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Abstract—Algebraic Normal Form (ANF) and Conjunctive
Normal Form (CNF) are commonly used to encode problems
in Boolean algebra. ANFs are typically solved via Gröbner
basis algorithms, often using more memory than is feasible;
while CNFs are solved using SAT solvers, which cannot exploit
the algebra of polynomials naturally. We propose a paradigm
that bridges between ANF and CNF solving techniques: the
techniques are applied in an iterative manner to learn facts
to augment the original problems. Experiments on over 1,100
benchmarks arising from four different applications domains
demonstrate that learnt facts can significantly improve runtime
and enable more benchmarks to be solved.

I. INTRODUCTION

Algebraic Normal Form (ANF) and Conjunctive Normal

Form (CNF) are two commonly used normal forms in Boolean

algebra. Both ANF and CNF reason about Boolean variables

x1, . . . , xn but with different Boolean operators.

ANF is a system of polynomial equations in GF(2), i.e.,

the Galois field of two elements, or Z2. Each polynomial is a

sum of monomials, where a monomial is a product of zero or

more variables. Cryptologists prefer ANF because it naturally

encodes definitions such as AES [1] and hash functions [2].

One approach to solving ANF is to compute the Gröbner

basis of the system using the Buchberger’s algorithm [3] or

its variants [4], [5]. Efficient implementations include M4GB

[6], FGb [7] and Magma [8]. In certain systems, methods

such as XL/XSL [9], [10] and ElimLin [11], [12] have also

been shown to be effective. Unfortunately, ANF solvers on

huge polynomial systems tend to require more memory than

is feasible on most computing platforms [13].

In comparison, CNF is a conjunction of clauses. Each clause

is a disjunction of literals, where a literal is either a Boolean

variable or its negation. As Boolean circuits are naturally de-

scribed in logical connectives, hardware verification problems

are often described in CNFs [14]. Some other domains using

CNFs are software verification, industrial planning, scheduling

and recreational mathematical puzzle solving.

CNFs are typically solved by SAT solvers, which use

significantly less memory than the methods for ANF. This is

primarily due to the depth-first search nature of CDCL [15]

that most modern SAT solvers are based on. Many solvers

build upon the small code base of MiniSat [16], which includes

the standard CDCL, variable and clause elimination [17],

watched literals data structures [18] and the like.

The open-source tool is available at
https://github.com/meelgroup/bosphorus

ANF and CNF solving algorithms exploit different prop-

erties of the problem encoding. For instance, Gauss-Jordan

elimination (GJE) is a natural procedure in ANF, but not in

CNF; while conflict learning prunes the search tree in SAT

solvers, but we are unaware of such learning for ANF. Despite

the recent successes of GJE-enabled SAT solvers in counting

problems [19], [20], the use of GJE-enabled solvers is not

prevalent. In this context, we ask: is there an alternative and

easier way to combine ANF and CNF solving?

The primary contribution of this paper is an affirmative

answer to the above question. We demonstrate a paradigm

that bridges between ANF and CNF solving techniques. The

techniques are applied in an iterative manner to learn facts

to augment the original problems. This approach is attractive

when the conversion time between ANF and CNF encodings is

negligible relative to the overall solving time. Our experiments

demonstrate that our iterative approach can help us to solve

more instances while spending less time.

As a consequence of this bridge, problems can be encoded

in their most natural and comprehensible manner, either in

ANF or CNF, and yet draws from solving techniques in both to

achieve reasonable solving performance — this is our second

contribution. We call our tool BOSPHORUS, the namesake of

the Bosphorus bridge connecting Europe and Asia.

In the next section, we describe the various techniques for

solving ANFs and CNFs. Section III describes how BOSPHO-

RUS uses these techniques. Results on three classes of ANF

problems and the SAT Competition 2017 benchmarks are in

section IV. For notation, we use ⊕ for exclusive-OR (XOR)

and addition in GF(2), ¬ for negation, ∧ for conjunction

and ∨ for disjunction. We use the term polynomial to mean

polynomial equation equated to zero, and we will also write

such equations by just stating the polynomial.

II. LEARNING FACTS

Our approach iteratively extracts two types of learnt facts:

(1) linear equations xi1 +xi2 + · · ·+xip + c where c is either

zero or one; and (2) polynomials of the form xi1xi2 . . . xip⊕1.

The former keeps the degree of the system low while the latter

allows immediate deduction that xi1 = xi2 = · · · = xip = 1.

The rest of this section explains how BOSPHORUS obtains and

uses these facts in various phases.

A. ANF propagation

For each variable, we attempt to assign a value (0 or 1) or an

equivalent literal by examining the polynomials involving the

http://arxiv.org/abs/1812.04580v1
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variable. A value assignment can occur in two cases. First,

for polynomial x or x ⊕ 1, we set x to the constants 0 or

1 respectively. Second, for polynomial xi1xi2 . . . xip ⊕ 1, we

set xi1 = xi2 = · · · = xip = 1. An equivalence assignment

happens if the polynomial is x⊕y or x⊕y⊕1, in which case

we set x = y or x = ¬y respectively. These assignments are

applied iteratively until a fixed point is reached.

B. eXtended Linearization (XL)

Gauss-Jordan elimination (GJE) solves a system of linear

equations by elementary row operations. For polynomials, one

can apply GJE by treating each monomial as an indepen-

dent variable — this is known as linearization. Dependence

between the monomials can be re-introduced by generating

more polynomial equations, a process known as eXtended

Linearization (XL) [9]. We describe XL and how it is used.

Given a polynomial system S with n variables and m

equations, we expand S incrementally to obtain an expanded

system S′. The expansion process selects each equation in S

in ascending degree order and multiplies the equation with

all possible monomials up to a chosen degree D. In the case

where we manage to expand S fully, the expanded system will

have m
∑D

j=0

(

n
j

)

polynomials. GJE is then applied on S′.

Table I shows an example of applying XL on the ANF

{x1x2 ⊕ x1 ⊕ 1, x2x3 ⊕ x3}, expanding up to degree D = 1
monomials. The last three rows of Table Ib are the facts {x1⊕
1, x2, x3} that BOSPHORUS will retain.

Applying XL on the entire ANF often requires considerable

memory and time. To avoid this, we uniformly subsample the

polynomials from the ANF to obtain an m′-by-n′ linearized

system S such that m′n′ & 2M , for a fixed parameter M .

Moreover, S is incrementally expanded only until the system

size is approximately 2M+δM , for a parameter δM .

We employ XL in this manner because our primary purpose

is not to solve the system but to learn facts to augment it. We

also employ ElimLin and SAT solver in the same spirit.

C. ElimLin

ElimLin [11] is an algorithm that iterates through the

following three steps until fixed point: (1) apply GJE on the

linearization of the polynomial system S; (2) gather linear

equations and remove them from S, yielding S′; and (3) for

each linear equation ℓ, pick, say, a variable from ℓ that occurs

in the least number equations in S′, and eliminate that variable

from S′ using ℓ. The resultant system S′′ is free of linear

equations. The process is repeated from step (1) using S′′ as

S until there are no more linear equations after applying GJE.

Consider the ANF {x1⊕x2⊕x3, x1x2⊕x2x3⊕1}. As step

(1) does not affect the system, x1 ⊕ x2 ⊕ x3 remains the only

linear equation in step (2). If we choose to substitute x1 by

x2⊕x3 in step (3), the ANF becomes the single equation (x2⊕
x3)x2 ⊕ x2x3 ⊕ 1. By right-distributing the first conjunction

over the first XOR and then replacing the XOR of x2x3 with

itself by zero, this equation simplifies to x2 ⊕ 1. Assigning

x2 = 1 and performing ANF propagation on the original ANF,

x1x2⊕x2x3⊕1 becomes x1⊕x3⊕1, and the ANF propagation

can deduce the equivalence x1 = ¬x3.

Similar to XL, we apply ElimLin on a random subset of

polynomials that has linearized size of approximately 2M .

D. Conflict-bounded SAT solving

With a CNF equivalent of the ANF, we call a SAT solver

that has conflict-driven clause learning [15]. The solver is

allowed up to a pre-determined number C of conflicts to solve

the system. We bound the solver using use a conflict budget

instead of a time budget for replicability of experiments.

Due to this budget, the solver will surely terminate with one

of these three cases: (1) unsatisfiable; (2) satisfiable, giving an

assignment; or (3) undecidable within the limit. In case (1),

BOSPHORUS appends the contradictory equation 1 = 0 to the

system — this is the learnt fact by the SAT solver. In cases

(2) and (3), BOSPHORUS extracts linear equations from learnt

clauses — of particular interest are linear equations from the

unit and binary clauses because they immediately yield value

and equivalence assignments.

E. Example

Consider the ANF

x1x2 ⊕ x3 ⊕ x4 ⊕ 1, x1x2x3 ⊕ x1 ⊕ x3 ⊕ 1,

x1x3 ⊕ x3x4x5 ⊕ x3, x2x3 ⊕ x3x5 ⊕ 1,

x2x3 ⊕ x5 ⊕ 1.

(1)

XL with D = 1 on this system learns the facts x2x3x4 ⊕ 1,

x1x3x4 ⊕ 1, x1 ⊕ x5 ⊕ 1, x1 ⊕ x4, x3 ⊕ 1, and x1 ⊕ x2. For

ElimLin, its initial GJE — step (1) in section II-C — gives

four distinct linear equations: x1⊕x5⊕1; x1⊕x4; x3⊕1; and

x1⊕x2. After substituting x5 by x1⊕1, x4 by x1, x3 by 1 and

x2 by x1, ElimLin learns x1 ⊕ 1. Converting to CNF using

Karnaugh map (section III-C) creates one auxiliary variable

for x1x2. Boolean constraint propagation in the SAT solver

then gives x2 ⊕ 1, x4 ⊕ 1, x5, and x1x2 ⊕ 1.

ANF propagation using the above facts obtained from XL,

ElimLin and SAT solver simplifies the system into

x1 ⊕ 1, x2 ⊕ 1, x3 ⊕ 1, x4 ⊕ 1, x5. (2)

This effectively solves the system to its unique satisfying

assignment x1 = x2 = x3 = x4 = 1 and x5 = 0.

Observe that ANF propagation after the XL step would

have led to (2) without the need for either ElimLin or SAT

solver. Nevertheless, the above example illustrates that each

can derive different learnt facts: XL gives the value assign-

ment for x3, ElimLin gives that for x1, and the SAT solver

learns the remaining assignments. To make full use of these

different learnt facts, BOSPHORUS is designed to perform ANF

propagation when learnt facts are produced after every step.

III. BOSPHORUS

This section details the workflow and the data struc-

tures of BOSPHORUS, and the approaches to convert be-

tween ANFs and CNFs. The source code is available at

https://github.com/meelgroup/bosphorus.

https://github.com/meelgroup/bosphorus


TABLE I: An example of applying eXtended Linearization (XL). Zero coefficients in the matrices are suppressed; and rows

corresponding to zero polynomials are omitted. The last three rows of (b) are the facts that will be retained.

(a) Expansion by degree 1 monomials

Expanded linearized system

Polynomial Multiplier x1x2x3 x2x3 x1x3 x1x2 x3 x2 x1 1

x1x2 ⊕ x1 ⊕ 1 1 1 1 1
x1 1
x2 1
x3 1 1 1

x2x3 ⊕ x3 1 1 1
x1 1 1
x3 1 1

(b) Gauss-Jordan Elimination

Linearized system after GJE

x1x2x3 x2x3 x1x3 x1x2 x3 x2 x1 1

1 1
1

1
1

1

1 1

Convert
to ANF

Problem
description

Fixed Point

XLElimLin

SAT Solver
Processed

ANF and CNF

no

yes

Fig. 1: BOSPHORUS’s flow. A dashed arrow means ANF

propagation is applied.

A. Workflow

BOSPHORUS takes a problem encoded in ANF and pro-

duces a processed ANF and CNF after performing an XL–

ElimLin–SAT-solver fact-learning loop until the fixed point

when no further learnt facts are produced. ANF propagation

is performed on the input ANF and whenever learnt facts are

produced. Fig. 1 shows the overall workflow.

Internally within BOSPHORUS, the problem is represented

as an ANF polynomial system, and only ANF propagation

modifies and replaces this master copy. Each of the other

techniques — XL, ElimLin and SAT solver — operates on

a copy of the ANF, and learnt facts are extracted and then

added onto the master copy if not already there.

If the equation 1 = 0 is detected, BOSPHORUS terminates

and returns UNSAT. If the SAT solver finds a satisfying

solution, BOSPHORUS stores the solution. This solution is not

used to simplify the ANF because it may not be unique.

B. Data structures

BOSPHORUS stores the system of equations in the ANF

description as a list of Boolean polynomials. For each variable,

we track (i) its value, as either 0, 1, or undetermined; (ii) its

equivalence literal; and (iii) its occurrence list.

The default equivalence literal for each variable is the

variable itself and may change as BOSPHORUS proceeds. For

example, the equivalence literal of xi may be switched to ¬xj

to encode xi = ¬xj .

Occurrence list is an optimization technique from the SAT

literature [18], [21]. Here, BOSPHORUS tracks the list of poly-

nomials that each variable occurs in. For example, updates to

x1 in (1) do not involve processing the last two equations. The

time saved can be significant for large polynomial systems.

C. ANF to CNF conversion

CNF is used by the SAT solver within BOSPHORUS, and it

is also an output. To convert ANF to CNF, we introduce an

auxiliary CNF variable on-the-fly for each ANF monomial,

and we maintain a bi-directional map for such variables.

BOSPHORUS handles determined variables, equivalences,

and polynomials differently in the conversion. Determined

variables are added as unit clauses, while an equivalence such

as xi = ¬xj is represented in CNF by (xi∨xj)∧(¬xi∨¬xj).
For a polynomial, it is first re-expressed as shorter ones

by introducing auxiliary variables. The number of terms in

the shorter polynomials is parameterized by an XOR-cutting

length L, Then, each of these shorter polynomials is converted

to CNF using either of the following two approaches:

1) If the polynomial is K-variate, we use the Karnaugh

map to yield the minimal clause representation while re-

ducing the number of auxiliary variables used. Because

computing the Karnaugh map scales exponentially with

the number of variables, the Karnaugh parameter K is

kept low to ensure reasonable conversion time.

2) If the polynomial involves more than K variables, we

apply a transformation à la Tseitin encoding [22]. Each

polynomial of length l ≤ L is treated as an XOR clause

of independent terms and converted to CNF clauses by

enumerating through all possible 2l terms.

Although the Karnaugh map approach is less flexi-

ble, it can yield a more compact conversion than the

Tseitin-based approach. Consider the polynomial equation

x1x3 ⊕ x1 ⊕ x2 ⊕ x4 ⊕ 1 = 0. Fig. 2 shows possible CNF

representations via both approaches. Using the Karnaugh map

shown in Fig. 3, one can derive a more compact CNF system

that directly deals with the variables involved. In comparison,

the Tseitin-based approach creates a new CNF variable x5 and

encode x5 = x1x3 using three CNF clauses.

At present, any auxiliary variable introduced in the conver-

sion process does not participate in the learnt facts.

D. CNF to ANF conversion

BOSPHORUS can be used as a CNF preprocessor, though its

main use-case is that of solving problems represented in ANF.



x1 ∨ x2 ∨ x4

¬x1 ∨ ¬x2 ∨ x3 ∨ x4

x2 ∨ ¬x3 ∨ x4

¬x1 ∨ x2 ∨ x3 ∨ ¬x4

x1 ∨ ¬x2 ∨ ¬x4

¬x2 ∨ ¬x3 ∨ ¬x4

x1 ∨ ¬x5

x3 ∨ ¬x5

¬x1 ∨ ¬x3 ∨ x5

x1 ∨ x2 ∨ x4 ∨ x5

¬x1 ∨ ¬x2 ∨ x4 ∨ x5

¬x1 ∨ x2 ∨ ¬x4 ∨ x5

x1 ∨ ¬x2 ∨ ¬x4 ∨ x5

¬x1 ∨ x2 ∨ x4 ∨ ¬x5

x1 ∨ ¬x2 ∨ x4 ∨ ¬x5

x1 ∨ x2 ∨ ¬x4 ∨ ¬x5

¬x1 ∨ ¬x2 ∨ ¬x4 ∨ ¬x5

Fig. 2: ANF-to-CNF conversions of polynomial x1x3 ⊕ x1 ⊕
x2⊕x4⊕1. (Left) Karnaugh map conversion (6 CNF clauses);

(Right) Tseitin-based conversion (11 CNF clauses).

x̄3x̄4 x̄3x4 x3x4 x3x̄4

x̄1x̄2

x̄1x2

x1x2

x1x̄2

1 0 10

0 1 01

0 1 10

1 0 01

Fig. 3: Karnaugh map of polynomial x1x3⊕x1⊕x2⊕x4⊕1.

When used as a CNF preprocessor, BOSPHORUS obtains an

equivalent ANF in the following manner [23]:

1) Each CNF variable is assigned a unique ANF variable;

2) Each clause is converted to a polynomial via product of

negated literals.

For instance, the polynomial for the clause ¬x1 ∨ x2 is

(x1)(x2 ⊕ 1) = x1x2 ⊕ x1. The resultant polynomial degree

is the number of literals in each clause. More importantly, if

a clause has n positive literals, there will be 2n terms in the

polynomial. To prevent such cases, we re-express the clause

as a set shorter of clauses by introducing auxiliary variables

à la converting a k-SAT to 3-SAT. We limit the number of

positive literals within each of the shorter clauses to L′, called

the clause-cutting length. Each of the shorter clauses is then

converted to polynomials as outlined above.

This CNF-to-ANF conversion is trivial, unlike that in [24];

sophisticated techniques are then applied to simplify the prob-

lem on the ANF level. In this use-case, converting problem

from CNF to ANF and back to CNF give a suboptimal de-

scription of the original problem. Hence, BOSPHORUS returns

the original CNF in addition to the one converted from its

internal ANF representation, which includes the learnt facts.

E. Implementation

BOSPHORUS uses the following existing work:

PolyBoRi[25] To store and manipulate Boolean polynomials.

M4RI [26], [27] For efficient Gauss-Jordan elimination on

Boolean matrices, necessary for XL and ElimLin.

CryptoMiniSat5 [28] This is a SAT solver equipped with

conflict-driven clause learning. To extract learnt facts

from this solver, we modify version 5.6.3 of the solver

to exposed its APIs that extract linear equations.

ESPRESSO [29] For Karnaugh map simplification [30].

While ESPRESSO is a heuristic logic minimizer, it is

fast and often yields close-to-optimum representations.

IV. EXPERIMENTS AND RESULTS

We run experiments on three classes of problem described

in ANFs and a set of problems in CNFs. The ANF problems

are round-reduced AES cipher, round-reduced SIMON cipher

and weakened Bitcoin nonce finding, while the CNF problems

consist of a wide variety from the SAT Competition 2017 [31].

These problems are detailed in the appendix. The experiments

are conducted on a single Intel Xeon E5-2670v2 2.50GHz

processor core. Each ANF or CNF is passed to BOSPHORUS,

which, after learning facts using the XL–ElimLin–SAT-solver

loop together with ANF propagation, will give a CNF that

includes the learnt facts. A SAT solver is then used to solve

the processed CNF eventually. Note that the most efficient

off-the-shelf ANF solver, M4GB, has such a high memory

footprint that it times out on all the instances.

We also pass the instances to the SAT solvers directly

without learning facts but only converting to CNFs using

BOSPHORUS if needed. We also evaluate with three different

SAT solvers for the eventual solving: a minimalistic SAT

solver MiniSat [16], a high-performance SAT solver Lin-

geling [32], and CryptoMiniSat5 [28], which natively performs

Gauss-Jordan elimination.1 We report the PAR-2 score [31]

and the number of solved instances. The PAR-2 score is the

sum of runtimes for solved instances and twice the timeout

for unsolved instances, and a lower score is better.

For the BOSPHORUS’s workflow, we use the following

parameters: XL and ElimLin subsampling parameter M = 30,

XL expansion allowance δM = 4 and degree D = 1, Kar-

naugh parameter K = 8, cutting lengths L = L′ = 5, and

SAT-solver conflict budget starting from C = 10, 000, increas-

ing up to 100, 000 in increments of 10, 000 when the learnt

clauses from the SAT-solver produce no new learnt facts.

Moreover, we make BOSPHORUS exit the loop and provide

the solution if the SAT solver finds a satisfying assignment.

We limit the total time used for each instance to 5,000 seconds,

with BOSPHORUS given at most 1,000 seconds.

We only present results for selected benchmarks in Table II.

The first column represents the class of benchmarks followed

by the number of instances in parenthesis. For each problem

class, we have two rows of results: the first without using

BOSPHORUS and the second with. The third, fourth and fifth

columns specify the PAR-2 score (in thousands) for MiniSat,

Lingeling, and CryptoMiniSat5 respectively. The PAR-2 score

1The versions used are 2.2, bcj-78ebb86-180517 and 5.6.3 respectively.



TABLE II: The PAR-2 score is shown in thousands (lower is

better) with, in parenthesis, the number of solved satisfiable

instances plus (if any) the number of solved unsatisfiable

instances. For each problem set, there are two rows of results:

the first without using BOSPHORUS (labeled w/o in the second

column) and the second with (labeled w). The better of the two

is in bold, with preference to the number of solved instances.

Problem MiniSat Lingeling CryptoMiniSat5

SR-[1,4,4,8] w/o 4372 ( 89) 532 (500) 504 (500)

(500) w 1099 (489) 518 (500) 507 (500)

Simon-[8,6] w/o 1 (50) 0 (50) 0 (50)

(50) w 3 (50) 3 (50) 3 (50)

Simon-[9,7] w/o 324 (22) 0 (50) 2 (50)

(50) w 15 (50) 14 (50) 14 (50)

Simon-[10,8] w/o 500 ( 0) 31 (50) 45 (50)
(50) w 231 (34) 29 (50) 44 (50)

Bitcoin-[10] w/o 4 (50) 9 (50) 8 (50)

(50) w 23 (50) 23 (50) 24 (50)

Bitcoin-[15] w/o 146 (43) 185 (39) 169 (40)
(50) w 171 (42) 220 (34) 176 (41)

Bitcoin-[20] w/o 493 ( 1) 475 ( 3) 486 ( 2)
(50) w 482 ( 2) 471 ( 4) 477 ( 3)

SAT-2017 w/o 2105 (75+38) 2006 (70+56) 1764 (89+63)
(310) w 2153 (72+42) 2070 (70+57) 1674 (98+77)

SAT-2017 w/o 2045 (15+ 7) 1738 (29+26) 1689 (30+32)
(219) w 1981 (18+11) 1756 (29+27) 1543 (40+46)

for the case of using BOSPHORUS includes time taken by

BOSPHORUS. The Simon, Bitcoin and SAT-2017 benchmark

classes are listed in increasing difficulty.

For the instances from SR-[1,4,4,8], BOSPHORUS allows a

significantly more solved instances for MiniSat, and it provides

similar PAR-2 scores for Lingeling and CryptoMiniSat5 even

while including its overhead. Similar observations can be

made for the harder Simon instances, though the overhead

of BOSPHORUS is now clearly visible in Simon-[9,7]. With

Bitcoin, BOSPHORUS does not always help, but the effect of

its overhead to the PAR-2 scores diminishes with the harder

instances. One way to study when BOSPHORUS helps is to run

it with different parameters. For the SAT-2017 CNF instances,

BOSPHORUS does provide useful information to the solvers,

especially for the UNSAT instances.

V. DISCUSSION

While BOSPHORUS can be used as a CNF preprocessor, it

is in fact a flexible reasoning framework on Boolean or GF(2)

variables in the following sense. First, for satisfiable problems,

the SAT solver collapse onto one solution, while BOSPHORUS

can continuously constrain the solution space without com-

mitting to one particular solution. Second, for unsatisfiable

problems, the conclusion can be reached by either any of the

ANF techniques giving 1 = 0 or by the SAT solver giving

UNSAT. Third, any of the solving techniques in the workflow

can be improved with minimal impact on the other techniques

because the retained facts do not increase the complexity of the

equations. Fourth, it is relatively easy to include new solving

techniques by plugging them as components into the workflow,

for example, lookahead SAT solvers [33] and Buchberger’s

algorithm [3]. In fact, using the Buchberger’s algorithm as a

preprocessor for SAT solving has previously been proposed

[24], but, with BOSPHORUS, it may now be applied in an

iterative manner together with other solving techniques.

To conclude, we have proposed and implemented a tool

named BOSPHORUS that iteratively applies eXtended lin-

earization, ElimLin and conflict-bounded SAT solving together

with ANF propagation in order to learn additional facts to

augment the original problem. The experiments on selected

ANF and SAT problems have shown that this approach can

help solve more problems in a shorter time, particularly for

the harder instances.
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without reduction to zero (F5),” in Proceedings of ISSAC, 2002.

[6] R. H. Makarim and M. Stevens, “M4GB: an efficient Gröbner-basis
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APPENDIX

A. Round-reduced AES cipher — 500 instances

We obtain a parameterized ANF encoding of AES [34] from

SageMath [35]. Using parameters (n, r, c, e) = (1, 4, 4, 8),
we generate 500 ANF instances for 1-round AES. First, 500

random pairs of plaintext (P ) and key (K) bits are generated

and simulated to yield the corresponding ciphertext (C) bits.

The resultant ANF has 800 variables and 1120 equations —

864 equations and 256 bit assignments from (P,C).

B. Round-reduced Simon cipher — 50 instances per (n, r)

Simon [36] is a family of lightweight Feistel-based block

ciphers. The round functions are described in conjunction

and exclusive-OR of bits, allowing a straightforward ANF

encoding; see Fig. 4. This set of benchmarks are reduced

rounds Simon32/64 with multiple plaintext-ciphertext pairs

encoded under the same randomly generated secret key.

Simon32/64 takes a 32-bit plaintext (P ) and a 64-bit key

to return a 32-bit ciphertext. For each instance, we generate

n ≤ 17 plaintexts with low hamming distance as per the Sim-

ilar Plaintexts/Random Ciphertexts (SP/RC) setting in [37].

Concretely, the first plaintext P1 is uniformly sampled while

xi+1 xi

xi+2 xi+1

S1

S8

S2

& ⊕

⊕

⊕ ki

Fig. 4: One Fiestel round of Simon cipher. Diagram from [36].

Message M Nonce 1 |M |

448 bits 64 bits

Randomly fixed 415 bits 32-bit
nonce

Size of M
in binary

Fig. 5: Our nonce-finding setup.

we toggle the ith in the right-half of P1, for i ∈ {2, . . . , n}.

This set of problems is parameterized by (n, r), where n is

the number of plaintexts, and r is the number of rounds.

C. Cryptographic hash functions — 50 instances per k

Recently, Cryptographically secure hash functions have

been used to serve as proof-of-work in blockchains and

cryptocurrencies, of which Bitcoin is an example. Bitcoin [38]

uses SHA256, a hash function in the SHA-2 hash family [2].

We consider a weakened version of the Bitcoin block

hashing algorithm. Let M be a 512-bit input message, and

H be a 256-bit hash output. We randomly set the first 415

bits of M , allow the next 32-bit nonce to be free (but to

be determined), and pad according to SHA padding (add

‘1’, then encode |M | = 448 in the next 64 bits). Given k,

the challenge is then to solve for a suitable 32-bit nonce

of M that results in a hash H with the first k bits being

0. We construct challenges in this manner because Bitcoin

uses 32-bit nonces to solve for hashes starting with varying k

zeroes. See Fig. 5 for an illustration. We generate instances for

k = {10, 15, 20} using the generic ANF encoding available at

https://github.com/vsklad/cgen.

D. Instances from SAT 2017 Competition

We preprocess g2-hwmcc15deep-beemfwt4b1-k48 and

g2-hwmcc15deep-beemlifts3b1-k29 using CryptoMin-

iSat5 to reduce the number of variables to less than 1,048,574

variables, which is the maximum number of variables that

the POLYBORI data structure can handle on our platforms.

We omit the 40 CNFs with names of the pattern g2-T∗

because they each have too many variables even after the

preprocessing. We also omit mp1-bsat222-777 because it

is not a well-formed DIMACS file. Hence, we experiment

on 310 instances altogether. From these, we select difficult

instances: using the runtime of MiniSat (without BOSPHORUS)

as a proxy difficulty measure, we select the 219 that requires

more than 2,500 seconds.

http://m4ri.sagemath.org
https://github.com/vsklad/cgen
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