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Abstract—State-of-the-art mobile processors can deliver fast
response time and high throughput to maximize the user experi-
ence. However, high performance comes at the expense of larger
power density, which leads to higher skin temperatures. Since
this can degrade the user experience, there is a strong need for
power consumption and thermal analysis in mobile processors.
In this paper, we first perform experiments on the Nexus 6P
phone to study the power, performance and thermal behavior of
modern smartphones. Using the insight from these experiments,
we propose a control algorithm that throttles select applications
without affecting other apps. We demonstrate our governor on
the Exynos 5422 processor employed in the Odroid-XU3 board.

I. INTRODUCTION

Commercial mobile platforms need to support multiple
application categories, such as games, navigation, social me-
dia apps, and video players. In order to deliver competitive
performance while running these apps, state-of-the-art mobile
processors integrate multiple powerful general-purpose cores,
graphics processing cores (GPU), and accelerators [7, 23].
At the same time, mobile platforms are severely limited by
thermal design power (TDP) due to their small size and lack
of active cooling [6, 19, 24, 28]. Power dissipation increases
not only the junction temperature on the chip but also the
skin temperature of the platforms, which directly impacts
the user satisfaction [5, 20, 21]. Therefore, mobile platforms
must deliver the highest performance without violating thermal
constraints to maximize user satisfaction [17, 22, 27].

Competitive performance and fast response times are en-
abled by using multiple resources and operating them at high
frequencies. For instance, the interactive governor on Android
devices sets the frequency to the highest value whenever it
detects user interactions. While this choice maximizes the
response time and frame rate, it can also lead to thermal
violations [3, 13, 27]. Higher chip temperature has a cascading
effect of increasing the skin temperature, thus degrading
the user experience [5, 20, 21]. Therefore, mobile platforms
manage the temperature using thermal governors to mitigate
this problem [9, 11, 22, 27].

Thermal governors monitor the temperature at the critical
hotspots on the chip. If the temperature of any hotspot ex-
ceeds the thermal limit, the governors react by decreasing
the frequency of the processing elements. In extreme cases,
the governors resort to powering the cores off to reduce the

temperature of the device [1, 19]. However, these actions can
lead to significant performance degradation [16, 25, 26, 30].

In this paper, we first present experimental case studies
with Nexus 6P smartphone and most popular Android apps.
This experimental study allows us to study the operation
of the default thermal governors shipped with commercial
phones. Our results show that thermal throttling degrades
the performance by as much as 34% while running popular
Android applications. Our empirical results also demonstrate
the need for integrated thermal-frequency governors. Thermal
governors throttle the whole system instead of selectively
throttling the resources that increase the temperature. For
example, if a background application increases the temper-
ature, the governors decrease the frequency of all processors
in the system. This choice degrades the performance of all
foreground applications. Finally, the outputs of the thermal
and frequency governors may contradict each other [27].
More specifically, frequency governors increase the operating
frequency to ensure responsiveness, while thermal governors
throttle frequencies to maintain the temperature within safe
limits. Hence, we also propose an approach that can throttle
select applications without affecting the performance of other
apps in the system. We demonstrate our approach on the
Odroid-XU3 [10] board that employs a big.LITTLE hetero-
geneous system-on-a-chip, since it provides more flexibility
to modify the default governors.

This paper is a part of the DATE 2019 Special Session on
“Smart Resource Management and Design Space Exploration
for Heterogeneous Processors”. The other two papers of this
special session are: “Smart Thermal Management for Hetero-
geneous Multicores” [11] and “Design and Optimization of
Heterogeneous Manycore Systems enabled by Emerging In-
terconnect Technologies: Promises and Challenges” [14]. The
rest of the paper is organized as follows. Section II overviews
the related work. In Section III, we perform a case study
with the Nexus 6P phone to illustrate the behavior of default
thermal governors. Section IV presents a control algorithm
that can selectively throttle applications and demonstrates it
on the Odroid-XU3 board. Finally, Section V concludes the
paper with some future directions.

II. RELATED WORK

A significant amount of recent research effort has focused
on developing algorithms for dynamic frequency management
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under thermal constraints [1, 5, 22, 26, 27]. For instance, the
work in [26, 27] proposes a closed-loop controller to maximize
the quality of service (QoS) provided by apps under thermal
constraints. The controller ensures that apps can sustain their
target QoS for a longer duration when compared to greedy
approaches. Similarly, the work in [22] considers a cooper-
ative CPU-GPU governor for improving the performance of
gaming apps. Authors in [5] first develop a skin temperature
predictor for smartphones and then use it for user-specific
skin temperature aware frequency and voltage selection. The
algorithm proposed in [1] uses a temperature prediction to
determine a power budget that does not violate the thermal
constraint. Then, it uses a gradient search algorithm to re-
duce the frequency of resources that result in the minimum
performance loss. While these algorithms consider dynamic
frequency management under thermal constraints, they do not
consider the problem of selectively throttling background apps
without affecting the foreground apps.

III. EMPIRICAL STUDY OF THERMAL THROTTLING ON
COMMERCIAL SMARTPHONE

A. Experimental Setup

We perform our empirical study on a Nexus 6P [12]
smartphone that runs Android 7 OS. A commercial smart-
phone with actual form-factor is preferred over commonly
used experimental boards since the form-factor and packaging
affect the thermal behavior. Furthermore, it enables us to
evaluate the temperature and power management governors
shipped to the end users. The Nexus 6P smartphone houses
a Qualcomm Snapdragon 810 system-on-a-chip (SoC) [23],
which integrates four low-power Cortex-A53 cores, four high-
performance Cortex-A57, and an Adreno 430 GPU. The phone
also has sensors to measure the temperature at various points
on the SoC, such as the chip package, memory, and flash
memory. Among these, we measure the temperature at the chip
package, since it is used by the default governors to make ther-
mal management decisions. In contrast to evaluation boards
that include power measurement sensors, the Nexus 6P phone
does not include power measurement sensors. Therefore, we
use a National Instruments data acquisition system [18] to
measure the power consumption of the phone at a sampling
rate of 1 KHz.

Applications under study: Using our setup, we evaluate the
power, performance, and thermal behavior of the most popular
apps on the Google play store. We present the results for five
representative apps from the top 30 apps on the Google play
store. More specifically, we choose two games, one shopping
app, one video conferencing app and one social media app,
since they are the most popular app categories [29].

We run each of these apps under two scenarios. First, we
disable the default temperature governor to measure the base-
line performance of each app. Then, we repeat the experiments
by enabling the default temperature governor shipped with the
phone. This controlled experiment allows us to measure the
impact on performance due to thermal throttling. In the fol-

lowing section, we analyze the temperature and performance
of each application.

B. Performance and temperature analysis of popular apps

Paper.io game: Paper.io is one of the top five games available
in the Google play store. Figure 1 shows the behavior of the
temperature of the phone when running the Paper.io game. We
observe that there is a significant increase in the temperature
when we disable thermal throttling. The package temperature
reaches 50◦C at the end of the run. Then, we enable the default
thermal governor and re-run the game. The dashed red line
in Figure 1 shows that the thermal governor can successfully
control the temperature. However, it comes with a significant
performance penalty of about 12 frames per second (FPS).
To understand the behavior of the phone in more detail, we
analyze the usage of different GPU frequencies in Figure 2.
When there is no throttling, the GPU operates 32% of the
time at 510 MHz and 15% of the time at 600 MHz, which
are the two highest frequencies. Figure 2 clearly shows that
throttling decreases the use of these frequencies significantly.
More specifically, the use of 510 MHz and 600 MHz drop to
zero, while the percentage of operation at 390 MHz increases
sharply from 15% to 67%. Since the GPU spends noticeably
more time at lower frequencies, the game suffers a drop in
performance. More specifically, the frame rate drops from 35
FPS to 23 FPS, which corresponds to 34% degradation in
performance, as summarized in Table I.

Stickman Hook game: Stickman Hook is another game that
is in the top five apps available on the Google play store.
Figure 4 shows the temperature profile of the phone while
playing Stickman Hook with the default thermal governor
and by disabling it. We observe that the temperature reaches
significantly higher values, especially after running the appli-
cation for 50 seconds, when thermal throttling is disabled.
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Fig. 1: Temperature profile for Paper.io game.

Fig. 2: Usage of GPU frequencies in the Paper.io game



TABLE I: Median frame rate achieved while running popular
Android apps with and without throttling, respectively.

Frame Rate

App Without
Throttling

With
Throttling Percentage Reduction

Paper.io 35 FPS 23 FPS 34%
Stickman Hook 59 FPS 40 FPS 32%
Amazon 35 FPS 28 FPS 20%
Google Hangouts 42 FPS 38 FPS 10%
Facebook 35 FPS 24 FPS 31%

As expected, thermal throttling enables lower temperatures
and keeps the maximum temperature below 40◦C. Again, this
comes at the expense of the performance. Figure 4 shows that
the use of 450 MHz and 510 MHz drops almost to zero.
Furthermore, the operation at 390 MHz drops from 67% to
51%. In contrast, the operation at the lowest (180 MHz) and
the second lowest frequency (305 MHz) increase from 12%
to 31% and 0% to 9%, respectively. Consequently, operating
at lower frequencies leads to a 32% drop in the median FPS,
as shown in Table I.
Amazon shopping: Amazon is a popular online shopping app
available on the Google play store. In contrast to the gaming
apps, it primarily uses the CPU when it is active. Figure 5
shows the behavior of the temperature of the phone when using
the Amazon app. We observe that the temperature with and
without throttling closely follow each other during the first
80 seconds of use. After that, the temperature increases if the
thermal throttling is disabled. In contrast, the thermal governor
is able to maintain the temperature by reducing the CPU
frequency. The reduction in CPU frequency can be analyzed
using the data in Figure 6. When there is no throttling, the
CPU operates 32% of the time at 960 MHz. This percentage
drops to 23% with throttling. In contrast, the operating at the
lowest frequency (384 MHz) increases from 25% to 37% with
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Fig. 3: Temperature profile for Stickman Hook game.

Fig. 4: Usage of GPU frequencies in the Stickman Hook game.
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Fig. 5: Temperature profile for Amazon shopping app.

Fig. 6: Usage of big core frequencies in the Amazon app.

throttling. As a result, the frame processing rate drops from
35 FPS to 28 FPS similar to the other applications, as shown
in Table I.
Google Hangouts and Facebook apps: In addition to the
previous apps, we also analyze the performance of Google
Hangouts and Facebook apps. We do not plot the temperature
profiles for these two apps since they are similar to that of the
Amazon app.

Consistent with the other apps, we observe that the de-
fault governor reduces the temperature at the expense of
the frame processing rate. In particular, thermal throttling
reduces the frame rate from 42 FPS to 38 FPS while running
Google Hangouts. Similarly, the frame of Facebook drops
from 35 FPS to 24 FPS while playing a game in the app.

The experiments with popular Android apps show that
thermal governors regulate the temperature at the cost of
performance since they react to temperature violations by
throttling the frequency of all the resources in the system.
Theoretical analysis of power-temperature dynamics can help
in predicting potential violations before they happen [1, 4, 22].
Furthermore, they can guide the utilization of different re-
sources, such as big versus little cores, judiciously to prevent
temperature violations with minimal impact on performance.
The next section illustrates this idea with a graphical analysis
and empirical results.

IV. THERMAL MANAGEMENT USING
POWER-TEMPERATURE STABILITY ANALYSIS

A. Analysis of the Power-Temperature Dynamics

Power and temperature form a well-known positive feed-
back system [2, 15]. The junction temperature increases with
power consumption. Higher temperature, in turn, leads to a
higher leakage power, which contributes to a further increase
in the temperature [3]. The temperature converges to a stable



fixed point when the system is stable. In contrast, an unstable
system experiences a thermal runaway. The stability of power-
temperature dynamics depends on the power consumption that
changes at runtime. Therefore, it is imperative to analyze the
stability of the dynamics at runtime.

A theoretical analysis of the power-temperature dynamics
is presented in [2]. This analysis enables us to derive the
sufficient and necessary conditions for the existence of tem-
perature fixed points. The fixed points are the roots of a
concave function of an auxiliary temperature, as illustrated in
Figure 7. The auxiliary temperature is inversely proportional to
the actual temperature in Kelvin. Therefore, a higher auxiliary
temperature corresponds to a lower temperature and vice versa.
This section presents a graphical analysis of the stability, while
the complete theoretical proof is presented in [2].

Figure 7a plots the fixed-point function when the power
consumption is 2 W using parameters obtained for Odroid
XU3. We observe that the fixed-point function is indeed
concave. Furthermore, it has two roots that correspond to
two temperature fixed points. The arrows along the plot show
that the auxiliary temperature decreases with each fixed-
point iteration when the function is negative. In contrast,
it increases at each iteration when the function is positive
(i.e., between two roots). Hence, the larger root attracts the
temperature trajectories to itself, i.e., it is the stable fixed point,
as illustrated in Figure 7a. In contrast, the temperature diverges
from the unstable fixed point. Hence, any trajectory that starts
between the roots will converge to the stable fixed point. If
the initial point is to the left of the unstable fixed point, there
is a thermal runaway.

When the power consumption increases, the fixed-point
function moves down, as shown in Figure 7b. The power-
temperature dynamics continue to have two fixed-points until
the power consumption reaches a critical value. In our exam-
ple, the roots of the fixed-point function converge, i.e., there
is only one root, when the power consumption reaches 5.5 W.
Any further increase in the power consumption results in an
unstable system with no fixed points. For instance, Figure 7c
plots the fixed-point function when the total power is 8 W.
We see that it does not intersect the x-axis, which shows that

the system does not have any fixed points. In summary, we
can determine the stability of the power-temperature dynamics
by looking at the number of roots of the fixed-point function.
In the next section, we use the thermal stability analysis to
design an application-aware thermal management algorithm.

B. Application-Aware Thermal Management
The thermal stability analysis overviewed in the previous

section provides an efficient method to calculate the steady-
state temperature (fixed-point temperature) of the system as
a function of the power consumption. We also use it to
estimate the time that will pass to reach the fixed point.
This information can be used by a governor to enable a new
class of dynamic thermal and power management (DTPM)
algorithms. As illustrated in Section III, thermal governors in
current mobile platforms typically throttle the frequency of all
active cores when a thermal violation is detected. Instead of
degrading the performance of all active applications in the
system, we utilize the fixed-point predictions to design an
application-aware thermal management algorithm.

We start by using the thermal stability analysis to determine
the stable fixed-point temperature. If this temperature exceeds
a specified thermal limit, there may be a thermal violation in
the future. Therefore, the algorithm estimates the time it will
take for the system to reach the fixed point. If the algorithm
detects that the time to reach the fixed-point is less than a user-
defined limit, it means that there is an imminent possibility
of a thermal violation. In this case, the algorithm finds the
process that has the highest power consumption by monitoring
the average utilization of each active process for a one-second
window. We use a window to filter out momentary peaks in
the power consumption. Finally, the algorithm moves the most
power-hungry process to low power processors. We repeat this
process every 100 ms to capture runtime variations in the
system activity effectively.

The primary advantage of the proposed algorithm is penal-
izing only the process that causes a thermal violation. The
other processes continue operating at maximum performance
in strong contrast to the default governors, which throttle the
whole system to regulate the temperature. The algorithm also
lets processes with real-time requirements register themselves

2 4 6
Auxiliary Temperature

-4

-2

0

2

Fi
xe

d-
po

in
t f

un
ct

io
n

2 3 4 5 6
Auxiliary Temperature

-4

-2

0

2

Fi
xe

d-
po

in
t f

un
ct

io
n

2 3 4 5
Auxiliary Temperature

-4

-2

0

2

Fi
xe

d-
po

in
t f

un
ct

io
n

Unstable fixed point

No fixed points

(c)(a) (b)

Total Power = 5.5 W Total Power = 8 WTotal Power = 2 W

Stable fixed point
Critically stable

Fig. 7: Illustration of the fixed point functions for three power consumption values.



so that they are not penalized. We present an empirical
evaluation of the proposed algorithm in the next section.

C. Experimental results on Odroid-XU3

This section evaluates the proposed application-aware ther-
mal management algorithm on the Odroid XU3 board. The
board employs the Samsung Exynos 5422 SoC [10], which
integrates four Cortex-A15 (big) cores, four Cortex-A7 cores,
and a Mali T628 GPU. In addition to the processing elements,
the board includes thermal sensors to measure the temperature
of each big core and the GPU. It also provides current sensors
to measure the power consumption of the little cluster, big
cluster, main memory, and the GPU. We run Android 7.1
with Linux kernel 3.10.9. The governor is invoked every 100
ms, along with the default frequency governors. We evaluate
the proposed controller with commonly used 3DMark and
Nenamark benchmarks. We use the Odroid XU3 board to il-
lustrate the proposed algorithm since it provides a higher level
of control to modify the frequency and thermal governors in
the system. Furthermore, the Odroid board provides individual
power sensors that allow for a better evaluation of the proposed
algorithm.

To evaluate the algorithm, we run a real-time GPU bench-
mark, along with a computationally intensive task in the back-
ground. The default policy is to use the thermal management
policy in the Linux kernel (3.10.9). Specifically, it uses thermal
trip points and ARM intelligent power allocation algorithm to
control the temperature [31]. During these experiments, we
disable the fan on the board since it is not feasible for mobile
platforms.

3D Mark alone with the default governor: First, we run
the 3DMark benchmark alone without any background appli-
cation. This experiment gives an upper bound for the perfor-
mance. It also gives the baseline temperature profile, which is
shown by the blue curve in Figure 8. The corresponding power
consumption and its distribution among the major components
on the SoC are shown in Figure 9a. We observe that the
GPU has the highest power consumption, followed by the big
core cluster. This is expected since 3DMark is a GPU-heavy
application.
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Fig. 8: The maximum temperature of the system when running
3DMark application

Fig. 9: Power consumption distribution of 3DMark

3D Mark + BML with the default governor: Next, we re-
run the 3DMark benchmark while also executing the basicmath
large (BML) application [8] in the background. As expected,
the BML application increases the power consumption of the
big core, and consequently the whole board. More specifi-
cally, the total power consumption jumps to 3.65 W, and the
contribution of the big core cluster increases from 38% to
60%, as depicted in Figure 9b. Consequently, larger power
consumption leads to a higher temperature, as shown by the
red dashed line in Figure 8. As a result, the thermal governor
starts to throttle the frequency of the system. Throttling of all
the resources causes a drop in the performance of 3DMark
Graphics Test 1 (GT1) from 97 to 86 FPS, as shown in
the third column of Table II. Similarly, the performance of
Graphics Test 2 (GT2) also decreases from 51 FPS to 49 FPS.

3D Mark + BML with the proposed controller: Finally,
we apply the proposed control algorithm when running 3D
Mark and BML together. As in the previous experiment, the
BML application causes the temperature to rise. However, the
algorithm detects and migrates the background application to
the little cluster as soon as it predicts a thermal violation.
This enables the proposed algorithm to control the temperature
of the system, as shown using a black line in Figure 8.
The migration also causes a reduction in the big core power
consumption from 60% to 42%, as seen by the pie chart
in Figure 9c. We see a corresponding increase in the power
consumption of the little core from 7% to 16% since the BML
application is running on the little cores. The migration is able
to effectively throttle the BML application without affecting
the 3DMark application. This can be observed in the last
column of Table II, where the performance loss in 3DMark
GT1 and GT2 are minimal.

The same steps are repeated with the Nenamark benchmark
in order to test the controller on a workload with different

TABLE II: Comparison of application performance with the
proposed control algorithm

Test App. Alone App. + BML App. + BML with
Proposed Control

3DMark GT1 97 FPS 86 FPS 93 FPS

3DMark GT2 51 FPS 49 FPS 51 FPS

Nenamark3 3.5 levels 3.4 levels 3.5 levels



characteristics. Nenamark measures the number of levels of
the benchmark that can be run at a given frame rate. The
benchmark terminates when the frame rate drops below the
desired level. The performance achived while running Ne-
namark under the three scenarios is summarized in the last
row of Table II. We observe that the number of levels which
can run at the desired frame rate is lower when the whole
system is throttled. However, with the proposed control the
number of levels is equal to the baseline performance of the
application without any background applications. In summary,
the proposed control algorithm is able to effectively migrate
the power-hungry app without causing any adverse effect on
the main app.

V. CONCLUSIONS

This paper presented experiments to study the power,
performance and thermal behavior of modern smartphones.
Specifically, we performed experiments on the Nexus 6P
phone with popular apps to understand the loss in their
performance due to thermal throttling. Using insights from
these experiments and our previous work, we developed an
algorithm that can selectively throttle background apps without
affecting foreground apps. Experiments on the Odroid-XU3
board show that the algorithm can throttle background apps
effectively. The experimental case study in this paper can be
used as a baseline when evaluating future thermal management
algorithms. Furthermore, it can be used by application devel-
opers to optimize their apps such that they do not experience
thermal throttling.
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