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Abstract—Neural networks are exerting burgeoning influence
in emerging artificial intelligence applications at the micro-edge,
such as sensing systems and image processing. As many of these
systems are typically self-powered, their circuits are expected to
be resilient and efficient in the presence of continuous power
variations caused by the harvesters. In this paper, we propose a
novel mixed-signal (i.e. analogue/digital) approach of designing
a power-elastic perceptron using the principle of pulse width
modulation (PWM). Fundamental to the design are a number of
parallel inverters that transcode the input-weight pairs based on
the principle of PWM duty cycle. Since PWM-based inverters
are typically agnostic to amplitude and frequency variations,
the perceptron shows a high degree of power elasticity and
robustness under these variations. We show extensive design
analysis in Cadence Analog Design Environment tool using a 3 x
3 perceptron circuit as a case study to demonstrate the resilience
in the presence of parameric variations.

I. INTRODUCTION AND MOTIVATION

Perceptron is the basic building block of deep neural net-
works used in machine learning applications [1] [2] [3]. It
consists of an input vector, a set of weights and a bias to
produce binary classification outcomes, as follows:

f(x) =

{
1, if w.x + b > 0

0, otherwise
(1)

where w is a vector of real-valued weights, w.x is the dot
product

∑m
i=1 wixi with m number of inputs, and b is the

bias. The process of deciding the appropriate weights (w),
often also known as training, serves as the basic principle of
supervised learning. When m becomes large, it approximates
the behaviour of a biological neuron.
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Fig. 1. The structure of perceptron.

Fig. 1 shows the typical structure of a perceptron [4] [5].
The core of it is an adder that adds m weighted inputs. The

result of the addition is compared with a reference during the
training phase. During this time, the weights are updated to
ensure the reference is matched.

For hardware implementation multiplication and addition
are crucial arithmetic circuits in a perceptron [6]. Such arith-
metic operations require significant area and power costs,
which depend on the number of input-weight pairs and the
precision of the multipliers and adders.

Future micro-edge applications will be increasingly au-
tonomous. The key for autonomy is being not only based on
smartness through machine learning capability but also being
able to work from energy-harvesting sources. In other words,
the circuits must be capable of working under a dynamic range
of power variation.

For a class of applications involving machine learning
at the micro-edge, such as sensors with data filtering and
compression, we can envisage power to be extracted from the
environment [7]. Energy-harvesting power sources may not
be always equipped with accurate power regulation circuits,
which are themselves power-hungry. Hence, in this work we
are aiming at developing a perceptron design that is resilient
to power variations, i.e. power-elastic [8].

Existing perceptron designs are predominantly digital; al-
though a number of analogue implementations have been
reported [9] [10]. Nonetheless, these designs are vulnerable
to power supply variations. As such, these are not suitable for
working under extreme power variations. In other words, these
have poor power elasticity properties that refrain them from
providing useful computation under unreliable power supplies.

To address power elasticity, which gives reliable results even
with unstable supply voltage and input frequency we propose
to transfer the arithmetical computation process from the
digital domain to the temporal domain, where the information
is encoded in the input pulse width. This would guarantee
the reliability of the input data, because the pulse width
(input signal duty cycle) is not affected neither by the input
frequency, nor by its amplitude.

The aim of this paper is to design a power and frequency
elastic perceptron, which performs the arithmetic computation
in the PWM-coded format. The main contributions are:

1) a mixed-signal perceptron design using duty cycle based
temporal weight encoding and input switching via a
PWM inverter, and

2) extensive validation experiments in Cadence Analog
Design tool demonstrating its resilience in the presence
of amplitude and frequency variations.
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The rest of the paper is organized as follows. Section
II presents the proposed design approach. Section III vali-
dates the approach using a number of parametric sweeps to
demonstrate power elasticity and resilience. Finally, Section
IV discusses and concludes the paper.

II. PROPOSED APPROACH

The proposed approach is based on the principle that if the
input of an inverter is a periodic signal, such as clock, the
average voltage on its output is inversely proportional to the
duty cycle of the input clock. This is due to the fact that
during the interval of time when the input is Low the output
capacitance is charged with current from the power source via
the PMOS transistor, and during the interval of input being
High the capacitance is discharged via the NMOS transistor.
Since an inverter is a digital component, whose output equals
to logic ′0′ or ′1′, it should be "analogized" (i.e. transcoded)
in order to convert the input duty cycle into the output voltage
that is a corresponding proportion of the supply voltage. This
may be achieved by the following ways:
• increasing the input switching frequency,
• increasing the output capacitance, and
• limiting the output current.
Fig. 2 shows the inverter circuit that meets the requirements.

The output capacitance of the inverter has been increased by
adding a capacitor Cout between the output of the inverter and
ground. The output resistor Rout performs several functions.
Firstly, it limits the current, increasing the capacitor’s charging/
discharging time. Secondly, it reduces the system’s power
consumption (See Section III). And, lastly, it adds linearity to
the output characteristics as the PMOS and NMOS resistance
may be different with different drain voltages. A large resistive
load can neglect this difference, the demonstration of which
will be shown in Section III.

Cout

in out
Rout

Fig. 2. An inverter with the output resistor and capacitor.

A key feature of this circuit is that if we connect the outputs
of several cells, the resulting output voltage will be inversely
proportional to the average value of the inputs duty cycle.
Therefore, using these inverters, we can build an adder with
the PWM-coded inputs, leading to analog output.

To design a perceptron the ability to integrate weighted
adders is another crucial design requirement. The adders must
be capable of programming the input weights, when required.
This is performed by replacing the inverters by AND gates.
One input of this gate is the PWM-coded, and another is a
digital switch for enabling or disabling this cell. Fig. 3 shows
a perceptron architecture with 3×3 weighted adder, built with
such gates.
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Fig. 3. 3x3 weighted adder.

As can be seen, the circuit adds 3 PWM-coded inputs
multiplied by 3-bit weights. Every weight bit is implemented
on a separate cell. The least significant bit goes to the cell with
the smallest transistor size and the largest output resistor (cells
X1). The second bit is computed at the cell with doubled
transistors width and halved output resistance (cells X2). And
the most significant bit is coded with 4 times wider transistors,
and 4 times smaller output resistor (cells X4).

The output voltage of this adder is calculated as follows:

Vout = (Vdd −GND) ·
∑k

i=1 DCi ·Wi

k · (2n − 1)
. (2)

where k is the number of the inputs, n is the number of bits
of the weight, DCi is the duty cycle of the input i, and Wi is
the weight of the input i.

The transcoding of spatial data (in digital form) to temporal
domain (in PWM duty cycle), and the mixed-mode (analogue/
digital) multiplier/adder operation have significant impact on
the circuit complexity, and its resilience in the presence of
amplitude and frequency variations. These will be extensively
validated in the next section.

III. EXPERIMENTAL RESULTS

A prototype circuit (based on Fig. 2 and 3) is designed using
UMC65nm technology and simulated in the Cadence Analog
Design Environment tool.

The ability of an inverter to convert a PWM-coded signal
into analog is demonstrated by the following experiment. The
circuit from Fig. 2 has been simulated with the parameters
listed in Table I. These parameters have been optimized after
extensive sweep experiments. For brevity, these optimization
experiments are not reported here.



TABLE I
SIMULATION PARAMETERS USED IN EXPERIMENTS

Input signal frequency Vdd = 2.5V
Transistors width nwidth = 320nm, pwidth = 865nm
Transistors length nlength = plength = 1.2um
Output capacitor Cout = 1pF

Fig. 4 shows the dependency of the output voltage from the
input signal duty cycle for different sizes of the output load
resistor Rout.
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Fig. 4. Output voltage vs input duty cycle of the inverter cell.

The plot shows that the output voltage is reversely propor-
tional to the input signal duty cycle. However, this proportion-
ality is not linear for the inverter with small load resistor and
without it. This is caused by the non-linearity of the transistors.
Their resistance depends on their drain-to-source voltages, and
can be different with different Vout. In the case of the large
output resistor, it brings the greatest contribution to the overall
resistance, and the output function becomes purely linear.

Fig. 5 demonstrates the resilience of the cell to the input
frequency variation. Parameters of the simulation are the same
an in the previous one (see Table I). The circuit uses fixed
value of the output resistor Rout = 100KOhm. The plot
shows the output voltage for the input frequencies from 1MHz
to 1500MHz, and input duty cycles 25%, 50%, and 75%. As
can be seen, the values of Vout are almost the same for a
wide range of frequencies. This demonstrates a high degree
of frequency resilience for the proposed perceptron design.

To demonstrate the perceptron resilience to the power varia-
tions we simulated the inverter circuit with different values of
the supply voltage and input amplitude. The results are shown
in Fig. 6. The simulations parameters are the same as shown in
Table I. The input signal frequency fin is constant and equals
to 500MHz.

As can be seen, the output voltage grows almost linearly
with increased Vdd. As expected, higher duty cycle shows
lower output voltage trends, or vice versa. In the case of
the unstable supply voltage, the absolute value of the output
voltage does not bear any reliable information. In this case, we
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Fig. 5. Output voltage vs input frequency of the inverter cell.

should consider the relation between the output voltage and the
supply voltage. This relation will be proportional to the input
duty cycle independently from the Vdd. This is demonstrated
by Fig. 7 where the y axis represents not the absolute value
of Vout, but the relation of Vout to Vdd that is more relevant
for unstable power conditions.

The circuit demonstrates high resilience to the supply volt-
age variations. Starting from 1 - 1.5V the relationship of the
Vout to Vdd remains the same for different duty cycles of the
input signal.

The simulations below demonstrate the correctness of op-
eration of the 3 × 3 weighted adder shown in Fig. 3. The
parameters of the simulations are the same as in previous,
except the size of the output capacitor that has been extended
to 10pF. In this simulation we set up different values of three
inputs (their weight and duty cycle), and compared the resulted
output voltage with its theoretical values (calculated using the
formula 2). The results are shown in Table II.
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Fig. 6. Output voltage (absolute value) vs power supply.
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Fig. 7. Output voltage (relative to the power supply) vs power supply.

TABLE II
THE RESULTS OF THE 3× 3 WEIGHTED ADDER.

DC1 W1 DC2 W2 DC3 W3 Vout Vout

theoretical simulation
70% 7 80% 7 90% 7 2.00V 1.99V
50% 1 50% 2 50% 4 0.42V 0.39V
20% 5 60% 6 80% 7 1.21V 1.17V
95% 7 90% 6 80% 6 2.00V 2.05V
30% 1 40% 4 50% 2 0.34V 0.29V
80% 7 20% 3 50% 4 0.96V 0.89V

The simulations results correspond to the theoretical ones,
however, the relative error is quite large, especially for the
lower output voltages. Despite of this, such errors are still
affordable, especially, in the case of perceptron that is a-priori
not accurate.

The simulations have been conducted with various input
frequencies in the range from 1MHz to 1GHz, but the
frequencies did not have any effect on the results, and are
not displayed in the table for brevity.
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Fig. 8. Average power consumption vs input frequency.

The Fig. 8 shows the power consumption of the designed
perceptron for different frequencies. The range of the power
may vary within several orders of magnitude depending on
the parameters of the perceptron such as sizes of the output
resistor and capacitor.

IV. CONCLUSION AND DISCUSSIONS

We proposed the first mixed-signal (analogue/digital) per-
ceptron design using the principle of PWM. Central to our
design are a number of parallel inverters that suitable transcode
the input-weight pairs from spatial domain to temporal do-
main. Since PWM-based inverters are typically agnostic to
amplitude and frequency variations, the perceptron shows a
high degree of power elasticity and robustness under these
variations.

Another advantage of the proposed design is its simplicity.
While the conventional implementations of the perceptron re-
quire complex logic to perform the multiplication and addition,
the proposed approach uses only one gate for per bit for every
input. Thus, for the 3 × 3 weighted adder we used only 54
transistors. This significantly reduces the logic utilization and,
thereafter, the power consumption of the entire device.

Machine learning is finding more applications at the micro-
edge, where power variation from energy harvesters is becom-
ing commonplace. We believe the proposed perceptron will
find practical implementations in these applications as it is
highly robust to these variations. This design would nicely
complement a power-elastic PWM signal generator based on
a self-timed loadable modulo N counter presented in [8].
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