N
N

N

HAL

open science

Transient Key-based Obfuscation for HLS in an
Untrusted Cloud Environment

Hannah Badier, Jean-Christophe Le Lann, Philippe Coussy, Guy Gogniat

» To cite this version:

Hannah Badier, Jean-Christophe Le Lann, Philippe Coussy, Guy Gogniat. Transient Key-based Ob-
fuscation for HLS in an Untrusted Cloud Environment. 2019 Design, Automation & Test in Europe

Conference & Exhibition, DATE 2019, Mar 2019, Florence, Italy. hal-02052433

HAL Id: hal-02052433
https://ensta-bretagne.hal.science/hal-02052433
Submitted on 28 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://ensta-bretagne.hal.science/hal-02052433
https://hal.archives-ouvertes.fr

Transient Key-based Obfuscation for HLS in an
Untrusted Cloud Environment

Hannah Badier and Jean-Christophe Le Lann
ENSTA Bretagne, Lab-STICC, Brest

hannah.badier @ensta-bretagne.org, lelannje @ensta-bretagne.fr

Abstract—Recent advances in cloud computing have led to
the advent of Business-to-Business Software as a Service (SaaS)
solutions, opening new opportunities for EDA. High-Level Syn-
thesis (HLS) in the cloud is likely to offer great opportunities
to hardware design companies. However, these companies are
still reluctant to make such a transition, due to the new risks
of Behavioral Intellectual Property (BIP) theft that a cloud-
based solution presents. In this paper, we introduce a key-
based obfuscation approach to protect BIPs during cloud-based
HLS. The source-to-source transformations we propose hide
functionality and make normal behavior dependent on a series
of input keys. In our process, the obfuscation is transient: once
an obfuscated BIP is synthesized through HLS by a service
provider in the cloud, the obfuscation code can only be removed
at Register Transfer Level (RTL) by the design company that
owns the correct obfuscation keys. Original functionality is thus
restored and design overhead is kept at a minimum. Our method
significantly increases the level of security of cloud-based HLS
at low performance overhead. The average area overhead after
obfuscation and subsequent de-obfuscation with tests performed
on ASIC and FPGA is 0.39%, and over 95% of our tests had
an area overhead under 5%.

Index Terms—High-Level Synthesis, Cloud, IP theft, Obfusca-
tion

I. INTRODUCTION

Today’s hardware designs have reached a fantastic degree
of complexity. To sustain this industrial challenge, design
flows are increasingly distributed, with companies relying on
third parties for IP development, manufacturing and testing.
The recent surge in cloud computing capabilities offers new
opportunities to distribute design even further, by outsourcing
complex computations to dedicated Software as a Service
(SaaS) platforms. In the next years, Electronic Design Au-
tomation (EDA), which is compute-intensive, is likely to
benefit directly from such services. In particular, HLS lends
itself to being offered as a cloud-based service. However,
broad adoption by the industry is slowed down by legitimate
security concerns about IP theft [1]. Indeed, HLS in the cloud
services have to be considered as untrusted platforms, possibly
vulnerable to insider threats as well as outside attacks and
security breaches. A company using such a service would have
to trust the platform with its high-level source code. While
the files could be encrypted during transfer to prevent Man-
In-The-Middle (MITM) attacks, HLS using industry-standard
products such as Xilinx Vivado HLS or Catapult from Mentor
Graphics can only be performed on valid, plain-text code,

Philippe Coussy and Guy Gogniat
Universite de Bretagne Sud, Lab-STICC, Lorient
philippe.coussy @univ-ubs.fr, guy.gogniat@univ-ubs.fr

meaning that the files have to be decrypted on the server.
This leads to vulnerable points both before and after HLS,
as depicted on Fig.1, where Behavioral Intellectual Property
(BIP) could be stolen.

Design company Untrusted HLS provider

unencrypted C-level
—_— source
C-level
=
0]
g Cloud-based
) HLS
~
RTL |«
unencrypted RTL
source

Fig. 1: HLS in the cloud design flow with vulnerable points

Our long-term goal is to enable hardware design companies
to safely use a cloud-based HLS service, without having to
entrust their security to the service provider. To achieve this,
we aim at preventing BIP theft and reuse, before and after HLS
in a cloud-based context. These security measures should be
applied on the design company’s side at algorithmic level, and
should not disrupt the HLS process or permanently alter the
functionality of the code. Our approach should also have a
negligible impact on design performances.

Obfuscation is widely used as a means to protect intellec-
tual property in software and hardware design. According to
the definition in [2], an obfuscated program is functionally
equivalent to the original but more difficult to understand.
In this paper, we propose to combine software obfuscation
techniques that make the code harder to understand with key-
based hardware obfuscation techniques that prevent correct
execution and thus reuse of the code. If the design company
can provide the correct obfuscation keys, our process removes
obfuscation code at register transfer level (RTL) and restores
original functionality with low design overhead. In particular,
the main contributions of this paper are the following:

o We consider a hardware design flow where HLS is used
as a cloud service and where security does not rely on
trust in the cloud provider.

o We propose a novel low-overhead method for BIP pro-
tection through key-based obfuscation.

o We offer a fully automated toolset, KaOTHIC, for obfus-
cation and de-obfuscation.

This paper is organized as follows. Section II discusses
works related to IP protection and presents background on
obfuscation. In Section III, the proposed approach is presented
in detail. Section IV contains the experimental setup and
discusses the results. Conclusions and information about future
work are provided in Section V.

II. RELATED WORK AND BACKGROUND

A. IP Protection

Due to the growing issue of IP infringement, several IP
protection techniques have been studied, at different design
steps and different abstraction levels. Most of them aim
at protecting IP during manufacturing, which is nowadays
usually outsourced to third-party foundries. Watermarking and
split manufacturing (e.g. [3] [4] [5]) have been widely studied.
Many solutions for obfuscation-based approaches have also
been proposed. Some focus on low-level techniques based
on hardware properties and applied at layout level to prevent
netlist extraction, for example by using Physical Unclonable
Functions (PUFs) or camouflage gates. Several techniques for
IP protection through obfuscation at gate level by adding extra
gates to the circuit have also been proposed. However, these
techniques do not protect so-called soft IPs at register transfer
level (RTL). Several methods have been proposed to add key-
based obfuscated to VHDL or Verilog code, either directly
at RTL or during HLS. In [6], a mode-control finite state
machine (FSM) is added to the design, so that the circuit only
functions in normal mode if the correct key sequence is known.
In [7] and [8], high-level transformations are used to protect
digital signal processing (DSP) circuits. In [9] and [10], key-
based obfuscation is added during HLS by extending the HLS
process. In these works, the goal is to obtain obfuscated RTL
and to provide protection during manufacturing or for third-
party vendors of IPs, and HLS is considered to be a trusted
design step. However, they do not protect behavioral IPs before
and during HLS.

In [11], a heuristic approach for optimal obfuscation of
behavioral IPs is presented. It is based on a study of the impact
of commercial or free software obfuscators on HLS quality
of results. This method focuses on how to optimally apply
software obfuscation techniques to code before HLS and does
not modify functionality of the code. While it can increase the
difficulty of an attacker to understand stolen BIP, it does not
prevent “black-box” usage, where the BIP is directly reused
or critical information about it is found by simply analyzing
its inputs and outputs. In our approach, we aim at preventing
both IP theft and reuse. To achieve this, we rely on key-based
obfuscation techniques. However, the methods presented in
[11] are compatible with our approach, which means that both
can be jointly used to increase the level of protection.

To the best of our knowledge, there is no work yet using
key-based obfuscation to protect BIPs in a cloud-based con-
text.

B. Software Obfuscation

The taxonomy given in [2] distinguishes between three dif-
ferent types of software obfuscation. ”"Layout” obfuscation af-
fects human readability of the code, while “data” and “control
flow” obfuscation respectively modify data (for example en-
coding) and control flow (for example by splitting functions).
These techniques are commonly gathered under the name of
code-oriented obfuscation, as opposed to model-oriented or
cryptographic obfuscation, which aims at protecting the code
in a formally verifiable way through cryptographic operations.
While cryptographic obfuscation offers a provably secure way
of protecting intellectual property, it is not usable in a day-
to-day context yet [12] [13]. In this work, we focus on code-
oriented obfuscation techniques.

III. PROPOSED APPROACH

Design company Untrusted HLS provider

H
1 '
Obfuscation 13| Cops
Y 0
h
E

i | de-obfuscation E
RTL [t by key +{RTL
H injection '

!

Cloud-based
HLS

]

[- JJO0MISN

KaOTHIC

Fig. 2: HLS in the cloud design flow secured by obfuscation

A. Secure HLS in the Cloud Design Flow

We consider a hardware design company desiring to syn-
thesize a design based on an innovative algorithm by using
a cloud-based HLS service. Complete security of this service
cannot be guaranteed and the design company faces the risk
that a malicious adversary gains access to its C level code.
This adversary could be either an insider of the HLS service
provider or an outside attacker. Following risks must be
considered in case of an attacker stealing the code:

1) Espionage: the attacker gains information about what
type of algorithms or applications the design company
is working on.

2) BIP theft: the attacker is able to understand the algorithm
and can counterfeit or modify it.

3) Black-box usage: the attacker does not completely un-
derstand the algorithm, but can execute the code and
reuse it.

Because we cannot prevent code theft on the HLS provider’s
side, our approach aims at minimizing the previously enumer-
ated risks. We secure a traditional HLS design flow by adding
two additional steps on the design company’s side, before and
after HLS, as illustrated on Fig.2. Protection is thus transient.
The tool implementing the approach we propose is open-
source, which means that security cannot rely on secrecy of the
process. To prevent an attacker from reproducing obfuscation
results and thus gaining valuable information on how to de-
obfuscate, we aim at introducing elements of randomness
wherever possible in the obfuscation flow.

The first step, detailed in Section III-B, consists in obfus-
cating a given C code, thus making it harder to understand.
Key-based obfuscation is used to prevent black-box usage.
The obfuscated C code is then sent to the cloud provider,
where HLS is performed. The resulting RTL code, which is
automatically also obfuscated, thanks to the code transfor-
mations we apply, is returned to the design company. If the
RTL code is directly synthesized at this point, the resulting
circuit will not function correctly because the logic added by
obfuscation is also synthesized. This is why de-obfuscation by
key injection, detailed in Section III-D, is required as a second
step. De-obfuscating with the correct keys both ensures that
the original functionality is recovered and that, once the circuit
is synthesized, the overhead is kept at a minimum.

B. Obfuscation Flow

C source file
parameter :

obfuscation level

AST

(2) collection of
node candidates

random selection
@ of nodes

random generation
(@ of obf. keys

@node obfuscation
& substitution

©adding of keys as
function inputs

A
0 DO

obfuscated C source list of keys

Fig. 3: Obfuscation flow

Fig.3 shows the obfuscation flow we propose. The inputs
are the original source files written in C language that must
be obfuscated and the obfuscation level. The outputs are the
obfuscated code and a list of obfuscation keys. The process
can be parameterized: the user can choose which obfuscation
techniques to apply and in what order, as well as the desired
obfuscation level, which is defined as the percentage of
obfuscated expressions.

The flow is composed of the following steps (see Fig.3):

1) The C files are parsed and an Abstract Syntax Tree
(AST) is generated;

2) A visitor pattern is used to traverse the AST and collect
the list of AST nodes that are potential obfuscation
candidates;

3) Based on the obfuscation level, nodes are randomly
selected among the candidates;

4) One random key per selected node is generated;

5) Each selected node is obfuscated using the technique
presented in the next Subsection and replaced in the
original code;

6) The key variable names are added as inputs to the main
function;

7) The obfuscated code is returned.

For a higher level of security, a different key is used for each
obfuscated node. This ensures that an adversary guessing or
discovering the value of one key does not compromise the
secrecy of the other keys. To avoid replay by an attacker, the
selection of candidate nodes is also done randomly.

The implemented transformations at this point include con-
trol flow flattening, control flow splitting and encoding of
literals. Several other techniques can be added at a later point
to increase obfuscation resistance and security. A detailed
presentation of how control flow splitting is realized can be
found in the next Section.

C. Control Flow Splitting by Key-based Predicate Insertion

2 b < d if key==42 é > K d
\ / \ / y=(a+b)*(c+d);
else
y=(a+b)+(c+d);
ty /b

key

y=(a+b)*(c+d)

Fig. 4: Simplified example of a combinational DFG before and
after obfuscation. In this example, the correct code only gets
executed if ”42” is given as input key.

42

This technique is based on ideas presented in [2]. The
control flow is split at certain points in the code by adding
a predicate. A branch with bogus code is then inserted. This
bogus code strongly resembles the original code, in order to
increase obfuscation stealth by making it harder for an attacker
to distinguish original from bogus code, but presents enough
differences to the real code to modify the circuit’s behavior.
Usually opaque predicates, introduced in [14], whose values
are known at obfuscation time but difficult to evaluate for an
attacker, are used. In our case, we use predicates depending
on keys that are inputs to the circuit. An example of this
obfuscation technique is presented in Fig.4.

1) Predicate: For now, the predicate tests an input value
against a constant. Depending on how this test evaluates, the
real or the bogus code is executed. In this simplified example
(Fig.4), the input is compared to the value ~42”. If the test is
True, the correct code branch is executed. If any other value is
given as input, the bogus code is executed. During obfuscation,
we randomly assign either the original code branch or the
bogus one to execute when the predicate is true. For an
attacker, there are thus 2 possibilities to test. Either the input
key is equal to the constant, or it is not. For N obfuscated
expressions, there are thus N keys and 2V possibilities to test
in a brute-force attack to recover the original code. We assume
that a high number of expressions will be obfuscated using this
technique in each source code, resulting in a high number of
possibilities to test for an attacker. Difficulty of a brute-force
attack can be easily increased by adding more than just one
bogus branch per obfuscated expression, with the key input
being tested against several constant values.

suppressed during logic synthesis

= . removed part
El _ ?icb C-STEP1 i atRTlevel | start ®
2 - ’ H i
out = ty*d; D10/
P _ o emmmcmmemaenoai Statel
_|-bogus part
Y
— - C-STEP 2 suppressed
t_l =a+b; during logic
if kK==42 poqus part - obe§cat\on synthesis
t, =ti+c multiplexer
else
t =t*xC | e B -
out =t xd;
C-STEP 3

(a) Obfuscation example (b) Obfuscated RTL datapath

generated by Vivado HLS

(c) RTL datapath
after naive de-obfuscation

(d) RTL datapath
after full de-obfuscation

Fig. 5: Tllustration of the de-obfuscation process

2) Bogus code: For this obfuscation technique, compared with the original, unobfuscated circuit should be
candidate AST nodes are binary expressions of the form: close to null.
<binaryExpression>::=<expression><op><expression>,

where op is a bitwise or arithmetic operator. For each selected
binary expression, a similar bogus expression is created. The
bogus binary expression contains the same expressions as the
original code but a different operator. For example:
a=b-c

a=b+c —

The choice of the operator added in the bogus expression
has some importance in improving security but also in reduc-
ing overhead. The chosen operator has to be computationally
similar to increase stealth (a bitwise operator cannot be added
for an operation between two integers for example) and of
equal or lower complexity. For example, for a PLUS or a bit-
wise AND operator in the original expression, we respectively
add a MINUS or a XOR operator in the bogus expression.

D. De-obfuscation by Key Injection

In our proposed design flow, after HLS is performed in the
cloud, the design company receives obfuscated RTL code. In
order to limit design overhead and to allow correct execution
of the code, the code needs to be de-obfuscated (see Fig.2). At
RTL level, the keys that were added as arguments to the main
function in C, are now inputs of the top component. With the
obfuscation method used in our framework, the RTL code has,
for each obfuscated expression, a comparison between the key
signal and the expected value. Depending on the result of this
comparison, a multiplexer then selects which operator to use
in the binary expression.

1) Naive key injection: A first approach could consist in
injecting the keys externally, at the circuit interfaces, by
creating a new top-level component that explicitly states the
values of the obfuscation keys and injects them into the kernel.

During logic synthesis, the following behavior is expected:
if the correct keys are injected, through constant propagation
the predicates should evaluate correctly, and the bogus code
branches should be removed by logic simplification. The
circuit would then function correctly and the design overhead

However, this procedure is only effective if the data path
added by obfuscation is fully combinational. In practice,
the scheduling performed during HLS results in most cases
in a sequential data path. More precisely, the comparison
between the key input and its expected value is often scheduled
in a different clock cycle than the obfuscation multiplexer
(Fig.5(b)), which controls whether to use the original or the
bogus operator. In this case, the result of the key comparison is
stored in a dedicated register ("regl” on Fig.5(b)). The value of
this register depends not only on the key inserted in the circuit,
but also on the state of the FSM responsible for controlling
the scheduling. This means that even if the result of the key
comparison is fixed by injecting the keys, the value of the
register is not a constant and is unknown by the logic synthesis
tool. The register cannot be removed during synthesis, and the
bogus code, which is tied to this register, is not removed either.
The register acts as a barrier against logic simplification. While
the circuit is functionally correct, the remaining bogus code
(Fig.5(c)) causes a significant design overhead.

2) Proposed key injection: We propose a second approach
to circumvent the previously presented issue and to de-
obfuscate more thoroughly. Instead of injecting the keys exter-
nally and relying purely on logic collapsing, we locally modify
the RTL code itself by performing the following operations.
For each obfuscated expression, we compare the key input and
its expected value. The result of this comparison is computed
as 0 or 1 (0 on the example Fig.5(d)). The aforementioned
barrier register thus depends on a constant (0 or 1) and the state
of the controller. While logic synthesis alone cannot bypass
this register, our approach enables us to know what value
should command the obfuscation multiplexer. This allows to
completely remove the key comparison and the associated
(if any) register in the RTL code, and instead directly inject
this value into the command of the obfuscation multiplexer.
Because the multiplexer command is forced, the synthesis tool
is able to deduce which operator must be used and thus which
code branch to remove. With this approach, functionality of

number
of tests

10
6 0 2 2 1 1 2 5 4

<2 24 46 68
Area overhead (%)

<2 24 46 6-8 8-10 10-1212-1414-16

Delay overhead (%) LUT overhead (%)
ASIC

<2 24 46 6-8 810 10-12 12-14

<2 24 46 68 810 10-1212-1414-16 16-18
Register overhead (%)
FPGA

Delay overhead (%)
FPGA

Fig. 6: Histograms of the distribution of tests by overhead

Mo De-obfuscation | Naive De-obfuscation | Full De-obfuscation Mo De-obfuscation Maive De-obfuscation Full De-obfuscation
Benchmark Overhead in % Overhead in % Overhead in % Overhead in % Overhead in % Overhead in %

Area Crelay Area Dielay Area Delay LUT Register Dielay LUT Register Delay LUT Register Delay
Adpcm 261 -0.06 2.29 -0.08 -0.08 -0.01 582 289 159 -0.08 -0.2 10,85 -0.12 -0.2 11,06
AES 0.3 0 0.31 0 0.03 272 29 20 1,98 7,05 0,42 3.35 8,97 0,42 4,49
Merge Sort 0.07 0 0.07 0 0.03 0 -1.37 187 2,57 -6.18 4,08 -1.27 -5.99 4,08 -3.77
Mips 114 05 145 05 -1.12 -1.47 459 210 7,51 146 -1.39 451 178 -1.39 4,61
Needwun 9.01 11.69 8.39 11.69 0.26 0 239 335 -4.22 0,79 0,01 -2.78 -0.6 -0.25 -1.98
Stencil3d 9.38 0.73 9.2 0.73 154 -0.14 207 224 -9.44 138 456 -3.78 -1.25 5,57 -0.86

(a) Average design overhead on ASIC

(b) Average design overhead on FPGA

Fig. 7: Average design overhead per benchmark on ASIC and FPGA

the circuit is preserved. The removal of any code added by
obfuscation results in close to no overhead. This guarantees
that our obfuscation process is transient.

IV. EXPERIMENTAL STUDY
A. Experimental Setup

We implemented our approach in a dedicated toolset:
KaOTHIC (Key-based Obfuscating Tool for HLS in the
Cloud). KaOTHIC is written in Python and uses a series
of fully automated steps for obfuscation and de-obfuscation.
To parse the original C files before obfuscation, an in-house
compiler front-end is used. In order to evaluate our obfuscation
approach, 6 benchmarks from MachSuite [15] and CHStone
[16] were used: advanced encryption standard (AES), adaptive
differential pulse code modulation encoder (Adpcm), optimal
sequence alignment algorithm (Needwun), mergesort algo-
rithm (Merge_sort), simplified Mips processor (Mips) and
three-dimensional stencil computation (Stencil3d).

We performed a series of tests for each benchmark by
obfuscating it with varying obfuscation levels from 5 to 100%.
For each test, 4 logic syntheses were performed: the original
design, the obfuscated design, the naively de-obfuscated de-
sign and the fully de-obfuscated design. This allowed us to
compare design overhead of the different approaches.

For HLS we used Xilinx Vivado HLS. Logic synthesis
was performed with Synopsys Design Compiler, using the
Synopsys SAED 90nm educational library for ASIC, as well as
with Xilinx Vivado for a Nexys 4 DDR Artix-7 FPGA board. It
is important to note that DSP blocks were disabled for FPGA
logic synthesis in order to restrict our surface analysis to LUT
and register count.

B. Results and analysis

Using the previously presented method and KaOTHIC tool,
we performed a total of 164 tests on ASIC and FPGA.

The average runtime overhead for HLS is negligible (under
5%). In over 95% of our tests, the area overhead is below

5%, which we consider an acceptable overhead threshold. On
ASIC, the delay overhead is below 5% in 91% of the tests. In
respectively 80% and 60% of the tests, the register and delay
overhead on FPGA are also below 5%.

Fig.6 represents the distribution of the 164 test results in
terms of area and delay overhead for ASIC, and in terms of
LUT, register and delay overhead for FPGA. Additionally,
the tables on Fig. 7 show the detailed average results for
each benchmark, without de-obfuscation and with both de-
obfuscation approaches. The results indicate that design over-
head is high when no de-obfuscation is performed. When using
a naive de-obfuscation approach, overhead slightly decreases.
Finally, overhead can be strongly reduced by smartly de-
obfuscating the circuits through our proposed key injection
approach. This proves that we are successfully able to remove
the code added during obfuscation. To ensure the correctness
of our obfuscating method, i.e. to verify that the obfuscated
code has the same functionality as the original code, we
simulated the code at RTL level using GHDL, an open-source
VHDL compiler. Simulation results show that the original code
without obfuscation and the obfuscated code after correct key
injection have the same behavior, while obfuscated code with
wrong keys injected does not behave correctly. Our approach
is thus able to safely remove the additional code without
jeopardizing the functionality of the circuit.

In some test cases (e.g. Mips on ASIC), we obtained
a negative overhead. This may happen when the increased
code size forces the HLS tool to make different optimization
choices, thus sometimes resulting in a smaller design than the
original one. The small remaining overhead (e.g. Stencil3D) is
in our opinion due to resource sharing and to the impact that
the syntax variations created by the obfuscation process have
on HLS tools. On FPGAs, overheads may vary more impor-
tantly, while remaining acceptable, because of the components
(LUTs, registers, interconnects...) used to make these devices
reconfigurable and the associated logic synthesis techniques.

<2 24 46 6-8 8-10 10-12 12-1414-16 16-18

Further work will focus on better mastering overheads to offer
a quality of results similar to the ASIC ones.

Average overhead for all ASIC tests

15,00
area
10,00 ——delay
£ sm
B
£ 0.00
g |
@
2 500
3
2
® 10,00
15,00
0 10 20 3 40 50 60 70 80 90 100
obfuscation level (%)
Average overhead for all FPGA tests
15,00
10,00
2 smw
= -
f o N N 3
@
2 500
2 lut
% 10,00 e FEiSTEF
—¥— delay
15,00

0 10 20 30 40 50 60 70 80 90 100
obfuscation level (%)
Fig. 8: Average overhead per obfuscation level for all per-
formed tests

Through a series of tests done with obfuscation levels
ranging from 5% to 100%, we studied correlation between
overhead and obfuscation level. Our results indicate that there
is no correlation between obfuscation level and area or delay
overhead, as shown on Fig.8. We can for example note that
area overhead varies between approximately -2% and 2%,
and does not increase with obfuscation level. These results
demonstrate that the maximum level of obfuscation, i.e. 100%,
can always be chosen.

Code complexity increase per obfuscation level

5 8 8 B

complexity increase (%)

8

0 10 20 30 40 5 60 70 8 9 100

obfuscation level (3)

Fig. 9: Cyclomatic complexity increase of Needwun source
code after obfuscation per obfuscation level

To evaluate the security of the proposed obfuscation tech-
nique, we calculated the cyclomatic complexity. While not a
precise indicator of the difficulty of attack, a higher com-
plexity does usually imply that the code is more difficult
to understand. Our results show that after obfuscation, the
complexity increases on average by 109%. Furthermore, the
increase in complexity is positively correlated with the level
of obfuscation, see Fig.9 for an example with Needwun
benchmark, which is representative of the results obtained

for other benchmarks. Increasing the level of obfuscation can
thus be a simple way to improve security without incurring a
significant increase in overhead.

V. CONCLUSIONS AND FUTURE WORK

In this work, we proposed using obfuscation methods to
secure BIPs during HLS in a cloud context. Experimental
results show that we are able to obfuscate using a key-based
technique and to de-obfuscate safely after HLS with minimal
overhead. In the future, the very positive first results on ASIC
and FPGA encourage us to continue exploring this approach
both by trying to optimize and further reducing overall over-
head, and by diversifying the obfuscation techniques to achieve
a higher level of security. We also plan to work on a more
detailed evaluation of security.

REFERENCES

[1] B. Bailey, "EDA In The Cloud”, https://semiengineering.com/eda-in-the-
cloud/, April 2018, last accessed: 08/09/18

[2] C. Collberg, C. Thomborson and D. Low, A taxonomy of obfuscating
transformations”, in Technical Report 148, Department of Computer
Science, University of Auckland, July 1997

[3] D. Kirovski, Y.-Y. Hwang, M. Potkonjak and J. Cong, “Intellectual
Property Protection by Watermarking Combinational Logic Synthesis
Solutions”, in Proceedings of the 1998 IEEE/ACM International Con-
ference on Computer-aided Design, November 1998

[4] M. Lewandowski, R. Meana, M. Morrison and S. Katkoori, ”A Novel
Method for Watermarking Sequential Circuits”, in IEEE International
Symposium on Hardware-Oriented Security and Trust, June 2012

[5] S. Garg and J.J.V. Rajendran, ”Split Manufacturing”, in Hardware
Protection through Obfuscation, Springer International Publishing, pp.
243-262, 2017

[6] R.S. Chakraborty and S. Bhunia, "RTL Hardware IP Protection Using
Key-Based Control and Data Flow Obfuscation”, in 2010 23rd Interna-
tional Conference on VLSI Design, January 2010

[7]1 Y. Lao and K.K. Parhi, "Obfuscating DSP Circuits via High-Level
Transformations”, in IEEE Transactions on Very Large Scale Integration
Systems 23, May 2015

[81 A. Sengupta, D. Roy, S. Mohanty and P. Corcoran, "DSP Design
Protection in CE through Algorithmic Transformation Based Structural
Obfuscation”, in IEEE Transactions on Consumer Electronics, Novem-
ber 2017

[9] S. A. Islam and S. Katkoori, "High-Level Synthesis of Key Based Ob-

fuscated RTL Datapaths”, in 19th Int’l Symposium on Quality Electronic

Design, March 2018

C. Pilato, F. Regazzoni, R. Karri and S. Garg, "TAO: Techniques for

Algorithm-Level Obfuscation during High-Level Synthesis”, in Design

Automation Conference, June 2018

N. Veeranna and B. C. Schafer, "Efficient Behavioral Intellectual Prop-

erties Source Code Obfuscation for High-Level Synthesis”, in 2017 18th

IEEE Latin American Test Symposium, March 2017

H. Xu, Y. Zhou, Y. Kang and M. R. Lyu, "On Secure and Usable

Program Obfuscation: A Survey”, ArXiv e-prints, October 2017

D. Apon , Y. Huang, J. Katz, and A. J. Malozemoff, "Implementing

cryptographic program obfuscation”, Cryptology ePrint Archive, Report

2014/779, 2014

C. Collberg, C. Thomborson and D. Low, “Manufacturing Cheap,

Resilient, and Stealthy Opaque Constructs”, in Symposium on Principles

of Programming Languages, 1998

B. reagen, R. Adolf, Y.S. Shao, G. Wei and D. Brooks, "MachSuite:

Benchmarks for Accelerator Design and Customized Architectures”,

in Proceedings of the IEEE International Symposium on Workload

Characterization, October 2014

Y. Hara, H. Tomiyama, S. Honda and H. Takada, ”Proposal and Quanti-

tative Analysis of the CHStone Benchmark Program Suite for Practical

C-based High-level Synthesis”, in Journal of Information Processing,

Vol.17, pp.242-254, 2009

[10]

[11]

[12]

[13]

[14]

[15]

[16]

