
High-Integrity GPU Designs
for Critical Real-Time Automotive Systems

Sergi Alcaide‡,†, Leonidas Kosmidis†, Carles Hernandez†, Jaume Abella†
‡ Universitat Politècnica de Catalunya (UPC) † Barcelona Supercomputing Center (BSC)

Abstract—Autonomous Driving (AD) imposes the use of high-
performance hardware, such as GPUs, to perform object recog-
nition and tracking in real-time. However, differently to the
consumer electronics market, critical real-time AD functionalities
require a high degree of resilience against faults, in line with the
automotive ISO26262 functional safety standard requirements.
ISO26262 imposes the use of some source of independent redun-
dancy for the most critical functionalities so that a single fault
cannot lead to a failure, being dual core lockstep (DCLS) with
diversity the preferred choice for computing devices. Unfortu-
nately, GPUs do not support diverse DCLS by construction, thus
failing to meet ISO26262 requirements efficiently.

In this paper we propose lightweight modifications to GPUs
to enable diverse DCLS for critical real-time applications with-
out diminishing their performance for non-critical applications.
In particular, we show how enabling specific mechanisms for
software-controlled kernel scheduling in the GPU, allows guar-
anteeing that redundant kernels can be executed in different
resources so that a single fault cannot lead to a failure, as imposed
by ISO26262. Our results on a GPU simulator and an NVIDIA
GPU prove the viability of the approach and its effectiveness on
high-performance GPU designs needed for AD systems.

I. INTRODUCTION

The advent of autonomous driving (AD) makes automotive
industry embrace high-performance hardware such as acceler-
ators to execute performance-hungry tasks (e.g. object recog-
nition and tracking) timely. However, while those accelerators
have been widely deployed in the consumer electronics market,
where performance within given power and thermal envelopes
is the main concern, critical real-time systems, such as those
in AD, pose a set of different challenges related to functional
safety. In particular, safety-related automotive systems (e.g.
braking, steering, etc), which include most AD functionalities,
need to meet specific requirements described in the ISO26262
functional safety standard [1] to be deployed in cars. Those
requirements, which mostly relate to the ability of the system
to detect faults and prevent hazardous situations, impose
strict verification and validation (V&V) requirements on the
system and its components thereof. Hence, high-performance
accelerators deployed in cars for AD must adhere to those
requirements, which needs to be conveniently proven.

In the context of ISO26262, functionalities are classified
in different Automotive Safety Integrity Levels (ASIL) based
on the type of hazard they can cause, their severity, their
exposure and the controllability upon a failure. In particular,
safety-related functionalities are ranked from ASIL-D (the
highest integrity level) to ASIL-A (the lowest), being ASIL-D
components involved in ASIL-D functionalities those subject
to the strictest V&V processes.

GPUs are becoming the most popular accelerator for AD,
and they are already included in specific AD commercial
platforms, such as RENESAS R-Car H3 [2] and NVIDIA
Xavier [3] platforms. Those platforms include general purpose

microcontrollers (e.g. ARM or Infineon cores) proven ASIL-
D capable, as well as high-performance accelerators whose
adherence to ASIL-D must also be proven so that they can
perform AD-related activities. In particular, as detailed in
ISO26262, ASIL-D systems must not allow a single fault
lead the system to a hazardous situation. Appropriate safety
measures include some form of independent redundancy, thus
ensuring that a single fault will not lead redundant elements
to identical erroneous outputs. For instance, Error Detection
and/or Correction Codes are often used for storage and com-
munication interfaces, whereas Dual Core LockStep (DCLS)
with some source of diversity (e.g. staggered execution) is
used for computation elements so that a single fault affecting
all redundant components (e.g. a voltage droop) does not
cause them to fail identically. In the case of GPUs, they have
already been proven ASIL-B compliant, but, to our knowledge,
ASIL-D compliance has only been achieved by implementing
expensive independent redundancy means. In particular, either
full system replication or heterogeneous implementations are
used. The former, for instance, performs object recognition
based on cameras and LIDAR, with different software imple-
mentations and, potentially, different hardware support. The
latter, for instance, performs object recognition based only
on cameras, but software is implemented and deployed for
different accelerators (e.g. a GPU and a Deep Neural Network
– DNN – accelerator) [4]. In both cases, design and V&V
costs are duplicated, which is against efficiency and costs. For
instance, these approaches clash with that followed for ASIL-
D microcontrollers, which build upon diverse DCLS. Hence,
it is critically important enabling some form of diverse DCLS
on GPUs so that ASIL-D compliance can be achieved without
needing to design and certify multiple heterogeneous software
and hardware components.

This paper tackles this challenge by identifying the main re-
quirements to enable ASIL-D compliance for Commercial Off-
The-Shelf (COTS) GPUs, assessing to what extent they have
the potential to meet ASIL-D requirements, and providing a set
of lowly-intrusive modifications that allow adhering to ASIL-D
requirements without diminishing their performance for non-
safety-related functionalities. Those modifications allow GPU
vendors to reuse their designs avoiding a significant increase
of their Non-Recurring Expenses (NRE). In particular, we
perform our analysis on an NVIDIA COTS GPU, implement
modifications on a GPU simulator where we can assess both
performance and ASIL-D compliance, and evaluate what the
performance impact would be on the COTS GPU.

II. BACKGROUND ON ISO26262
A. ASIL decomposition

As explained before, safety-relevant components are classi-
fied from ASIL-D to ASIL-A. Additionally, non-safety-related
components are regarded as QM (Quality Managed). In the
context of ISO26262, the safety level is attached to systems
based on their safety requirements and a hazard and risk

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must 
be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating 
new collective works, for resale or redistribution to servers or lists, or reuse of 
any copyrighted component of this work in other works.



Fig. 1: Examples of ASIL decomposition.

analysis. Then, such safety level is propagated to the different
components following some rules. For instance, the default
rule consists of validating all components for the same ASIL as
the higher level item where they are integrated. However, since
increasingly higher ASIL have increasingly higher design and
V&V costs, alternative approaches are followed based on what
is usually referred to as ASIL decomposition.

Under a given ASIL, some specific diagnostic coverage
must be achieved and some random failure rates are deemed
as acceptable, being coverage and failure rates more stringent
for the highest ASIL. Since reaching certain coverage levels
and failure rates may impose excessive cost (or simply be
unreachable), specific ASIL levels can be reached with the
appropriate combination of lower ASIL components. This is
illustrated with some examples in Figure 1. For instance,
ASIL levels can be added as long as components provide
independent redundancy, so two independent redundant ASIL-
A and ASIL-B components allow reaching ASIL-C, or two
ASIL-B ones allow reaching ASIL-D. The latter corresponds
to the case of DCLS for cores in the microcontroller, which are
individually certified for ASIL-B operation, and used redun-
dantly for ASIL-D operation. How independent redundancy is
achieved is detailed later in this section.

The rightmost example in the Figure corresponds to the
case where the functionality of an item is split into several
subitems, being one of them in charge of preserving functional
safety for the whole item. This is a usual solution for items
with a safe state, i.e. a state in which functional safety is not
challenged. For instance, upon a failure of the steering lock
system, the safe state would be unlock the steer wheel. In
this case, monitor capabilities to detect malfunctioning of the
system must remain at the corresponding ASIL, whereas the
operation part of the system can be kept at QM – thus with
no specific V&V requirements – as long as any failure in the
operation part can be timely detected by the monitoring part
to drive the system to the safe state within the fault-tolerant
time interval (FTTI). In the context of AD, however, the latter
example cannot be applied for most of the functionalities
since safe states may not exist. While most systems related to
braking and steering resort to some sort of driver intervention
to manage potentially hazardous situations, for the highest
autonomy levels in AD – levels 3 to 5 as described in J3016
standard [5] – control can only be transferred to the driver
in some circumstances (levels 3 and 4) or simply can never
be transferred (level 5). Hence, computation components,
which consist of accelerators (e.g. GPUs) must be certified
to reach ASIL-D. Therefore, similar solutions to those for
microcontrollers (i.e. DCLS) must be used for GPUs.

B. Redundancy and Diversity
As explained before, ASIL-D has been reached for AD sys-

tems building upon coarse-grain ASIL decomposition such as
replicating full systems or parts thereof. However, since ASIL
decomposition imposes the use of independent redundancy
to avoid Common Cause Faults (CCFs) to lead to a failure,
approaches used so far consist of using fully heterogeneous
hardware and/or software components [4], with large impact

in design and V&V costs. In particular, items must be proven
to be free of systematic hardware and software faults with
diagnostic coverage levels in accordance to their corresponding
ASIL. However, since random hardware faults cannot be
avoided, whenever there can be a CCF for redundant elements,
safety measures must be put in place to ensure that they
are timely detected and corrected. For instance, faults due to
voltage droops, crosstalk, etc., which may affect identically
redundant elements, must not lead redundant elements to the
same erroneous output so that faults can be detected timely
and corrected (e.g. by resetting and restarting the system).

As indicated in ISO26262, DCLS is an appropriate solution
for redundancy, but diversity is also needed. Typically, it
is implemented with some form of staggered execution so
that, by executing the same software with some (sufficient)
slack across redundant cores, a simultaneous identical transient
fault will lead to different outputs for both cores if the fault
causes an error. Thus, the error will be detected. For instance,
this is the solution adopted by Infineon AURIX processors
for automotive systems [6] as well as some ARM Cortex-R
processors [7], [8].

ISO26262 does not provide explicit means to quantify diver-
sity, which remains as an open challenge [9], and is typically
assessed by safety experts. To the best of our knowledge,
only solutions based on diverse lockstep operation have been
deployed for computing devices. Hence, the diversity provided
by this approach can be regarded as sufficient. Moreover, such
as solution is typically applied at specific spheres of replication
(SoR) so that physical redundancy is kept low. For instance,
by using the core as SoR, main memory, communication
interfaces and other non-computing elements do not need to
be replicated and, instead, can rely on much lighter solutions
to achieve diverse redundancy such as Error Correcting Codes
(ECC) or Cyclic Redundancy Check (CRC).

In next sections we identify an appropriate SoR for GPUs
and achieve diverse redundancy with low cost.

III. GPU ANALYSIS AND STRATEGY FOR DIVERSE
REDUNDANCY

This section introduces some concepts related to GPU
design and operation, how those relate to the execution of
kernels, and how diverse redundancy could be achieved on
top of COTS GPUs.

A. GPU Design and Operation
This section provides some key concepts related to COTS

GPUs relevant for our work. Note that the purpose is not
providing a full description of GPU design and operation, but
providing only those elements needed for our work due to
space limitations. Since different components have different
names across GPU vendors, we adhere to NVIDIA nomencla-
ture for the sake of simplicity (and because NVIDIA is already
targeting the automotive domain [3]), but concepts apply to
virtually any COTS high-performance GPU.

Figure 2 shows a schematic of the main GPU components
relevant for this discussion. First, the GPU has a number
of Streaming Multiprocessors (SM), which we indicate as
SM1 to SMn in the plot. Each one consists of a number
of execution elements, which include CUDA cores (or simply
cores), but also load/store units and complex cores. We group
all of them within the concept of cores for the sake of this
discussion. SMs also include a number of internal resources
shared across cores such as instruction and data caches, on-
chip shared memory, a register file, and an internal scheduler



Fig. 2: GPU schematic.

among others. The GPU also includes a number of resources
shared across SMs, such as a second level (L2) cache, DRAM
interfaces, and other interfaces, and a kernel scheduler.

The kernel scheduler dispatches thread blocks of kernels to
SMs. In particular, the CPU dispatches kernels to the GPU,
each kernel consists of a number of thread blocks, and each
thread block is bound to a SM for its entire execution, without
possibility to migrate. However, different thread blocks from
the same kernel can coexist on a SM provided that there
are enough resources. For instance, if kernels k1 and k2 are
dispatched to the GPU, where k1 has 3 thread blocks (tbk11 ,
tbk12 , tbk13 ), k2 has 4 thread blocks (tbk21 , tbk22 , tbk23 , tbk24 ), and
our GPU has 2 SMs (SM1 and SM2), SM1 may execute
tbk11 , tbk12 , tbk22 , tbk24 in a time-multiplexed manner but not
necessarily completed with this order, and SM2 may therefore
execute tbk21 , tbk13 , tbk23 also time multiplexed. Note that newer
GPU architectures targeting the high-performance domain may
have fewer limitations about executing different kernels in a
single SM but, in general, how thread blocks are scheduled to
SMs is an undisclosed feature, which, as discussed later, has
prominent importance in our work.

B. Redundancy and Diversity Elements
As discussed before, storage and communication compo-

nents can be properly protected from CCFs by using ECC
and/or CRC. In fact, some of those components are explicitly
protected with those means in NVIDIA GPUS [10], including
register files, SM cache memories, and shared L2 cache,
which employ Single-Error Correction Double Error Detection
(SECDED) codes.

Regarding cores, no explicit protection has been reported.
However, we consider GPUs that have been shown com-
patible with ASIL-B ISO26262 requirements and thus, the
failure rates and coverage of the cores and the corresponding
safety mechanisms are in concordance with the requirements
imposed by the certification standard. Additionally, GPUs
are intrinsically redundant within an SM and across SMs.
Therefore, it is possible executing the same computation
twice in different cores at different times so that CCFs are
avoided. In particular, CCFs related to defects of a hardware
component can be avoided by executing the same computation
redundantly in different cores. Transient CCFs related to faults
affecting multiple components simultaneously (e.g. a voltage
droop) can be avoided by performing redundant execution at
different time instances.

Unfortunately, NVIDIA GPUs, as well as other families, do
not provide means to control how thread blocks are scheduled
across SMs or a thread block is scheduled within a SM. Even
worse, scheduler policies are not even publicly described,
which further defeats any attempt to exercise direct control
on the execution in the GPU, thus challenging the ability to
enforce diverse redundancy on GPUs.

Finally, to the best of our knowledge, the global kernel
scheduler does not include any form of redundancy for fault
detection.

The aim of this work is proposing the smallest modifications
possible to COTS GPUs to enable diverse redundancy to
prevent CCFs.

IV. SCHEDULING STRATEGY FOR DIVERSE AND
REDUNDANT GPU EXECUTION

As explained, execution on the cores (computing and load-
/store units) need some form of strategy to reach diverse
redundancy, and the global kernel scheduler needs also means
to avoid CCFs. In this section we introduce first our software
approach to achieve redundancy, we analyze to what extent
diversity can be achieved, and then propose low-cost modifi-
cations on the GPU design to achieve fully diverse redundancy.

A. Kernel Redundancy
In our approach – in line with the existing AD platforms

– we consider a system in which ASIL-D capable micro-
controllers (e.g. DCLS) offload intensive computations to the
GPU. Our strategy consists on executing kernels twice on the
GPU, and comparing their outcomes in the DCLS cores of the
CPU. In particular, a DCLS core (1) allocates memory on the
GPU memory space for both redundant kernels, (2) transfers
data physically (if needed), (3) launches the two redundant
kernels, (4) collects results from both kernels back to the CPU,
and (5) compares their outcomes in the DCLS cores. In this
scheme, all actions performed on the DCLS cores are naturally
protected against CCFs, as well as data communication and
storage, which occur on ECC or CRC protected components1.

We consider identical redundant kernels. In general, one
could create different kernel grids so that thread blocks across
redundant kernels differ to introduce some form of diversity.
However, the lack of control on the global kernel scheduler and
SM internal schedulers prevents from guaranteeing specific
diversity levels in the execution in the general case. Therefore,
in this work we do not study diverse kernel generation, which
is part of our future work.

The process to dispatch kernels to the GPU is intrinsically
serial, so redundant kernels arrive at different time instants at
the GPU, which might bring some form of diversity. However,
this does not guarantee that two redundant thread blocks (from
redundant kernels) cannot arrive to different SMs at the same
time and, therefore, execute the same operations simultane-
ously, thus being subject to some transient CCFs. With respect
to permanent CCFs, ensuring diversity would require – as
already done for functionally identical core replicas in ASIL-
D DCLS processors – implementing some form of physical
diversity at layout and/or floorplan levels. However, even when
having this physical level diversity, redundant thread blocks
across redundant kernels may end up executing on the same
SM at different time instants, thus also being subject to some
permanent CCFs. Overall, redundancy can be easily achieved,
but further means are required to enforce diversity.

B. Redundant Kernel Execution Patterns
While the solutions we propose later in this section work

for any kernel, depending on the kernel characteristics a given

1In this paper, to keep the focus on the GPU design we consider dual
modular redundancy suffices to provide fail-operational capabilities (i.e. errors
can be recovered within the FTTI) by, for instance, reexecuting upon an
error detection. However, our approach could be seamlessly extended to other
redundancy levels (e.g. triple modular redundancy).



Fig. 3: Kernel categories based on their overlapping.

solution is potentially more appropriate than others. Thus, we
first categorize kernels based on two criteria: whether they
can potentially overlap their execution, and whether they use
too many resources to prevent overlapping. This leads to three
categories, also shown in Figure 3 for clarity:
• Short kernels. Those kernels execute too fast to overlap

practically. In particular, by the time the second kernel
is dispatched to the GPU, the first kernel has already
finished its execution.

• Heavy kernels. Those kernels coexist in the GPU, but a
single kernel uses too many resources to allow the other
to start their execution. This makes that no overlapping
occurs at all, or it is little, just at the end of the execution
of one kernel, when it starts releasing resources so that
the other can effectively start its execution.

• Friendly kernels. Those kernels coexist in the GPU
and use limited resources so that both kernels can make
progress concurrently.

As shown, different kernel types may have different degrees
of overlapping (little-none or high). We propose two specific
kernel scheduling policies in the GPU that allow achieving
diverse redundancy in all cases: SRRS and HALF policies.

1) SRRS policy: SRRS stands for Start, Round-Robin and
Serial policy. This policy requires that, first, we do not start
the kernel execution until the GPU is idle; second, we can
select the SM where the first thread block will be dispatched;
third, SMs are allocated following a round-robin policy; fourth,
kernel execution is fully serialized, thus delaying the start of
the second (redundant) kernel until the first kernel has finished
its execution; and fifth, no further kernel can be executed in
the GPU until the second one also finishes.

By using SRRS with different starting SMs for both kernels,
diversity is achieved naturally. The first kernel finds the GPU
idle, starts in a particular SM (e.g. SMi) and allocates SMs
in round-robin order starting from SMi until the kernel com-
pletes its execution, without any interference from any other
kernel. The second kernel also finds the GPU idle, so in the
same state as the first kernel, and starts its execution in SMj,
where i 6= j. SMs are allocated also round-robin, but since the
starting SM differs for both kernels and no interference occurs,
each single thread block executes in different SMs across
redundant kernels. Therefore, any single computation occurs
in different kernels at different time instants, thus avoiding
CCFs in the cores.

2) HALF policy: HALF policy builds upon allocating half
of the SMs to one kernel and the other half to the other
kernel. This naturally imposes the use of different SMs for
each kernel. On the other hand, the fact that their starting

times differ due to the serial dispatch of kernels to the GPU,
enforces also that any given redundant computation occurs at
different time instants. Note that kernels could interfere in
the use of shared resources delaying each other. However,
their requests can never occur at the same time because (i)
either shared resources can process them in parallel, so no
interference occurs and so no timing impact, or (ii) requests
are serialized (at least partially) for a given shared resource,
so that a given request arrives before for the first kernel than
for the second, and the second can neither start nor finish
simultaneously with the first one, thus preserving some slack
across kernels. Therefore, any single computation occurs both,
in different SMs and at different time instants, thus avoiding
CCFs in the cores.

C. Diverse Redundancy in the Kernel Scheduler
Both policies, SRRS and HALF, schedule any given thread

block from both kernels at different time instants and to differ-
ent SMs. Therefore, any fault causing an improper execution
of the kernels, may have several consequences: (1) execution
occurs functionally correctly in different SMs to the ones
intended, but still redundantly and with diversity. In this case,
no failure occurs. (2) execution occurs functionally correctly
in different SMs to the one intended, but failing to achieve
diversity (e.g. the same computation occurs redundantly on
the same SM). In this case, let us recall that ISO26262
requirements relate to the ability to avoid a single fault from
causing a failure. Hence, upon a fault in the scheduler, we
must assume that the remaining components are fault-free and
hence, even if their execution is not diverse, no further fault is
expected. (3) execution does not terminate or terminates with
errors for at least one kernel (e.g. by skipping a thread block).
In this latter case, the different behavior of both redundant
kernels (each thread block is executed at different times in
different SMs) makes that even if there is a physical fault in the
scheduler, its behavior will differ across kernels, so evidence
on diversity is enough to meet ISO26262 requirements.

A final important remark in the context of ISO26262
is the fact that we can assume that multiple faults cannot
occur simultaneously as long as faults are timely detected.
In particular, this means that faults of type (2), so with no
functional impact but decreasing diversity, must be detected if
related to a physical fault since, otherwise, a future fault on
a core in a SM could lead to an undetected error, and thus
to a failure. In order to avoid this behavior, the global kernel
scheduler must undergo periodic tests so that physical faults
do not become latent.

D. Appropriateness of the Scheduling Policies
Both scheduling policies, SRRS and HALF, achieve diverse

redundancy for all kernel types. However, each kernel type is
particularly suitable for one of them.
• Short kernels may potentially use many GPU resources

during their (short) execution. Since their execution does
not overlap at all, SRRS is expected to cause no perfor-
mance degradation at all. Instead, HALF could increase
kernel execution time, thus impacting performance.

• Heavy kernels need many GPU resources and have little
or no overlap at all. Hence, SRRS may only slightly
increase their execution time if they overlap a bit. Instead,
HALF could easily increase execution time of a given
kernel noticeably while not allowing the other one to start
due to lack of resources.



0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2.2

b
a
c
k
p
ro

p

b
fs

d
w

t2
d

g
a
u
s
s
ia

n

h
o
ts

p
o
t

h
o
ts

p
o
t3

D

le
u
k
o
c
y
te

lu
d

m
y
o
c
y
te

n
n

n
w

Redundant Kernel Simulation Cycles (GPGPU-Sim 
normalized)

GPGPU-SIM HALF SRRS

Fig. 4: Scheduler simulations using GPGPUSim

• Friendly kernels can run concurrently, so using SRRS
could cause significant execution time increase due to
their serialization if a given kernel is unable to exploit all
SMs efficiently. Instead, HALF grants each kernel half of
the SMs, which is the amount of resources they would
use if run concurrently without explicit control for the
sake of diversity.

Overall, SRRS is the most convenient policy for short and
heavy kernels, whereas HALF fits friendly kernels. Since
kernel classification is performed during the analysis phase
of the system, the particular policy to use for each one can
be decided before system deployment, so that each kernel is
executed with the most convenient policy during operation.
Note that this implies that specific means are required to select
the global kernel scheduler policy during operation, which we
foresee as feasible since it is not different from other recon-
figurations applied on high-performance components such as
enabling/disabling prefetchers, changing fetch policies, and the
like.

V. EVALUATION

We have implemented the proposed scheduling policies
SRRS and HALF in the latest version of GPGPUSim [11]
(version 3.2.2). The GPU modelled with this simulator consists
of 6 SMs. In order to evaluate our solutions, we use the
Rodinia benchmark suite [12], [13]. We have modified Rodinia
benchmarks by implementing redundant kernel execution and
output comparison, as required to enable ISO26262 compliant
redundant execution, and simulated them on GPGPUSim.

For implementing SRRS and HALF in GPGPUSim [11],
we have modified the default scheduling policy according to
the requirements that each proposal imposes to the way the
available SMs have to be assigned. For HALF, we use the
default scheduling policy implemented in the GPGPUSim and
restrict each kernel execution to 3 dedicated SMs. We compare
the performance of SRRS and HALF with the one obtained
with the default GPGPUSim scheduler that can allocate all
GPU SMs (6) to the kernels without any constraint.

A. Simulation Results
Results of the simulated time only for the kernel execution

for each policy can be seen in Figure 4. Due to the costly
executions on the simulator, we evaluated a subset of the
benchmarks. In particular, we inspected them and identified
that most of them include friendly kernels. Thus, running
additional experiments does not provide further insights. In
general, the performance overheads of the proposed scheduler

0.E+00

1.E+03

2.E+03

3.E+03

4.E+03

5.E+03

6.E+03

7.E+03

8.E+03

9.E+03

1.E+04

Ex
ec

u
ti

o
n

 T
Im

e 
(m

s)

Baseline Redundant Serialized

Fig. 5: SRRS implementation by serializing redundant kernels

policies are not very high in comparison with the default
scheduler (except for myocyte). In particular, HALF policy
performance overheads are negligible for 9 out of the 11
benchmarks analyzed and only 10% in the worst-case (lud).
The results for the SRRS policy are slightly worse due to
the extra overheads that this policy incurs to perform the
serialization. For SRRS, performance overheads can be up
to 99%. In general, kernels are friendly or short and, if
they are short, they also require at most half of the SMs.
Hence, by restricting them to use half of the SMs with
HALF, performance penalty is in general very low. Instead,
serialization imposed by SRRS increases their execution time.
The only exception are bfs and backprop, which have very
short kernels requiring more than half of the resources. Hence,
serialization imposed by SRRS is innocuous, whereas limiting
the number of SMs with HALF increases execution time.
However, since kernel execution time is much lower than the
execution time of the CUDA commands to launch the kernels,
the relative impact of such increase is tiny.

B. COTS GPU Results
Finally, in order to assess the suitability of the proposed

redundant execution in a real environment and understand the
impact of redundant execution w.r.t. non-redundant execution,
we have mimicked the implementation of SRRS on a COTS
GPU. To do so, we serialize the redundant kernels execution
using the CUDA call cudaDeviceSynchronize() that prevents
the execution of further operations until all previous operations
on the GPU have been completed. While such a solution
does not enforce diversity due to the lack of control of the
particular SMs used, it causes the same timing behavior. Note
that mimicking HALF is not possible on the COTS GPU, since
CUDA doesn’t provide control over the SMs used by a kernel.

Figure 5 compares the execution time of end-to-end execu-
tions of the benchmarks with the redundant serialized and no
redundant kernels of the rodinia benchmarks. By running on a
real platform, we could afford running all benchmarks timely.
In particular, we use a system with an AMD Ryzen 7 1800x
CPU, a GTX 1050 Ti GPU which has the same number of
SMs as the simulated platform, and 64GB of DDR4 memory.

The bars in the plot show the result of averaging out 100
executions. As shown in the plot, the redundant execution of
the kernels does not incur significant performance degradation
for the workloads analyzed. In fact, for all the benchmarks
but two (cfd and streamcluster) the impact of redundant
execution is negligible. The main reasons for such behavior
are as follows: (1) the impact of SRRS is, in general, low



as shown in Figure 4; (2) the contribution of the kernel
execution to the total execution time of the benchmark is
relatively low in general; and (3) the cost of sending input and
output data twice, and comparing the outputs of the kernels
in the CPU is also very low in relative terms. In the case
of cfd and streamcluster, the two only notable exceptions to
this behavior, we note that serialization imposed by SRRS
has a relatively significant impact for the execution of the
kernels, and execution time of the benchmarks is largely
dominated by the kernel execution. The latter also makes that
the relative contribution of duplicating input data, transferring
back output data to the CPU twice and comparing outputs is
non-negligible, thus contributing to the execution time increase
w.r.t. the non-redundant version of the benchmark.

VI. RELATED WORK

Lockstep processors like the AURIX [6] or the ARM Triple-
core lockstep [7] implement a number of diversity techniques
such as staggered execution, and layout and floorplan diversity
to ensure the robustness of the systems in the presence of
CCFs. Unfortunately, simple dual-core or triple-core lockstep
processors do not suffice to meet computational and safety
requirements of AD, which calls for more powerful ASIL-
D capable computing platforms. In that respect, GPUs have
already been positioned in the automotive systems market [2],
[14] as a suitable computing platform for AD. In fact,
NVIDIA has recently announced the first functionally safe
autonomous driving platform [4]. However, to achieve ASIL-
D fail-operational capabilities this platform relies on diverse
software implementations of complex software algorithms run-
ning on the CPU, the CUDA GPU, a deep-learning accelerator
and a programmable vision accelerator, which comes at the
expense of drastically increasing design and V&V costs.

A recent work assesses the effectiveness of FPGA, ASIC
and GPU designs for AD applications [15]. While the con-
clusion is that each solution provides a different power/per-
formance tradeoff and hence, the best platform may change
across AD applications, automotive-specific GPU platforms
have already been released, as indicated before. Some authors
show that GPU performance can be improved with some
hardware modifications [16], [17], [18]. The suitability of
using GPUs in the context of safety-critical applications from
the point of view of real-time performance has been recently
assessed in several works [19], [20]. These works show that
current GPU architectures include features that limit the timing
analyzability of the software running on top of these platforms
challenging the timing verification step. However, to the best
of our knowledge, no previous work provides a solution to
enable diverse redundancy by construction in GPUs.

In this paper, we show how relatively simple modifications
in the scheduling policies of COTS GPUs can facilitate achiev-
ing ASIL-D requirements without the need of using fully
redundant systems and thus, significantly containing V&V
costs.

VII. CONCLUSIONS

The use of GPUs for highly-critical autonomous driving
(AD) software poses a number of functional safety require-
ments on the design and utilization of GPUs. While existing
AD-specific GPUs already meet some of those requirements
efficiently, redundant diversity – needed for ASIL-D software
– is not reached efficiently and can only be reached by deploy-
ing heterogeneous software implementations and/or computing
platforms, which jeopardizes cost and efficiency.

This paper proposes minor modifications of the scheduling
policies of GPUs that allow guaranteeing by construction
diverse redundancy, thus reaching ASIL-D compliance effi-
ciently without the need of increasing design and/or procure-
ment costs. In particular, we show how the explicit control of
the SMs used for a given kernel together with the serialization
of redundant execution in some cases allows achieving diverse
redundancy with low cost w.r.t. uncontrolled redundancy.

ACKNOWLEDGEMENTS

This work has been partially supported by the Spanish
Ministry of Economy and Competitiveness (MINECO) un-
der grant TIN2015-65316-P and the HiPEAC Network of
Excellence. Jaume Abella has been partially supported by
the MINECO under Ramon y Cajal postdoctoral fellowship
number RYC-2013-14717. Carles Hernandez is jointly funded
by the MINECO and FEDER funds through grant TIN2014-
60404-JIN.

REFERENCES

[1] International Standards Organization, ISO/DIS 26262. Road Vehicles –
Functional Safety, 2009.

[2] “RENESAS R-Car H3,” https://www.renesas.com/en-
us/solutions/automotive/products/rcar-h3.html.

[3] D. Shapiro, “Introducing Xavier, the NVIDIA AI Supercomputer for the
Future of Autonomous Transportation,” NVIDIA blog, 2016. [Online].
Available: https://blogs.nvidia.com/blog/2016/09/28/xavier/

[4] NVIDIA, “NVIDIA Announces World’s First Functionally Safe
AI Self-Driving Platform,” https://nvidianews.nvidia.com/news/
nvidia-announces-worlds-first-functionally-safe-ai-self-driving-platform.

[5] SAE International, J3016: Taxonomy and Definitions for Terms Related
to On-Road Motor Vehicle Automated Driving Systems, 2014.

[6] Infineon, “AURIX Multicore 32-bit Microcontroller Family to
Meet Safety and Powertrain Requirements of Upcoming Vehi-
cle Generations,” http://www.infineon.com/cms/en/about-infineon/press/
press-releases/2012/INFATV201205-040.html.

[7] X. Iturbe et al., “Addressing Functional Safety Challenges in Au-
tonomous Vehicles with the Arm Triple Core Lock-Step (TCLS) Ar-
chitecture,” IEEE Design and Test, vol. PP, no. 99, pp. 1–1, 2018.

[8] B. Venu et al., “A Fail-Functional Automotive CPU Subsystem Archi-
tecture for Mitigating Single Point of Failures,” in IEEE International
Workshop on Automotive Reliability and Test, 2017.

[9] S. Alcaide et al., “DIMP: A low-Cost Diversity Metric based on circuit
Path analysis,” in DAC, 2017.

[10] NVIDIA, “Fermi. NVIDIA’s Next Generation CUDA Compute Archi-
tecture. White paper,” 2009.

[11] A. Bakhoda et al., “Analyzing CUDA workloads using a detailed GPU
simulator,” in ISPASS, 2009.

[12] S. Che et al., “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in IISWC, 2009.

[13] ——, “A characterization of the Rodinia benchmark suite with compar-
ison to contemporary CMP workloads,” IISWC, 2010.

[14] TESLA, “Full Self-Driving Hardware on All Cars,” https://www.tesla.
com/autopilot.

[15] S.-C. Lin et al., “The architectural implications of autonomous driving:
Constraints and acceleration,” in ASPLOS, 2018.

[16] H. Dai et al., “Accelerate GPU Concurrent Kernel Execution by Miti-
gating Memory Pipeline Stalls,” in HPCA, 2018.

[17] J. T. Adriaens et al., “The case for GPGPU spatial multitasking,” in
HPCA, 2012.

[18] P. Aguilera et al., “Fair share: Allocation of GPU resources for both
performance and fairness,” in ICCD, 2014.

[19] M. Yang et al., “Avoiding Pitfalls when Using NVIDIA GPUs for Real-
Time Tasks in Autonomous Systems,” in ECRTS, 2018.

[20] T. Amert et al., “GPU Scheduling on the NVIDIA TX2: Hidden Details
Revealed,” in RTSS, 2017.


