
High-Level Synthesis of Benevolent Trojans
Christian Pilato1, Kanad Basu2, Mohammed Shayan2, Francesco Regazzoni3 and Ramesh Karri2

1Politecnico di Milano, Milan, Italy
2New York University, New York, NY, USA

3Università della Svizzera italiana, Lugano, Switzerland

Abstract—High-Level Synthesis (HLS) allows designers to cre-
ate a register transfer level (RTL) description of a digital circuit
starting from its high-level specification (e.g., C/C++/SystemC).
HLS reduces engineering effort and design-time errors, allowing
the integration of additional features. This study introduces an
approach to generate benevolent Hardware Trojans (HT) using
HLS. Benevolent HTs are Intellectual Property (IP) watermarks
that borrow concepts from well-known malicious HTs to ward
off piracy and counterfeiting either during the design flow or in
fielded integrated circuits. Benevolent HTs are difficult to detect
and remove because they are intertwined with the functional
units used to implement the IP. Experimental results testify to
the suitability of the approach and the limited overhead.

I. INTRODUCTION

Modern System-on-Chip (SoC) architectures have led to the
demise of the traditional design model for integrated circuits
(IC) in which a company designs, manufactures, tests and
packages all the disparate pieces of the SoC. Instead, design
companies procure third-party IPs and combine them in their
SoC. This IP-reuse paradigm has several benefits. Re-using
IPs is generally cheaper than designing them from scratch,
shortening the design cycle and allowing designers to meet the
rigid time-to-market pressures. Although an IP-based design
has benefits, IP protection becomes an important concern.
IP watermarking is a technique to protect the rights of the
IP vendor [1]. IP watermarking hides a “signature” in the
IP without altering the main function of the design. This
“signature” can be verified later, for instance, during litigation
to determine the real designer.

In parallel, the complexity of SoC architectures is pushing
towards effective design methodologies, such as high-level
synthesis (HLS) [2]. HLS allows engineers to use automatic
tools to translate high-level descriptions into register-transfer
level (RTL). An HLS-based design serves multiple purposes
[3]. Complex functionalities can be described in software and
generated during HLS. By translating software into RTL, the
design costs and also some design errors can be reduced [4].

We propose an approach that, on one side, borrows concepts
from Hardware Trojans (HTs) to create IP watermarks and, on
the other side, raises the abstraction level to HLS. Hardware
Trojans are malicious and deliberate design modifications,
which are inserted by an adversary. A class of them reveals
under rare conditions. Our proposed method is similar but
with a benign effect. So we call this alteration benevolent HT.
We automate the generation of these HT-based watermarks by
extending a traditional HLS flow.

After discussing prior research on IP watermarking and
HLS-based secure design (Section II) and the useful back-
ground on IP watermarking, HTs, and HLS (Section III),

TABLE I: Comparison of Watermarking Techniques.
Technique Level Ref. Overhead Dispersal Verification

Graph coloring Synthesis [1] High High Difficult
FSM state-based Synthesis [5], [6] High High Difficult
FSM transitions Synthesis [7], [8] High High Difficult
Scan-chains DFT [9], [10] Low Low Easy
Hybrid Synth+DFT [11] High Low Difficult
Insertion-based PnR [12] Low Low Destructive
Multivariate sign HLS [13] High High Easy

we present our major contributions. First, we develop the
microarchitecture of a benevolent HT used as watermark
(Section IV). Then, we describe an extended HLS flow to
automate the insertion of benevolent HTs (Section V). Finally,
we present our experimental results (Section VI) and conclude
the paper (Section VII).

II. RELATED WORK

A. IP Watermarking Techniques

Table I compares existing watermarking techniques, acting
at different levels of the design flow. These methods can be
roughly classified into two groups – Finite State Machine
(FSM)-based or scan chain-based. FSM-based watermarks
take advantage of undefined transitions [7], [8] or undefined
states [5], [6] to create a unique sequence, which does not
interfere with the normal chip functioning. These watermarks
incur high area overhead and are susceptible to removal attack.
Scan chain-based watermarks, which use re-ordering of scan
chains [9], [10], can lead to routing congestion. Our proposed
approach raises the abstraction level, operating during HLS.
This allows us to reuse functional units and minimize the
overhead. The signature verification is enabled in a way similar
to the one used to activate HTs.

B. Security-Aware HLS

Recent research explores how HLS can design IP com-
ponents with enhanced security features, while minimizing
the overhead [14]. HLS-based techniques have been used to
build a trustworthy system using untrustworthy third party IPs
(3PIPs) [15], [16]. HLS was also used for HT detection and
recovery [13], [17]. In this paper, we aim at implementing
anti-piracy techniques using HLS.

III. BACKGROUND

A. Threat Model: IP Infringement

Illegitimate use of IP components creates serious economic
damages to IP providers. Our threat model assumes that the
adversary has access to the netlist or the layout files to
reverse engineer, copy, and sell the IP without authorization.



High-Level Synthesis

RTL 
DesignBinding

Scheduling

Controller 
Synthesis

Compiler 
phase

HLS 
phase

Backend
phase

Input 
values

C code

Simulation-Based Verification

Compiler
Passes

Code 
Generation

Testbench

Fig. 1: HLS flow with simulation-based verification.

IP watermarking attempts to protect against IP infringement.
If the malicious party is unaware of the watermark, she will
copy it along with the original design. The watermark can be
used later to identify the real IP author during litigation.

B. Hardware Trojans

A HT is a malicious and deliberate alteration of the original
design. A HT is usually composed of two components: trigger
and payload [18]. The trigger is the part that activates the
Trojan. It is usually a rare event. The payload implements the
malicious effect, such as leakage of sensitive data or denial of
a service. A HT should be hard to identify to avoid detection
and removal. The HT designer should find a condition that is
hard to identify and hide the resulting trigger logic into the
design. The payload should be buried in the design as well,
for example by reusing the existing logic.

C. High-Level Synthesis

HLS starts with a software description and transforms it
to an RTL. The RTL description is the starting point for
the subsequent stages of the design flow like logic synthesis,
placement and routing. HLS has three essential steps as por-
trayed in Figure 1. In the first step, state-of-the-art compilers
perform optimizations. In the second step, HLS creates the
RTL microarchitecture. The third step generates the RTL in
an HDL of choice. Verification of the RTL using simulation
vectors ensures that it adheres to the software description.

The two principal units created by an HLS design flow
are the controller and the datapath. In each clock cycle, the
controller issues commands to the datapath to control the logic.
The datapath includes all functional units in the design plus the
registers that save the temporary values of the intermediate cal-
culations. Multiplexers determine the computation pathways
corresponding to the control inputs.

IV. IP WATERMARK USING TROJAN DESIGN
METHODOLOGIES

Design principles used to insert malicious HTs can be re-
used to design watermarks that we call benevolent HTs. The
main difference with malicious HT insertion is that, in case of
IP watermarking, the IP designer is inserting the alteration,
identifying rare conditions and dispersing the logic, while
the attacker aims at achieving the malicious effect, i.e., the
detection and removal of the HT. We base our watermark1

1In the rest of the paper, we will use watermark and hardware Trojan (HT)
interchangeably.

design on the observation that a circuit has two modes of
operation: functional and test. While the functional mode
concerns itself with the normal system functionalities, the test
mode is used to perform manufacturing test on the real device
(e.g., to detect manufacturing defects). The system does not
perform any real functions in the test mode. We design an HT
which is active only in test mode. The HT will not interfere
with the IP functionality because testing is explicitly requested
by the user. We explore two methods to activate the test mode:
1) explicit: we directly use an input pin (e.g., an unused bit

of the configuration register) or a scan-chain flip-flop.
2) implicit: we provide a specific input sequence to activate

the test mode.
The identification of particular sequence of inputs to activate
the test mode (in case of implicit) is easier in case of benev-
olent HTs. This is because the IP designer, who is in charge
of inserting the HT, is fully aware of the IP functionality. If
a design has all input combinations exhaustively utilized, this
method requires an additional condition. This approach uses
the same logic used for implementing the IP functionality, as
described in Section V-B. Our HT-based watermarks do not
affect IP verification or validation, which is performed with
traditional methods.

A. Properties of IP Watermarks

Effectiveness of a watermark is often evaluated by analyzing
the following properties [8], [19], [20], [21]:
1) Ownership credibility: The IP ownership should be easy

to verify with minimum chance of collisions with signature
generated with other methods.

2) False positive rate: There should not exist different input
sequences that generate the same signature.

3) Resist removal: It should be hard to remove.
4) Resist re-synthesis: If the watermark is completely created

by signals which are redundant to the function, logic
synthesis optimizations may remove the watermark.

5) Resist a new watermark: Even if an IP infringer can
include his/her watermark on top of the owner’s watermark,
the original watermark should be still verifiable.

6) Resist denial: An IP infringer may reduplicate a water-
mark, referring to it as a chance occurrence with numerous
trial-and-errors. This should not be allowed.

7) Design metrics degradation: The IP watermark should
have a minimal impact on the design metrics (e.g., minimal
resource overhead).

To summarize, a watermark should be stealthily embedded in
the design, well dispersed, incur a low design overhead and
have minimal side-channel effects. As seen in Table I, existing
IP watermarks do not comply with all criteria. On the other
hand, HT-based watermarks are a promising solution that can
be used to satisfy these properties.

V. HLS-BASED DESIGN OF BENEVOLENT HTS

We extend the classic HLS flow to insert benevolent HTs
as shown in Figure 2. Since the HTs must not interfere with
the IP execution during functional mode, we insert them after
the baseline microarchitecture has been defined, i.e., before
the backend steps. The trigger implementation, explained in



C code

HLS 
phase

Compiler
phase

Backend 
phase

HT 
insertion 

RTL 
design

Trigger 
Info

HT 
C code

Output 
GenerationDesign time

Test mode

Simulation
and matching

Input 
values

Fig. 2: Extended HLS flow to insert benevolent HTs.

Section V-A, can use any of the two methods described in
Section IV, while the payload is generated on the top of
the existing functional units as described in Section V-B. As
output, the extended HLS methodology produces the HDL
description of the component augmented with the HT-based
watermark ready for logic synthesis. We discuss the proof of
authorship of our watermarking solution (Section V-C) and
possible protection techniques (Section V-D).

A. Trigger Generation

For explicit activation, we use a combination of the con-
figuration bits to specify whether the IP is in test mode or
not. The attacker does not know this combination and he/she
has to reconstruct it. When this sequence of bits is set, the IP
switches to test mode and the HT is activated. Thus, in order
to verify the watermark, the user needs to just set this bit and
provide the desired input sequence needed for validation.

For implicit activation, we add a simple FSM to the design
that analyzes the set of input values provided during normal
execution until the specific trigger sequence is recognized.
The particular sequence is specified by the IP designer as an
additional input to the extended HLS flow (Trigger Info, as
shown in Figure 2). Once the FSM identifies the sequence, the
circuit switches from functional to test mode. As discussed in
Section IV, no valid computation is done in test mode. Hence,
the input sequence must be of no interest and the IP results
must be discarded.

Remarks: The explicit activation does not depend on the
specific IP to validate. It leverages the configuration register,
which is already present in the chip. Therefore, this method
incurs no extra hardware overhead. Unlike malicious HTs, the
trigger sequence is not inserted by the attacker but decided by
the designer. Therefore, it is easier for the designer to identify
the trigger during watermark verification, while it is harder
to match during normal execution. The hardware overhead of
the trigger in case of implicit activation depends on the length
of the input sequence to detect.

B. Payload Generation

The payload is added to the microarchitecture generated by
HLS to carry out its watermarking function while limiting the
overhead. It re-uses the functional units of the real design to

implement complex sequences of operations and generate the
output signature, i.e., a value returned by the IP and read by
the user. Since the complexity of the IP function can be high
and must differ from the watermarking function, we developed
an algorithm to select a subset of the IP operations to perform
during watermarking. The payload microarchitecture is then
generated by reusing the functional units, interconnections and
registers to minimize the area overhead.

Our approach is based on the following observations:
• It is not necessary to watermark all modules of the design.

We restrict the analysis only to a subset of the modules to
minimize the overhead.

• The payload function should be complex enough to create a
unique signature. The payload should involve a significant
subset of IP operations.

• The watermarking procedure should be self-contained, using
only internal functional units and limiting interactions with
the system. We exclude operations with side-effects (e.g.,
accesses to external memories) from the payload.

We generate the payload as follows:
1) We identify a subset of modules to watermark by analyz-

ing the call graph2 of the input C code. There are many
ways to select the functions to embed the IP watermark:
e.g., we can identify the functions with the largest number
of operations or the most frequently executed ones.

2) We list all functions in reverse topological order. When
analyzing one module, all the submodules are analyzed
to properly propagate input and output values.

Starting from the innermost function, all the functions
are analyzed. If the current function must include the IP
watermark, we create the corresponding payload function as
follows. We start by creating a copy of the current Control
Data Flow Graph (CDFG) and a “random key” that has as
many bits as the number of CDFG operations. This vector
represents the list of operations to keep or remove in the
payload function. Each bit of the key is randomly set to
0/1 with probability pw (provided by the designer before
starting HLS), while control operations are always set to 1 (to
avoid changing the behavior) and side-effect operations, like
memory operations, are always set to 0 (to eliminate them).
When eliminating an operation, the corresponding output is
generated by taking one of its inputs with equal probability.
The value produced by a memory-read operation is substituted
by a random constant, while the results of all memory-store
operations of a function are added and propagated to the
output port. This modification may require extra functional
units or registers if all adders are already used in the clock
cycles where the operations are needed. The payload controller
sits between the functional controller and the datapath. The
resulting microarchitecture is shown in Figure 3, where some
control signals are controlled by the functional controller (and
the payload controller does not change them) and separate
control signals are handled solely by the payload controller.
One can multiplex the signals with different values between
the function and payload controllers.

2The call graph represents calling relationships between subroutines.



Payload Controller Datapath
Functional
Controller

input_binput_a

FSM

trigger

start

Fig. 3: Separate function and payload controllers.

The activation of the functional controller is filtered by the
payload. When start is high and trigger is low, the
functional controller executes, bypassing the payload. When
trigger is high, the functional controller is immobilized
and the payload controller controls the datapath.

Each module must be connected to its outermost function to
provide input values and to propagate the output as shown in
the microarchitecture example of Figure 4. The module inputs
are directly connected to the input ports of the submodules
(with multiplexers having the trigger signal as selector). If
the function has no return operation, we add an additional
output port to propagate the output values up to the top module
so that it can be read during test mode (see Module B of
Figure 4). The output values are combined to have a single
return value for each module, as shown in Module A of
Figure 4. When propagating this signal, an output port is added
to each function above the modified module in the call graph
hierarchy or, if the modules have a return port, multiplexers
are added to steer the logic based on the trigger signal.

After establishing the payload function, we pre-compute
the output values produced by the newly-generated payload
CDFG. These golden values will be later used for signature
verification. We recreate the resulting payload function in
C code (HT C Code in Figure 2). This code executes on
the pre-defined collection of input values to establish the
corresponding golden outputs (Output Generation in Figure 2).

Remarks: Since the synthesis tool is oblivious to the
functions needed for “useful” computation, the watermark is
robust to re-synthesis. The watermark has low overhead since
it reuses existing functional units to compute the signature,
limiting the congestion. Application of input trigger signals
can furnish the output values associated with the payload.
This helps us to verify the watermark since the golden val-
ues are generated on the payload CDFG resulting from the
simplification.

C. Analysis – Proof of Authorship

The proof of authorship of a watermark (Pc) is usually
referred as the “probability of collisions” [22]. Essentially,
Pc is the probability of creating a design that carries our
watermark by coincidence. In this section, we compute an
upper bound on Pc and we show that is convincingly low.

In our HT-based watermarking, there is a collision if a
watermark is created with the same payload CDFG. We
assume that the designer most likely identify the same function
to watermark since it is deterministic (e.g., the function with
most operations). We also assume that control operations are
always maintained and operations with side effects are always
removed. Let N be the number of operations of the function

Module A
(with IP watermark)

Module B (with IP 
watermark)

Module C (without IP 
watermark)

input_a input_b

input_c

return

return

input_d

return

+ mux

trigger

Fig. 4: Connections between modules implement a distributed
payload (in red). This includes return port on module B.

to watermark, Nc be the number of control operations, and
Ns be the number of operations with side effects, the number
of remaining operations is No = N −Nc −Ns. For these op-
erations, we create a random vector to select which functions
to retain. Let pw be the probability to retain each operation in
the payload function. The probability of collision Pc can be
computed as Pc = pNo

w . This probability is low with a high
number of operations No.

Remarks: The “random key” creates a different payload
function during each HLS process and the probability to
replicate it is extremely low (see the results in Section VI-A).

D. Protecting the Benevolent HTs

To impede HT disclosure and prevent a malevolent IP
customer from bypassing the watermark, we disperse the HT
payload over numerous functions and re-use functional units
(see Section V-B). Proper select signals are used to control the
operations to execute in each mode. However, an attacker can
isolate the payload controller and attempt to reverse engineer
the watermark by following the trigger signal.

To further thwart the reverse engineering, we merge the
HT payload and the functional controllers of the IP. Merging
the states of the two controllers is simple because each state
of the functional controller has a corresponding state in the
payload controller that controls the pathways depending on
the operations of the watermarking function.

An alternative approach for the benevolent HT involves
introducing a black box in the design where one can insert
the payload controller, provided that it can be completely
isolated from the rest of the design. This is relevant for
FPGA architectures. The IP provider gives the RTL of the
IP simultaneously with the directives to set up a bitstream
partition of a given size and precise positions for the netlists.
The IP buyer receives no other details. The IP consumer
receives the payload controller as a partial FPGA bitstream, as
in a framework for hardware digital rights management in [23].

Remarks: Since the payload function is intertwined with
the datapath and the two controllers are merged together,
isolating the watermark to reverse engineer and remove it
is harder. Since most of the functional units are used in
both functional and test modes, we expect the side-channel
fingerprints to be very similar in the two cases.



VI. EXPERIMENTAL EVALUATION

We insert benevolent HTs during HLS using the BAMBU
open-source HLS framework [24]. BAMBU accepts a C-based
specification and synthesizes to different FPGA targets. We
implemented the benevolent HT insertion method in Section V
as an additional pass on the HLS results generated by BAMBU,
before generating the structural RTL microarchitecture. To
evaluate the overhead introduced by our HT-based watermarks,
we targeted a Xilinx Virtex-7 FPGA (xc7vx485t) at 100 MHz
and we analyzed the resources required after logic synthesis
using Xilinx Vivado 2018.2. We validated the function of the
watermark by comparing software results with the ones after
RTL simulation using Mentor ModelSim SE 10.3.

We employed BAMBU and its modified version to create
IP components for selected kernels from CHStone [25] and
MachSuite [26] benchmark suites. All benchmarks are spec-
ified in C. Table II reports the hardware resources used by
the baseline IP. Default HLS options have been used for all
benchmarks except backprop. In this case, we allocated
all data to the external memory due to synthesis problems.
The resulting IP implementation does not use FPGA BRAM
resources but exchange data with the external memory.

We select one function per benchmark to inject a benevolent
HT. For each benchmark, we select the function with most
operations to minimize the probability of collisions while
keeping the overhead low. The number of operations N of
the function to watermark is reported in Table II (Ops). Since
the payload is identical for the two types of HTs (explicit
and implicit), we evaluated HTs with implicit activation to
assess the cost of the trigger circuitry (absent in the explicit
activation). For each benchmark, we chose a sequence of three
32-bit values as a trigger to switch on the HT, while the
probability pw of keeping each operation is set to 0.75. This
is a reasonable trade-off between the probability of collisions
and the resulting area overhead.

A. Evaluating the Watermarking Function

BAMBU generates HDL ready for logic synthesis and
hardware test benches for simulation-based validation on a
multitude of inputs furnished by the user. We used these
artifacts to evaluate the effectiveness of our watermarking
method by analyzing the properties presented in Section IV-A.

In the first set of experiments, we did RTL simulations on
random sequences of input values to test Trojan activation
based on the three 32-bit trigger sequences. For each bench-
mark, we created 1,000 random combinations of significant
inputs and none of these sequences activated the HTs. The IP
consistently worked in functional mode with no performance
overhead and is unlikely to turn on the HTs by chance.

We presented the input sequences to each benchmark to
simulate the IP in test mode. After each simulation, we
checked the simulation results against the golden ones ob-
tained in software after the HT generation. The results matched
in all instances. Different output values are generated for
each sequence of inputs (False positive rate). We repeated
HLS+simulation several times to generate different payload
variants based on the random key. Given each design and
each sequence of inputs, different output values are always

TABLE II: Characteristics of IP after HLS+FPGA synthesis
and number of operations of the watermarked function.

Benchmark LUT FF DSP BRAM Ops

adpcm [25] 35,638 10,889 102 104 622
backprop [26] 10,126 8,655 59 0 725
fft [26] 5,309 4,149 40 0 725
gsm [25] 5,145 2,758 38 18 369
jpeg [25] 36,678 15,130 18 174 1,280
mips [25] 3,086 1,040 8 14 328
motion [25] 7,662 2,919 0 26 350
viterbi [26] 763 987 2 0 103

generated after each HLS process (Ownership credibility),
making it almost impossible to replicate with trial-and-errors
(Resist denial). Indeed, the probability of collisions Pc ranges
between 10−12 (viterbi, which is the benchmark with less
operations) and 10−150 (jpeg, which is the benchmark with
most operations) (Proof of authorship).

We performed experiments on logic synthesis to testify that
the payload is hard to remove. Specifically, we synthesized
the HDL resulting from our extended HLS flow and no
simplifications are performed on the payload even with all
optimizations active (Resist re-synthesis). The IP watermark
has a minimal resource overhead, as discussed in Section VI-B
(Design metrics degradation).

Logic equivalence checkers (LEC) cannot be used to detect
HT-based watermarks. The benevolent HT is embedded by
the designer, who is aware of the modifications, while the
attacker has no golden model of the high-level specification.
The designer can discount the LEC warnings corresponding
to the HT-based watermarks. Other LEC indications can be
addressed by the designer [27] (Resist removal).

Finally, an IP infringer may apply existing low-level wa-
termarking methods on the resulting chip design to claim IP
ownership. However, our watermarking procedure operates at
the functional level by embedding a payload function into the
design. Therefore, our watermark is not compromised by the
extra watermark and it can be still verified (Resist a new
watermark).

B. Resource Overhead
We performed HLS+FPGA synthesis of each IP design

with its HT-based watermark to test the resource overhead
compared to the baseline implementation. We conducted these
experiments with separated and merged functional and payload
controllers (see Section V-D). The trigger modules use few
flip-flops (FF) and look-up tables (LUT) to encode the states
and the transition function, resulting in a small overhead
(∼1%).

Figure 5(a) shows the overhead of LUTs for the payload
with separate and merged controllers. Most of the overhead
is due to the extra logic needed in the datapath to realize
the payload function. The overhead increases as we decrease
the probability pw to keep operations in the payload func-
tion since more logic (i.e., multiplexers) must be created to
skip the operations and propagate the chosen input value to
the corresponding register. The overhead is small (∼8% on
average). In the largest benchmarks (adpcm and jpeg), the
LUT overhead is around 3% even with separate controllers.
The overhead is large in three benchmarks: motion, mips



Separated payload controller
Merged payload controller

0%

5%

10%

15%

20%

25%

adpcm backprop fft gsm jpeg mips motion viterbi

(a) Look-up Tables (LUT)

Separated payload controller
Merged payload controller

0%

2%

4%

6%

8%

adpcm backprop fft gsm jpeg mips motion viterbi

(b) Flip-Flops (FF)

Fig. 5: Resource overhead of HT-based IP watermarks with separate and merged controllers: (a) LUT, (b) FF.

and viterbi. In motion, there are several bitwise opera-
tions. When eliminated, the multiplexers needed to drive the
signals have a larger impact. mips and viterbi are small
benchmarks and the additional resources contribute to a greater
overhead, especially due to the additional controller. Merging
the controllers has no impact on the datapath and also reduces
the resources required to control the functional units. This
optimization has more impact on small benchmarks.

Figure 5(b) shows the overhead of FFs for the payload with
separate and merged controllers. The overhead is small in
all cases (∼3% even with separate controllers). In control-
dominated designs (like gsm and mips), the FF overhead is
larger (∼6-8%) since the datapath is small. In data-dominated
designs (jpeg), controller FFs have a limited impact (∼1%).
In case of separate controllers, we require few more FFs to
encode the states in the payload controller.

VII. CONCLUSIONS AND FUTURE WORK

This paper offered a technique to implement IP water-
marking using benevolent HTs. These HTs are blended into
the IP component during HLS by reusing the resources,
which reduced the hardware overhead. We suggested two
alternative triggers based on either an external pin attached
to the configuration registers and scan chains and on a pre-
defined string of inputs. On average, the resource overhead
for the offered technique is around 8% and 3% for LUTs
and FFs. Benevolent HTs will be combined with other IP-
protection countermeasures (e.g., chip obfuscation) to provide
high robustness against state-of-the-art security properties.

ACKNOWLEDGMENT

This work is supported in part by National Science Foun-
dation (NSF) (A#: 1526405).

REFERENCES

[1] F. Koushanfar, I. Hong, and M. Potkonjak, “Behavioral synthesis tech-
niques for intellectual property protection,” ACM Trans. Des. Autom.
Electron. Syst., vol. 10, no. 3, pp. 523–545, 2005.

[2] Xilinx Inc., “Vivado design suite user guide - designing with IP
(UG896),” 2017.

[3] R. Nane et al., “A survey and evaluation of FPGA high-level synthesis
tools,” IEEE Trans. CAD Integr. Circuits Syst., vol. 35, no. 10, pp. 1591–
1604, 2016.

[4] M. Gupta, “Using 3rd party ip in asic/soc design,” 2017.
[Online]. Available: https://www.design-reuse.com/articles/31313/using-
3rd-party-ip-in-asic-soc-design.html

[5] A. L. Oliveira, “Techniques for the creation of digital watermarks in
sequential circuit designs,” IEEE Trans. CAD Integr. Circuits Syst.,
vol. 20, no. 9, pp. 1101–1117, 2001.

[6] M. Lewandowski et al., “A novel method for watermarking sequential
circuits,” in Proc. of HOST, 2012, pp. 21–24.

[7] I. Torunoglu and E. Charbon, “Watermarking-based copyright protection
of sequential functions,” IEEE Journal of Solid-State Circuits, vol. 35,
no. 3, pp. 434–440, 2000.

[8] A. Cui et al., “A robust FSM watermarking scheme for IP protection
of sequential circuit design,” IEEE Trans. CAD Integr. Circuits Syst.,
vol. 30, no. 5, pp. 678–690, 2011.

[9] A. Cui and C.-H. Chang, “Intellectual property authentication by wa-
termarking scan chain in design-for-testability flow,” in Proc. of ISCAS,
2008, pp. 2645–2648.

[10] A. Cui and C.-H. Chang, “A post-processing scan-chain watermarking
scheme for vlsi intellectual property protection,” in Proc. of APCCAS,
2012, pp. 1–4.

[11] A. Cui, C.-H. Chang, and L. Zhang, “A hybrid watermarking scheme
for sequential functions,” in Proc. of ISCAS, 2011, pp. 2333–2336.

[12] B. Le Gal and L. Bossuet, “Automatic low-cost ip watermarking
technique based on output mark insertions,” Design Automation for
Embedded Systems, vol. 16, no. 2, pp. 71–92, 2012.

[13] A. Sengupta and D. Roy, “Antipiracy-aware ip chipset design for ce
devices: A robust watermarking approach [hardware matters],” IEEE
Consumer Electronics Magazine, vol. 6, no. 2, pp. 118–124, 2017.

[14] C. Pilato et al., “Securing hardware accelerators: a new challenge for
high-level synthesis,” IEEE Embedded Systems Letters, 2017.

[15] J. Rajendran, H. Zhang, O. Sinanoglu, and R. Karri, “High-level
synthesis for security and trust,” in Proc. of IOLTS, 2013, pp. 232–233.

[16] J. J. Rajendran, O. Sinanoglu, and R. Karri, “Building trustworthy
systems using untrusted components: a high-level synthesis approach,”
IEEE Trans. on VLSI Syst., vol. 24, no. 9, pp. 2946–2959, 2016.

[17] X. Cui et al., “High-level synthesis for run-time hardware trojan detec-
tion and recovery,” in Proc. of DAC, 2014, pp. 1–6.

[18] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE design & test of computers, vol. 27,
no. 1, 2010.

[19] X. Huang et al., “A new watermarking scheme on scan chain ordering
for hard IP protection,” in Proc. of ISCAS, 2017, pp. 1–4.

[20] A. B. Kahng et al., “Constraint-based watermarking techniques for
design IP protection,” IEEE Trans. CAD Integr. Circuits Syst., vol. 20,
no. 10, pp. 1236–1252, 2001.

[21] A. T. Abdel-Hamid et al., “IP watermarking techniques: Survey and
comparison,” in Proc. of IWSOC, 2003, pp. 60–65.

[22] A. B. Kahng et al., “Constraint-based watermarking techniques for
design IP protection,” IEEE Trans. CAD Integr. Circuits Syst., vol. 20,
no. 10, pp. 1236–1252, Oct. 2001.

[23] M. Barbareschi, A. Cilardo, and A. Mazzeo, “Partial FPGA bitstream
encryption enabling hardware DRM in mobile environments,” in Proc.
of CF, 2016, pp. 443–448.

[24] C. Pilato and F. Ferrandi, “Bambu: A modular framework for the high
level synthesis of memory-intensive applications,” in Proc. of FPL, Sep.
2013, pp. 1–4.

[25] Y. Hara et al., “Proposal and quantitative analysis of the CHStone
benchmark program suite for practical C-based high-level synthesis,”
Journal of Information Processing, vol. 17, pp. 242–254, 2009.

[26] B. Reagen et al., “MachSuite: Benchmarks for accelerator design and
customized architectures,” in Proc. of IISWC, Oct. 2014, pp. 110–119.

[27] A. Saifhashemi, H.-H. Huang, P. Bhalerao, and P. A. Beerel, “Logical
equivalence checking of asynchronous circuits using commercial tools,”
in Proc. of DATE, 2015, pp. 1563 – 1567.


