively direct the requests
with the highest estimated latencies to the disk subsystem

ar
X

iv
:1

81
2.

08
72

0v
1

 [
cs

.P
F]

 5
 D

ec
 2

01
8

[30]. Such schemes suffer from three main shortcomings:
1) they only consider a specific caching policy where they
would not be applicable to the other types of I/O caches. In
addition, such cache policy (WT and WO) is not employed
in the caching layer of enterprise storage systems. This is
because it only can improve the performance of read after
write accesses while read and write requests experience the
latency of disk subsystem. 2) The way how they select to-be-
bypassed requests is inefficient, which imposes a considerable
performance overhead on the operation of the queue. 3) Such
schemes may bypass the requests, which were supposed to be
hit in the cache while they may keep the requests in the cache
queue which would not improve the hit ratio resulting in a
significant performance degradation in burst accesses.

In this paper, we propose LBICA, a novel I/O cache
load balancing scheme, which adaptively assigns an effective
write policy to the caching layer. LBICA 1) prevents the
caching layer from becoming the performance bottleneck and
2) improves the performance of the workloads with burst I/O
accesses. Unlike previous load balancing schemes, which are
optimized to a specific cache policy, our proposal is applicable
to different caching architectures. Furthermore, LBICA 1)
detects burst workloads and 2) characterizes the requests of
the workloads, then adaptively assigns effective write policies
to the caching layer. Doing so, we eliminate the performance
overhead of selecting the to-be-bypassed requests and only
bypass the accesses which 1) have not considerable impact
on the overall performance and 2) cannot be merged with the
other accesses in the caching layer. LBICA, using kernel level
tools such as iostat [31] and blktrace [32], detects the burst
intervals and also characterizes the workloads and puts them
in a) random read, b) random write, c) sequential read, d)
sequential write, and e) mixed read and write groups. We
assign efficient write policy to the caching layer based on
the characteristics of the running workloads in different burst
intervals, which results in enhanced performance and highly
utilized storage subsystem. We evaluate LBICA on a physical
system including 4TB SAS 7.2K Seagate HDD in the disk
subsystem level and 1TB 863a Samsung SSD in the I/O cache
level. We use EnhanceIO [33], as an open-source I/O caching
kernel module, to develop the proposed caching architecture.
Our experimental results show that the proposed I/O cache load
balancing scheme reduces the load on the I/O cache by 48%
and improves the performance by 30% compared to the latest
state-of-the-art load balancing scheme. We make the following
contributions:

1) We propose LBICA, a novel I/O cache load balancing
scheme, which effectively improves the performance and
prevents the bottleneck effect of I/O caching layer in burst
accesses.

2) LBICA considers the requests as a) application read, b)
application write, c) cache promote, and d) cache evict, and
characterizes the running workloads based on the in-queue
requests type.

3) Our proposed load balancing scheme effectively assigns
efficient cache write policy in different burst intervals based
on the I/O characteristics of the running workloads.

4) Our proposal effectively bypasses the I/O requests from the
cache while serving such request from the disk subsystem
would not have any negative impact on the overall perfor-
mance resulting in reduced I/O cache queue time.

II. RELATED WORK

Existing SSD-based I/O caching schemes such as Janus
[17], Hystor [13], ReCA [3], KAML [26], DIDACache [27],
and ALACC [28] mainly focus on maximizing performance
(in terms of hit ratio) of the running workloads. Such schemes
aim to direct all I/O requests into the cache, and hence reduce
the response time of the accesses, which are served by the
caching layer. In addition, recent studies consider the impact
of such I/O caching schemes on the lifetime of SSDs by
proposing the I/O caching schemes to reduce the number of
writes on the SSDs with the minimum performance overhead.
Such I/O caching architectures do not provide the mechanisms
to overcome the heavy load of burst I/O accesses due to
OLTP or database applications. Thus, by neglecting the queue
time of the requests in both I/O cache and disk queues, the
caching layer behaves as a performance bottleneck resulting
in a significantly large latency. However, only few studies
consider the impact of queue time of the requests in the
performance provided by the I/O cache. Such studies aim to
enhance the average I/O latency of the workloads by balancing
the load on the I/O cache and disk subsystem. Selective I/O
Bypass (SIB) [30] is the latest state-of-the-art load balancing
schemes, which aims to balance the load of I/O requests
between SSD and disk subsystem preventing the I/O cache
to become performance bottleneck. This scheme is designed
in a way that only works for WT and WO caches in which
only write accesses are buffered in the I/O cache while they
are propagated to the disk subsystem at the same time. Such
cache policy mainly aims to preserve the reliability with the
following shortcomings which prevents the storage designers
from employing such I/O cache scheme: 1) it only improves
the performance of read accesses, which would be supplied by
the cache (i.e., read after write accesses), 2) there is no any
performance improvement on other accesses such as read after
read (due to WO policy in which no read access is buffered
in the cache) and write accesses (due to WT policy in which
the accesses experience the latency of disk subsystem).

SIB selectively bypasses the I/O requests of the burst ac-
cesses into the disk subsystem. To do so, this scheme estimates
the latency of in-queue requests and directs them to the disk
subsystem [30]. The major disadvantages of SIB which we aim
to resolve are: 1) employing the WT policy on the SSD cache.
In such WT cache, since all write requests are supplied by both
cache and disk in the same time, the queue size of both the
cache and disk becomes the same in write-intensive workloads.
In addition, due to higher delay of the disk compared to the
SSD, the queue size of the disk becomes larger than that of
SSD. In such condition, in case of burst accesses of a write-
intensive workload, both SSD and disk become overloaded
where no load balancing is possible. This is because the
bypassed requests from the SSD cache will experience much
larger delay in the disk queue. 2) selecting to-be-bypassed
requests imposes performance and computational overhead on
the system. 3) Such I/O cache policy (WT and WO) is not
applicable on enterprise systems due to negligible performance
improvement which only affects read after write accesses. In
summary, SIB is the most close approach to LBICA with the
above-mentioned shortcomings where our proposal aims to
resolve them by 1) applying adaptive write policies on the I/O
cache and 2) preventing unnecessary promotion (or eviction)
to (or from) the cache which leads to eliminating significant

unwanted I/O load on both SSD cache and disk subsystem.

III. PROPOSED METHOD

In this section, we propose our I/O cache load balancing
scheme (LBICA). As shown in Fig. 2, LBICA consists of three
main procedures in which it 1) detects heavy I/O load, 2)
characterizes the running workload, and 3) balances the I/O
load between storage hierarchy. LBICA gets the SSD and HDD
queue size and based on the in-queue requests characteristics,
it decides an efficient write policy for the cache to provide
both load balance and I/O performance. In Section III-A and
Section III-B, we show how LBICA detects burst I/O accesses
and characterizes the workload, respectively. Then in Section
III-C, we elaborate the proposed load balancing scheme.

A
p
pl
ic
at
io
n RWEW PRE

PEEE P

Cache
Module

HDD

SSD

LBICA

Bottleneck
Detection

Workload
Characterization

Load
Balancing

ssdQSize, hddQSize
in-queue requests
type

Write
Policy

Write
Policy

SSD Queue

HDD Queue

1 2 3

I/
O

Fig. 2. The proposed I/O cache load balancing scheme (R: Read, W: Write,
P: Promote, and E: Evict).

A. Bottleneck Detection

To detect the burst interval (i.e., heavy I/O load) on the
storage, LBICA uses iostat [31] from sysstat package as an
comprehensive kernel level I/O tool which reports the I/O
statistics in the block layer. Periodically, using the given
information by iostat, we calculate the maximum queue time
of both the I/O cache and disk subsystem based on Eq. 1.

cache Qtime = ssdQSize× ssdLatency

disk Qtime = hddQSize× hddLatency
(1)

Where cache Qtime and disk Qtime are the maximum
queue time of the I/O cache and disk subsystem, respectively.
ssdQSize and hddQSize are the current queue size of the
cache and disk subsystem (i.e., the number of pending requests
in the queue), respectively. ssdLatency and hddLatency are
the average read/write latency (i.e., service time) of the em-
ployed SSD and HDD in the caching and disk subsystem level.
We detect the I/O caching layer as performance bottleneck
when the maximum latency of the in-queue requests in I/O
cache (cache Qtime) is greater than that of the disk subsystem
(disk Qtime). In this case, bypassing the in-queue requests
from the cache to the disk subsystem results in improved
response time. In the following we elaborate on how we select
and bypass the group of the requests to the disk subsystem.

B. Workload Characterization

In case of burst I/O intervals where the I/O cache becomes
the performance bottleneck, LBICA aims to characterize the
running workload based on in-queue requests. We use blktrace

[32] as a block level I/O tracing tool to get the list of in-queue
requests. The in-queue requests in the I/O cache can be either
read or write, where each of them may be due to 1) accesses
of application (shown as R: Read and W: Write) or 2) accesses
due to promotion and eviction of data blocks (shown as P and
E). Based on the ratio of requests type (R: Read, W: Write, P:
Promote, or E: Evict), we put the workloads in the following
groups:1

1) Group 1: mainly includes the requests from R and P types
(shown in Fig. 3a). Such accesses represent the behavior of
a workload with random read access pattern in which most
of the accesses are served by the cache (hit) and remaining
are supplied by the disk subsystem (miss) and are promoted
to the caching layer.

2) Group 2: mainly includes R and W types of the requests
(shown in Fig. 3b). Such accesses are due to running a
mixed read write workload in the application level where
the written data blocks in the I/O cache are accessed (read)
by the future requests (i.e., hit).

3) Group 3: mainly includes W and E requests (shown in
Fig. 3c), which shows the accesses of a write intensive
workload. In case of higher ratio of W compared to E,
we detect this workload as random write. Otherwise, the
workload is categorized as sequential write.

4) Group 4: mainly includes the requests from P type (shown
in Fig. 3d). Such accesses represent a sequential read
workload in which all read accesses are missed from cache
and are promoted to the caching layer.

The remaining groups are the set of accesses with 1) majority
of R and E and 2) majority of W and P. Such set of accesses
may not occur during a workload execution on a storage
subsystem with I/O caching architecture, and hence, we do
not consider them in our proposed workload characterization.

App.

RPR P
Cache Queue

R

R
m

P

C
a

ch
e

D
is

k

R: Read
Rm: Read-miss
P: Promote

(a) Random Read

App.

WRR W
Cache Queue

R

C
a

ch
e

D
is

k R: Read
W: Write

W

(b) Mixed Read Write

App.

WEE W
Cache Queue

C
a

ch
e

D
is

k W: Write
E: Evict

W

E

(c) Write Intensive

App.

PPP P
Cache Queue

R
m

P

C
a

ch
e

D
is

k Rm: Read-miss
P: Promote

(d) Seq. Read

Fig. 3. Workload characterization based on in-queue requests type by LBICA.

C. Load Balancing

In case of burst accesses, to balance the I/O load between
the caching layer and disk subsystem, LBICA assigns an
efficient write policy to the cache based on the characteristics
of the running workload (as elaborated in Section III-B). In the

1We assume that the workload has passed its warm-up interval.

following, we first provide our proposed efficient cache write
policy assignment and then show how such scheme 1) prevents
the I/O cache bottleneck effect and 2) provides maximum
performance (in terms of latency) for the running workload.

1) We set the Write Only (WO) policy on the I/O cache
when the running workload is from Group 1 category (i.e.,
random read workload). Such policy assignment provides
the following benefits: 1) the I/O cache serves the read
accesses (i.e., hit) and 2) read misses which are supplied by
the disk subsystem are not promoted to the cache, reducing
heavy load of writes due to promotions on the I/O cache.

2) When the running workload on the disk subsystem is
categorized in Group 2 (i.e., mixed read write workload),
we set Read Only (RO) policy on the cache. Doing so, we
reduce the load on the I/O cache with bypassing the write
accesses to the disk subsystem and only serve read accesses
from the caching layer. The reason behind this policy is the
higher priority of read accesses over writes.

3) The write policy of the cache is set to WB in the workloads
from Group 3 and only the requests from the tail of the
cache queue are bypassed to the disk subsystem. Such
approach 1) provides the highest available performance for
the requests of the cache queue which are below of the
bottleneck threshold and 2) supplies the requests which
are in the bottleneck threshold of the I/O cache by disk
subsystem and provides smaller latency compared to the
queue time of the I/O cache.

4) We set the WB policy on the cache when the running
workload is from Group 4. This is because the caching
layer has no impact on the supplying of sequential read
accesses, which are fully responded by the disk subsystem
(i.e., cache miss). In this case, the I/O cache never becomes
performance bottleneck.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate LBICA and show how our
proposed I/O cache load balancing scheme provides higher
performance compared to the previous load balancing schemes.
We compare LBICA with 1) baseline WB cache without
load balancing and 2) SIB as the latest state-of-the-art load
balancing scheme [30]. To do so, we develop both schemes
and perform the same set of experiments in our physical test
platform.

A. Experimental Setup

We evaluate LBICA on a physical system, where we use
4TB SAS 7.2K Seagate HDD in the disk subsystem and 1TB
SSD Samsung 863a in the I/O caching layer. We implement I/O
cache level by an open-source, EnhanceIO [33], kernel level
module. We run different types of workloads from TPC-C, mail
server, and web server with burst I/O accesses and compare
the I/O load and performance of different architectures.

B. I/O Load Comparison

In this section, we compare the I/O load of the cache (in
terms of queue size) in different architectures (baseline WB
cache, SIB, and LBICA). Fig. 4 and Fig. 5 show the I/O
load on the cache and disk subsystem for different workloads
provided by WB cache, SIB, and LBICA. We monitor and

report the queue time and maximum latency in intervals of 10
minutes.

We make two main observations:

1) WB cache fails in balancing the I/O load in which the
SSD cache becomes the performance bottleneck of the
requests in all intervals. This is because WB policy directs
all requests to the cache to achieve the maximum hit ratio.
In contrast, such scheme imposes significant high I/O load
on the caching layer, resulting in high I/O latency.

2) LBICA, compared to SIB, reduces the load on the I/O cache
by 30%, on average. The reason behind this is that LBICA,
unlike SIB, assigns an efficient write policy to the I/O cache
and hence, bypasses large number of requests to the disk
subsystem. The bypassed requests by LBICA to the disk
subsystem are served with smaller latency than that of by
I/O cache (due to the large queue time of the I/O cache).

C. Workload Characterization and Policy Assignment

In this section, we show how LBICA detects the charac-
teristics of the running burst workload and decides an efficient
write policy in different intervals. The initial write policy
of the cache is set to WB, which in the burst accesses,
LBICA sets different write policies (WO and RO) based on
the characteristics of the running workload. Fig. 6 shows the
I/O load on the cache and disk subsystem by LBICA which a)
the burst intervals, b) detected characteristics of the workload,
and c) assigned write policy by LBICA are provided in this
figure. We make the following observations:

1) For the TPC-C workload, at the interval of 3, LBICA
reports a burst interval (in which the queue time of the I/O
cache is greater than that of by disk subsystem). As shown
in Fig. 6a, LBICA characterizes the running workload as
random read due to the ratio of the accesses (R: 44%, W:
2.2%, P: 51%, and E: 2.8%). Thus, it assigns WO policy
to the I/O cache. In this case, LBICA prevents buffering
read misses on the cache, which contributes to 51% of the
load on the I/O cache (i.e., promotions (P)). Doing so, the
I/O load on the SSD is reduced by more than 50% with a
negligible performance overhead.

2) For the mail server workload, at interval 23, a burst interval
is detected by LBICA. Then the characterization of the
workload is set to mixed read write because of the majority
of R and W operations on the I/O cache queue (R: 13.9%,
W: 70.4%, P: 3.9%, and E: 11.8%). In this case, LBICA
sets the RO policy on the cache, in which the read accesses
are served by cache, while the write accesses are bypassed
to the disk subsystem. Thus, LBICA reduces the I/O load
on the cache by 70%.
Then at interval 128, a burst interval is detected, which is
mainly due to R and P operations. Such workload is from
random read type which LBICA assigns WO policy on the
cache. In this case, read hits and read misses are served
by the cache and disk subsystem, respectively, while we
prevent buffering read misses in the I/O cache, resulting in
about 50% load reduction on the I/O cache.
At the rest of the experiment, at interval of 134, the I/O
cache becomes the performance bottleneck. In this case,
since the majority of operations in the I/O cache queue are
from W and E type (about 90%), the workload is detected

 0

 100

 200

 300

 400

 500

 600

 0 25 50 75 100 125 150 175 200

I/
O
 C
ac
he
 L
oa
d

(M
ax
.
La
te
nc
y
(u
s)
)

Interval

WB SIB LBICA

(a) TPC-C

 0

 100

 200

 300

 400

 500

 600

 0 25 50 75 100 125 150 175 200

I/
O
 C
ac
he
 L
oa
d

(M
ax
.
La
te
nc
y
(u
s)
)

Interval

WB SIB LBICA

(b) Mail Server

 0

 100

 200

 300

 400

 500

 600

 0 25 50 75 100 125 150 175

I/
O
 C
ac
he
 L
oa
d

(M
ax
.
La
te
nc
y
(u
s)
)

Interval

WB SIB LBICA

(c) Web Server
Fig. 4. I/O load (in terms of max. latency) on the I/O cache by WB, SIB, and LBICA.

 0

 100

 200

 300

 400

 500

 600

 0 25 50 75 100 125 150 175 200D
is
k
S
ub
sy
st
em
 L
oa
d

(M
ax
.
La
te
nc
y
(u
s)
)

Interval

WB SIB LBICA

(a) TPC-C

 0

 100

 200

 300

 400

 500

 600

 0 25 50 75 100 125 150 175 200D
is
k
S
ub
sy
st
em
 L
oa
d

(M
ax
.
La
te
nc
y
(u
s)
)

Interval

WB SIB LBICA

(b) Mail Server

 0

 100

 200

 300

 400

 500

 600

 0 25 50 75 100 125 150 175D
is
k
S
ub
sy
st
em
 L
oa
d

(M
ax
.
La
te
nc
y
(u
s)
)

Interval

WB SIB LBICA

(c) Web Server
Fig. 5. I/O load (in terms of max. latency) on disk subsystem by WB, SIB, and LBICA.

as write intensive, and hence, LBICA assigns WB policy
on the cache.

3) For the web server workload, at the first interval, LBICA
detects the I/O cache as performance bottleneck. The ma-
jority of the accesses in the I/O cache queue are from R
and W type (R: 17.9%, W: 63.8%, P: 7.9%, and E: 10.4%),
which the workload is detected as mixed read write. LBICA
sets the RO policy on the cache, and hence, reduces 63%
of the load on the cache.

We conclude that LBICA, in the burst accesses, assigns an
efficient write policy on the cache and reduces the I/O load on
the cache up to 70% (48%, on average).

D. Performance Improvement

In this section, we compare the average performance of
the running workloads by WB cache, SIB, and LBICA. Fig.
7 shows the overall latency of the workloads during the
experiments. We make two main observations:

1) LBICA improves the average latency up to 22% and 11.7%
compared to WB cache and SIB, respectively (14% and 7%,
on average).

2) The highest performance improvement is achieved for TPC-
C workload while LBICA only improves the performance
of mail server by 4%. The reason behind is that LBICA
assigns RO policy in the intervals 23 to 128 and bypasses
70% of requests (write accesses) to the disk subsystem,
resulting in a poor performance improvement.

V. CONCLUSION

In this paper, we proposed LBICA, a novel I/O cache load
balancing scheme, which effectively detects burst I/O accesses
and assigns efficient cache write policy to prevent the I/O
cache from becoming the bottleneck. Using kernel level I/O
tracing tools, LBICA analyzes the I/O load on both cache and
disk subsystem. Doing so, it detects the burst intervals and
characterizes the running workloads based on the type of in-
queue requests. We put the residing requests in the I/O cache

queue into four groups: Write (W), Read (R), Promote (P), and
Evict (E). Then we characterize the running workload based
on the ratio of different request types in the I/O cache queue.
Based on the workload characteristics, we set an efficient
write policy on the I/O cache with the purpose of balancing
load on both cache and disk subsystem and providing the
highest performance (in terms of latency). Our evaluations on a
physical system shows that LBICA reduces the load on the I/O
cache by 48% and improves the performance of burst accesses
by 30% compared to the latest state-of-the-art I/O cache load
balancing scheme.

ACKNOWLEDGMENT
This work has been partially supported by Iran National

Science Foundation (INSF) under grant number 9606071 and
by HPDS Corp.

REFERENCES

[1] M. Tarihi, H. Asadi, A. Haghdoost, M. Arjomand, and H. Sarbazi-
Azad, “A Hybrid Non-Volatile Cache Design for Solid-State Drives
Using Comprehensive I/O Characterization,” IEEE Transactions on
Computers, vol. 65, no. 6, pp. 1678–1691, 2016.

[2] S. Ahmadian, O. Mutlu, and H. Asadi, “ECI-Cache: A High-Endurance
and Cost-Efficient I/O Caching Scheme for Virtualized Platforms,”
Proc. ACM Meas. Anal. Comput. Syst. (POMACS), vol. 2, no. 1, pp.
9:1–9:34, Apr. 2018.

[3] R. Salkhordeh, S. Ebrahimi, and H. Asadi, “ReCA: An Efficient
Reconfigurable Cache Architecture for Storage Systems with Online
Workload Characterization,” IEEE Transactions on Parallel and Dis-
tributed Systems (TPDS), vol. 29, no. 7, pp. 1605–1620, July 2018.

[4] R. Salkhordeh, M. Hadizadeh, and H. Asadi, “An Efficient Hybrid I/O
Caching Architecture Using Heterogeneous SSDs,” IEEE Transactions
on Parallel and Distributed Systems (TPDS), pp. 1–1, 2018.

[5] S. Ahmadian, F. Taheri, M. Lotfi, M. Karimi, and H. Asadi, “Investi-
gating Power Outage Effects on Reliability of Solid-State Drives,” in
to appear in Design, Automation Test in Europe Conference Exhibition
(DATE), March 2018.

[6] R. Salkhordeh, H. Asadi, and S. Ebrahimi, “Operating System Level
Data Tiering Using Online Workload Characterization,” The Journal of
Supercomputing, vol. 71, no. 4, pp. 1534–1562, 2015.

[7] M. Kishani and H. Asadi, “Modeling Impact of Human Errors on
the Data Unavailability and Data Loss of Storage Systems,” IEEE
Transactions on Reliability (TR), vol. 67, no. 3, pp. 1111–1127, 2018.

 0

 100

 200

 300

 400

 500

 0 25 50 75 100 125 150 175 200

M
ax
.
La
te
nc
y
(u
s)

Interval

I/O Cache
Disk Subsystem

WO

(a) TPC-C

 0

 100

 200

 300

 400

 500

 600

 0 25 50 75 100 125 150 175 200

M
ax
.
La
te
nc
y
(u
s)

Interval

I/O Cache
Disk Subsystem

WB

RO

WO
WB

(b) Mail Server

 0

 100

 200

 300

 400

 500

 600

 0 25 50 75 100 125 150 175

M
ax
.
La
te
nc
y
(u
s)

Interval

I/O Cache
Disk Subsystem

RO

(c) Web Server
Fig. 6. Workload characterization and policy assignment by LBICA in burst intervals.

 0

 50

 100

 150

 200

 250

 300

 350

 400

TPCC MAIL WEB

A
vg
.
La
te
nc
y
(u
s)

WB SIB LBICA

Fig. 7. Average latency achieved by WB cache, SIB, and LBICA.

[8] M. Kishani, R. Eftekhari, and H. Asadi, “Evaluating Impact of Human
Errors on the Availability of Data Storage Systems,” in Proceedings
of the Conference on Design, Automation & Test in Europe (DATE).
Lausanne, Switzerland: European Design and Automation Association,
2017, pp. 314–317.

[9] M. Kishani, M. Tahoori, and H. Asadi, “Dependability Analysis of Data
Storage Systems in Presence of Soft Errors,” IEEE Transactions on
Reliability (TR), 2018 (in press).

[10] Dell EMC Corp. (2018) Dell EMC Unity: FAST
Technology Overview. https://www.emc.com/collateral/white-
papers/h15086-emc-unity-fast-technology-overview.pdf. [Online].
Available: https://www.emc.com/collateral/white-papers/
h15086-emc-unity-fast-technology-overview.pdf

[11] HP. (2018) HPE Smart Array SR SmartCache. [Online]. Available:
https://h20195.www2.hpe.com

[12] NetApp. (2017) SSD Cache Feature. https://library.netapp.com.
[Online]. Available: https://library.netapp.com

[13] F. Chen, D. A. Koufaty, and X. Zhang, “Hystor: Making the Best
Use of Solid State Drives in High Performance Storage Systems,” in
Proceedings of the International Conference on Supercomputing, ser.
ICS ’11, 2011, pp. 22–32.

[14] F. Meng, L. Zhou, X. Ma, S. Uttamchandani, and D. Liu, “vCacheShare:
Automated Server Flash Cache Space Management in a Virtualization
Environment,” in Proceedings of USENIX Annual Technical Conference
(USENIX ATC), 2014.

[15] R. Barik, J. Zhao, and V. Sarkar, “S-CAVE: Effective SSD Cahing
to Improve Virtual Machine Storage Performance,” in Proceedings of
Parallel Architectures and Compilation Techniques (PACT), 2013.

[16] R. Koller, A. J. Mashtizadeh, and R. Rangaswami, “Centaur: Host-Side
SSD Caching for Storage Performance Control,” in IEEE International
Conference on Autonomic Computing (ICAC), 2015.

[17] C. Albrecht, A. Merchant, M. Stokely, M. Waliji, F. Labelle, N. Coehlo,
X. Shi, and E. Schrock, “Janus: Optimal Flash Provisioning for Cloud
Storage Workloads,” in Proceedings of USENIX Annual Technical
Conference (USENIX ATC), 2013.

[18] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J. Kimmel,
S. Kleiman, C. Small, and M. Storer, “Mercury: Host-Side Flash
Caching for the Data Center,” in IEEE Symposium on Mass Storage
Systems and Technologies (MSST), 2012.

[19] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron,
“Migrating Server Storage to SSDs: Analysis of Tradeoffs,” in ACM
European Conference on Computer Systems (EuroSys), 2009.

[20] Q. Xia and W. Xiao, “High-Performance and Endurable Cache Manage-
ment for Flash-Based Read Caching,” IEEE Transactions on Parallel
and Distributed Systems (TPDS), vol. 27, no. 12, pp. 3518–3531, Dec
2016.

[21] J. Matthews, S. Trika, D. Hensgen, R. Coulson, and K. Grimsrud,
“Intel&Reg; Turbo Memory: Nonvolatile Disk Caches in the Storage
Hierarchy of Mainstream Computer Systems,” Trans. Storage (TOS),
vol. 4, no. 2, pp. 4:1–4:24, May 2008.

[22] Y. Kim, A. Gupta, B. Urgaonkar, P. Berman, and A. Sivasubramaniam,
“HybridStore: A Cost-Efficient, High-Performance Storage System
Combining SSDs and HDDs,” in IEEE 19th Annual International
Symposium on Modelling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), July 2011, pp. 227–236.

[23] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and G. Wallace,
“Nitro: A Capacity-Optimized SSD Cache for Primary Storage,” in
Proceedings of USENIX Annual Technical Conference (USENIX ATC),
2014.

[24] Y. Klonatos, T. Makatos, M. Marazakis, M. D. Flouris, and A. Bilas,
“Azor: Using Two-Level Block Selection to Improve SSD-Based I/O
Caches,” in IEEE Sixth International Conference on Networking, Ar-
chitecture, and Storage (NAS), July 2011, pp. 309–318.

[25] Q. Xia and W. Xiao, “Flash-Aware High-Performance and Endurable
Cache,” in Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), IEEE 23rd International Sym-
posium on. IEEE, 2015, pp. 47–50.

[26] Y. Jin, H.-W. Tseng, Y. Papakonstantinou, and S. Swanson, “KAML:
A Flexible, High-Performance Key-Value SSD,” in High Performance
Computer Architecture (HPCA), IEEE International Symposium on.
IEEE, 2017, pp. 373–384.

[27] Z. Shen, F. Chen, Y. Jia, and Z. Shao, “DIDACache: A Deep Integration
of Device and Application for Flash Based Key-Value Caching.” in File
and Storage Technologies (FAST), 2017, pp. 391–405.

[28] Z. Cao, H. Wen, F. Wu, and D. H. Du, “ALACC: Accelerating Restore
Performance of Data Deduplication Systems Using Adaptive Look-
Ahead Window Assisted Chunk Caching,” in Proceedings of the 16th
USENIX Conference on File and Storage Technologies. USENIX
Association, 2018, pp. 309–323.

[29] Y. Chai, Z. Du, X. Qin, and D. A. Bader, “WEC: Improving Dura-
bility of SSD Cache Drives by Caching Write-Efficient Data,” IEEE
Transactions on Computers (TC), vol. 64, no. 11, pp. 3304–3316, Nov
2015.

[30] J. Kim, H. Roh, and S. Park, “Selective I/O Bypass and Load Balancing
Method for Write-Through SSD Caching in Big Data Analytics,” IEEE
Transactions on Computers (TC), vol. 67, no. 4, pp. 589–595, April
2018.

[31] IOSTAT. (2018) IOSTAT. https://linux.die.net/man/1/iostat. [Online].
Available: https://linux.die.net/man/1/iostat

[32] Blktrace. (2006) Blktrace: Block Layer IO Tracing Tool.
https://linux.die.net/man/8/blktrace. [Online]. Available: https://linux.
die.net/man/8/blktrace

[33] EnhanceIO. (2012) EnhanceIO. https://github.com/stec-inc/EnhanceIO.
[Online]. Available: https://github.com/stec-inc/EnhanceIO

https://www.emc.com/collateral/white-papers/h15086-emc-unity-fast-technology-overview.pdf
https://www.emc.com/collateral/white-papers/h15086-emc-unity-fast-technology-overview.pdf
https://h20195.www2.hpe.com
https://library.netapp.com
https://linux.die.net/man/1/iostat
https://linux.die.net/man/8/blktrace
https://linux.die.net/man/8/blktrace
https://github.com/stec-inc/EnhanceIO

	I Introduction
	II Related Work
	III Proposed Method
	III-A Bottleneck Detection
	III-B Workload Characterization
	III-C Load Balancing

	IV Experimental Results
	IV-A Experimental Setup
	IV-B I/O Load Comparison
	IV-C Workload Characterization and Policy Assignment
	IV-D Performance Improvement

	V Conclusion
	References

