1905.12974v3 [cs.CR] 12 Feb 2020

arxXiv

ExplFrame: Exploiting Page Frame Cache for Fault
Analysis of Block Ciphers

Anirban Chakraborty Sarani Bhattacharya Sayandeep Saha Debdeep Mukhopadhyay
Indian Institute of Technology Indian Institute of Technology Indian Institute of Technology Indian Institute of Technology

Kharagpur, India Kharagpur, India
anirban.chakraborty @iitkgp.ac.in tinni1989@gmail.com

Abstract—Page Frame Cache (PFC) is a purely software cache,
present in modern Linux based operating systems (OS), which
stores the page frames that are recently being released by the pro-
cesses running on a particular CPU. In this paper, we show that
the page frame cache can be maliciously exploited by an adversary
to steer the pages of a victim process to some pre-decided attacker-
chosen locations in the memory. We practically demonstrate an
end-to-end attack, ExplFrame, where an attacker having only
user-level privilege is able to force a victim process’s memory
pages to vulnerable locations in DRAM and deterministically
conduct Rowhammer to induce faults. We further show that these
faults can be exploited for extracting the secret key of table-based
block cipher implementations. As a case study, we perform a full-
key recovery on OpenSSL AES by Rowhammer-induced single
bit faults in the T-tables. We propose an improvised fault analysis
technique which can exploit any Rowhammer-induced bit-flips in
the AES T-tables. To the best of our knowledge, this is the first
work highlighting the vulnerabilities of PFC and fault analysis
of block cipher using Rowhammer completely from user-space.

Index Terms—Page Frame Cache, Buddy Allocator, OpenSSL,
Rowhammer, DRAM, Fault Analysis, ECC

I. INTRODUCTION

Modern operating systems (OS) are optimized to obtain
the best possible performance and throughput on a given
hardware architecture. The memory allocation mechanism of
OS plays a crucial role in determining the overall performance
of a system. The efficiency of this OS subsystem is mainly
attributed to its intelligent usage of caching, which helps in
taking advantage of the locality of reference (temporal and
spacial) in the memory hierarchy.

Memory allocation subsystems in modern Linux-based OS
use Buddy Allocation scheme to allocate memory pages to
different processes. When a process requests for memory, the
buddy allocator allocates the required amount of memory in
the form of fixed sized page frames. As the process terminates,
the allocated page frames are added back to the memory pool.
To boost memory performance, the kernel maintains a per-
CPU page frame cache (PFC) which is a small software cache
storing recently de-allocated page frames. Upon the arrival of
a new request, the page frames inside the PFC are the first to
serve it, before going to the actual memory pool. Moreover,
this allocation scheme is oblivious to the processes and, in
practice, the pages left by one process (in PFC) can readily
be re-allocated to another process.

sahasayandeep @cse.iitkgp.ac.in

Kharagpur, India Kharagpur, India

debdeep@cse.iitkgp.ac.in

The aim of this work is to maliciously exploit the afore-
mentioned, seemingly benign, memory caching policy defined
in the buddy allocator. We exploit the fact that the allocation
of pages from PFC does not take the identity of the processes
into account. Using this property of the PFC, we show that
an adversary, having only user privilege, can indirectly steer
the pages of a victim process to some pre-determined mem-
ory locations inside the Dynamic Random Access Memory
(DRAM). Restricting a victim process to operate in some
attacker-controlled memory locations may have severe security
implications. Here we show that even mathematically robust
cryptosystems can fall prey to this vulnerability.

One of the most prominent DRAM vulnerabilities known till
date is the Rowhammer bug [1]]. It is a phenomenon observed
in most of the modern commercial DRAM modules where
repeated access to a particular row induces bit flips in one
of the adjacent rows. However, inducing precise faults using
Rowhammer is a challenge due to the uncontrollability of flip
locations which is specific to a DRAM instance. In practice,
some of the rows might show higher chances of getting faulted
than others. However, if the pages of a victim process get
assigned to a Rowhammer vulnerable location, faults can be
induced in the process in a regular manner. Quite obviously,
PFC becomes a nice tool in this context as it can force the
pages of a victim to some attacker-decided memory regions.
Putting it differently, Rowhammer provides a concrete use case
for showing the exploitability of the PFC allocation scheme. In
this paper we present an end-to-end practical realization of the
aforementioned idea of combining PFC with Rowhammer. The
proposed attack strategy, called ExplFrame, has been utilized
to launch a practical key recovery attack on the T-table-based
AES implementation from OpenSSL 1.1.1 [_2].

Previous work in [3]-[5] have exploited Linux’s Buddy
Allocation system to perform memory massaging for con-
ducting Rowhammer. In particular, they exhaust the mem-
ory pages during templating phase, which is dependent on
the allocation policy of the Buddy Allocator. Our proposed
ExplFrame does not rely on the allocation policy; rather we
exploit the principle of caching in one of the components of
memory allocation subsystem, the PFC. Most importantly, the
exploitation of PFC, to the best of our knowledge, has never
been used as an attack vector before. It is worth mentioning
that table-based AES implementations have previously been

targeted with Rowhammer-induced faults in [6]]. The main idea
is to corrupt an entry inside the T-Table and thereby create
a statistical bias within AES state, which can be used for
key recovery. However, one immediate advantage of doing
the fault attack with ExplFrame strategy is that it can be
done from user privilege level. In contrast, the attack proposed
in [6] uses pagemap which requires administrative privilege
on modern Linux distributions. Moreover, we observed that
the strategy of fault exploitation in [|6] (called Persistent Fault
Attack or PFA), is limited by the fact that it can only recover
the key if certain specific bits of the T-table get affected
by fault injection [H This being practically infeasible, the
original PFA proposal cannot be used in the present context.
Hence, as a second contribution, we propose a general fault
exploitation methodology called Deep Round Persistent Fault
Attack (DRPFA), which can exploit any Rowhammer-induced
bit flip within the T-table. Further, we comment that Error Cor-
recting Codes (ECC), which are often considered as effective
countermeasures against Rowhammer induced faults [1], are
not sufficient for preventing exploitable information leakage.
We present a brief discussion on this at the end of this paper.

The rest of the paper is organized as follows. We present
a brief background on the memory allocation schemes and
Rowhammer in Sec. [lI} followed by an overview of our attack
ExplFrame in Sec. In Sec. we demonstrate an end-
to-end fault induction method on the T-tables of OpenSSL
AES using ExplFrame. We further provide an improved key
recovery algorithm with the induced faults in Sec. [V] and
experimental results in Sec. ﬂ The applicability of the
attack at different scenarios has been discussed in Sec. [VII
Finally, we conclude in Sec.

II. BACKGROUND

A. Linux memory allocation subsystem

In NUMA (Non-Uniform Memory Access) based OS, each
node E] is divided into a number of blocks called zone. Inside
each memory zone, the allocation process is handled by
the core allocator for Linux, called Buddy allocator. In this
allocation scheme, the pages are clustered into large blocks of
size in power of two. When a request for certain amount of
memory comes from the processor, the algorithm first searches
the blocks of pages to check if the request can be met. If no
blocks of pages are found to meet the demand, block of the
next size is split into half and one half is allocated to the
requesting process. The two smaller blocks thus produced are
called buddies to each other. The process of splitting a block
into half continues until a block of desired size is obtained.
Likewise, when the allocated block becomes free, the buddy
block is also examined. If both the blocks are free, they are
merged together and returned back to their original block size.

I'The reason for this will be explained later in this paper.

2We have informed and shared our findings with Intel Product Security
Incident Response Team.

3NUMA systems classifies memory into nodes. Each node has similar
access characteristics and affinity to one processor.

The coalescing of blocks on de-allocation gives rise to the
name of the allocation scheme.

The OS maintains a page frame cache E] for each memory
zone. This small software cache of recently de-allocated
(released) page frames are used by the Buddy allocator if the
local CPU requests a small amount of memory, typically a few
pages. The presence of page frame cache can significantly
boost up the system performance by taking advantage of
the locality of reference. The OS kernel keeps track of two
watermarks to monitor the size of the cache. Whenever the
number of page frames in the cache falls below the low
watermark, the kernel brings in more page frames from the
buddy system. Similarly, when the number of page frame sur-
passes the high watermark due to release of page frames from
different running and finished processes, the kernel releases
some of the page frames back to the buddy system. It is worth
mentioning that our attack exploits the caching mechanism of
the allocator and is independent of the allocation policy itself.

B. The Rowhammer bug

DRAMs have been constantly scaled down to accommodate
larger number of memory cells into smaller physical space,
thereby reducing the cost-per-bit of memory. However, cram-
ming a large number of DRAM cells in small space leads
to electromagnetic coupling effects among themselves. Owing
to its closely packed architecture, when a particular DRAM
row is accessed consistently and in high frequency, the cells
in the neighbouring rows tend to lose their charge, thereby
inducing bit-flips. This phenomenon is termed as Rowhammer
bug, which has been exploited to launch several devastating
classes of attacks in recent past [3[|-[5].

The driving force behind Rowhammer bug is that specific
DRAM rows must be repeatedly activated fast enough such
that the adjacent rows lose charge. However to achieve this,
the content of the cache memory must be flushed after every
access so that all the requests are served from the main
memory. In x86 architecture, flushing of cache can be achieved
from userspace by the c1f1ush command. This fact indicates
that Rowhammer on standard x86-64 machines does not
require any special privilege for repeatedly activating DRAM
rows. However, in practice, only certain specific regions in a
DRAM chip are found to be vulnerable under Rowhammer,
and it is purely driven by the device physics. In order to
practically induce faults, the target data must be located on
a Rowhammer-vulnerable location in DRAM El Hence, from
an attacker’s perspective, exploiting the Rowhammer bug is
not trivial and creating a deterministic exploit requires certain
other vulnerabilities to be combined with this one.

III. THE EXPLFRAME APPROACH

Continuing our discussion from Linux memory subsystem,
in this section we introduce the security implication of such

4Not to be confused with page cache which contains files read from the
disk, memory-mapped files, shared libraries, etc.

50nce the vulnerable locations are identified, inducing bit-flips in them is
repeatable.

performance improvisation scheme in details and propose
ExplFrame, which utilizes PFC for performing Rowhammer
almost deterministically on a victim process.

A. Exploiting Page Frame Cache

Page Frame Cache stores the recently freed pages from
all processes running on a particular processor core. The
primary intention of PFC is to boost the performance of the
memory allocation subsystem by keeping recently used page
frames close to the processor, in case the process requests
for additional memory in near future. However, the security
implications of this simple scheme has never been analyzed
in literature, and we explore in this work for the first time.

How can one exploit the PFC?

Let us consider the following example:

e Process A is running on a standard system and requests
some amount of memory (say by using mmap with the
MAP_POPULATE flag). On such instance, the buddy
allocator scans the list of available page frame blocks
and finds out a block that can satisfy the request.

e In course of time, the process A de-allocates a page
(say by using the function unmmap). The ‘unmapped’
page resides in the page frame cache of the zone in the
anticipation that it could be requested by the same process
A in recent future.

Thus if the same program requests for additional memory
during the course of its execution, the OS attempts to serve
the page frames from the cache. If the request is small, then
it is satisfied by the cache; else, it will invoke the buddy
allocator once more. The situation becomes interesting to a
security engineer when there is another process (Process B)
running simultaneously on the system and sharing the same
CPU. Consider, process A is an adversary and process B is
oblivious of such adversary.

e Once again we have Process A running on the system
which allocates some memory, unmaps one or two pages
and waits]

« In this scenario, Process B sends a request for additional
memory pages. The OS will first try to service the request
from the page frame cache itself. Thus, there is a high
probability that the page frame that was unmapped by the
adversarial process gets allocated to the victim.

Therefore, PFC can be exploited by an adversary to control
the memory allocation of another process. More precisely, an
adversary can restrict the physical memory locations that a
legitimate process can use. As a practical implementation of
our claim, we present ExplFrame, which uses PFC to steer
a victim process’s sensitive data into Rowhammer-vulnerable
locations and subsequently induce faults using Rowhammer.

5The adversarial process (Process A) must remain active rather than going
into inactive state (sleep), since in that case the entire process state information
including page frame cache will be swapped out of memory.

B. Threat Model

We assume a multi-user server environment running on a
Linux-based OS, where the adversary could introduce precise
faults on victim’s sensitive data. The adversary has user-level
privileges. It is further assumed that the adversary cannot
access any security sensitive memory possessed by the victim.
This exploit requires that the victim and the adversary are
operating on the same processor core ﬂ

C. Outline of the attack

The adversary performs the following steps in order

o She performs bin-partitioning to partition the allocated
memory space into bins to identify the individual DRAM
banks. After the partitioning is complete, she conducts
Rowhammer on one of the bins to find out a vulnera-
ble page. We provide a detailed representation of bin-
partitioning process in the next section.

o She unmaps the vulnerable page and due to the presence
of PFC, the unmapped page gets cached in it. As dis-
cussed in previous subsection, the unmapped page stays
in the PFC until some process requests for memory.

¢ She waits until a victim process requests for some mem-
ory. Due to the property of PFC, the pages in the cache
are the first one to get allocated to the victim. Once the
vulnerable page is allocated to the victim process, the
adversary starts rowhammering once again in the same
bin (which also contains the vulnerable page).

We present a detailed description of all the aforementioned
steps in a practical setting in the next section.

IV. ATTACKING AES T-TABLES: A CASE STUDY

ExplFrame is a generic attack which exploits the vulnera-
bilities of PFC to deterministically conduct Rowhammer on
victim’s data. In this section we present a practical end-to-end
attack on OpenSSL AES using ExplFrame to induce faults in
T-tables. In the next subsection, we present a novel memory
partitioning algorithm in order to utilize rowhammer in a
nearly deterministic way.

A. Deterministic Rowhammer from user-space

One of the major challenges for precise Rowhammering on
a particular location is that the physical layout of memory is
abstracted by the OS. Also, modern Linux kernel does not
allow access to pagemap from user privilege. Therefore, in
order to perform Rowhammer from userspace on a specific
memory page, we need to determine the DRAM bank where
the page is located and repeatedly access (hammer) the ad-
dresses on that particular bank.

Previous works [7]] have shown that when a pair of addresses
are accessed simultaneously, it creates a measurable timing
channel depending on whether the address belong to different

TPrevious attack in [4] also assumes that the attacker and the victim are
operating on the same core and binds the processes to the same CPU core
using taskset.

:

N
new page I:>

« Access page; from bin 0

= Access any page from allocated
memory space

«+ Calculate the access times

« If the difference in access time is
more than the threshold, add page,
to bin 0

« Else, repeat the same for successive]
bins until a suitable bin is found

« If no such bin is found, create a new
bin and add the memory page to it

page1

Fig. 1: An overview of the bin partitioning process

page2 ses

Rz

paged

Rl

(

banks or same bank but different rows within the DRAM [l
Based on the DRAM access timing side-channel, we present
a novel bin partitioning technique to partition the entire
allocated address space into the hypothetical ‘bins’ such that
each bin corresponds to a DRAM bank.

An overview of the bin partitioning process is shown in
Figure 1| We first access the first page and put it in bing. Next,
we access the next page and the first page simultaneously and
check their access times. If the access time for the second page
is more than some pre-defined threshold (can be determined
by initial profiling of the system), that would mean the pair of
accesses have resulted in a row conflict. So, the pair of page
frames must be located in the same bank but different row.
In that case, we put the second page in the same bin as the
first one, i.e, bing. Whereas, if the access time is less than
the threshold, we put it in the next bin, i.e, bin;. Similarly,
we pick the next page and check its access time with respect
to the pages already stored in the bins. Based on the timing
value, we put the page into one of the bins. This process is
repeated until all the allocated pages are exhausted. In the end,
all the page frames will be partitioned into separate bins.

B. Putting it all together

We allocate a large memory (1 GB in our case) and partition
the entire available memory into n bins (n = 16 for the DRAM
that we targeted) using bin partitioning method, where each
bin corresponds to a DRAM bank. After partitioning of the
memory space, we start conducting Rowhammer by randomly
picking addresses stored in last bin ﬂ The hammering is done
for a stipulated time (1 hour in our case) and if no fault is
found then we move on to the preceding bin. This process
continues until a flip is found. If no such flip is found in any
bin, the entire process is killed and restarted once again. If a
flip is found, the corresponding page is unmapped.

We target the encryption T-tables (70 through 7'3) of AES
of OpenSSL 1.1.1 in a standard multi-user environment. Now,
the adversary waits for the victim to load the T-tables into

8If the addresses belong to the same bank but different row, then it will
create a row conflict. The first access will bring the data into the row buffer
while at the time of second access, the first row will be closed first and then
the second one is fetched. Due to row conflict, the difference in access time
will be much higher than the other cases.

9Statistically, the last bin will have the smallest number of mismatches after
two pass of the algorithm.

2SN

> -0
-

The attacker once
again conducts
rowhammer in the
same bin. After
some time, a fault
is induced in one
of the T-tables
located in a
vulnerable page

The attacker
unmaps the
vulnerable pages.
Due to the property
of page frame
cache, atleast one of
the AES T-tables
gets allocated in a
vulnerable page

The attacker allocates
some memory,
partitions it into bins
and conducts
rowhammer on a bin
to find vulnerable
pages

Fig. 2: An overview of ExplFrame on OpenSSL AES T-tables

Micro- DRAM type Operating Kernel
Processor 3 2 .
architecture & capacity System version
Intel i5 . Hynix DDR3 4.13.0-36
3330 IvyBridge 4GB Ubuntu 14.04 generic
Intel i7 Micron DDR4 4.15.0-50
7700 KabyLake SGB Ubuntu 18.04 generic

TABLE I: Experimental Setup

the memory. Due to the presence of PFC in each memory
zone, the T-tables will be allocated in the same vulnerable
page which was unmapped earlier. Once one of the T-tables is
placed in a freed vulnerable page, the adversary again starts
Rowhammering on the same bin. Due to reproducibility of
the fault, the same page frame which now contains the T-table
gets faulted once again, thereby corrupting the particular entry
of the T-table. We validated our experiments on two standard
Desktop computers having the specifications as mentioned in
Table [I} A pictorial representation of our ExplFrame attack on
AES T-tables is depicted in Figure

V. PRACTICAL EXPLOITATION OF INDUCED FAULTS

In this section, we present a generic and practical method-
ology for exploiting the faults induced by Rowhammering.
Given that the use-case of ours induces faults in AES T-tables,
we aim to perform a key recovery attack on AES by analyzing
these faults. There exist a large body of work addressing fault
attacks (FA) on different classes of cryptographic primitives,
especially on block ciphers like AES [8]]. However, the attack
algorithms vary largely depending on the type of the faults
that can be practically induced within a system. One should
note that the corruption in the present case happens in the T-
tables of the implementation. The injected fault persists in the
T-table until it is reloaded. This typical fault model matches
with the one proposed by Zhang et. al. in [6] (popularly
referred to as Persistent Fault Model (PFM)). The main idea
of PFA is to exploit the statistical bias resulting from the AES
computation with a corrupted T-table. The faulty outcomes
(ciphertexts) are analyzed statistically by guessing the last
round key candidates. The statistical bias becomes visible only
for the correct key guess eventually returning the key. The
original proposal in [6] makes two important assumptions:

1) The adversary exactly knows the value that got corrupted
inside the T-table.

2) The corrupted entry in T-table is accessed at the last
round of AES computation. This usually happens with
a reasonable probability.

Several issues may arise while realizing the PFA from a
practical perspective using Rowhammer. Below we enlist the
main realization issues:

1) The Target Implementation: The implementation un-
der attack plays a crucial role for the success of PFA
with Rowhammer induced faults. T-table-based imple-
mentations are available at state-of-the-art crypto-cores
like OpenSSL, Libgcrypt etc. However, intricate imple-
mentation differences may still be there. As an exam-
ple, we consider two competing implementations from
OpenSSL and Libgcrypt. The first one utilizes 4 T-tables
To, Ty, T and T3 for all the rounds r; (1 < r; < 10).
In contrast, Libgerypt utilizes 4 alternative T-tables T(;,
Tll, TQI and Té to realize the last round of AES.

2) Nature of Rowhammer-induced Faults: Rowhammer
fault injection strategy provides limited control over the
faults to be induced. More specifically, it is hard to
control which bit of the T-table gets corrupted.

In [|6], Zhang et. al. performed a case study on Libgcrypt
implementation which uses separate T-tables for the last round.
As a result, faults induced in their experiments only affect
the last round. As a more generic scenario, we consider the
OpenSSL implementation for the illustration which uses the
same T-tables for realizing all the AES rounds. Some part
of the high-level C-code for the last round in OpenSSL is
depicted in Fig. 3] One should observe that in order to undo
the effect of the AES MixColumns sub-operation, some of the
bytes in a T-table output are masked (i.e. ANDed with zero).

s0 =
(Te2 [(t0 >]
(Te3[(tl1 > Oxff)
(TeO[(L2 = Ixff)]
(Tel[(L3) Oxff)
rk[0];

PUTU32 (out

(Te2 [(L3 =>> 24)]
(Te3 [(L0 => € xff)
(TeO[(Ll >=> & Oxff)
(Tel[(t2) & Oxff)
rk[3];

PUTU32 (out + 12, s3);

Fig. 3: Code Snippet for AES Last Round in OpenSSL.

We next point out why these two above-mentioned realiza-
tion issues are important from a practical perspective. Our first
observation is that the original PFA algorithm does not work
in this context with Rowhammer induced faults on OpenSSL
AES implementation. To elaborate this observation, we point
out that three out of four bytes in each T-table output are

masked in the final round computation of AES (in order to
undo the effect of the MixColumns operation). Now if the
Rowhammer fault affects any of these masked byte locations,
the fault effect will also get masked and would not propagate
to the output. As the attacker cannot precisely control which
bit of the T-table gets corrupted, the PFA attack targeting the
last round is suppose to fail with a reasonably high probability.
In nutshell, the Rowhammer induced faults cannot be utilized
with the PFA algorithm described in [6] for many of the
practical implementations like the one in OpenSSL.
Fortunately, our investigation revealed that the faults in-
duced by Rowhammering are still exploitable for key extrac-
tion. In this context we propose a novel and generic attack
strategy called Deep Round Persistent Fault Attack (DRPFA)
which is not affected by the fact that the attacker may not
have precise control over the location of the Rowhammer
induced faults. One should recall that the fault in the T-table
is persistent, and as a result it also affects certain intermediate
rounds of the AES computation. The proposed DRPFA attack
exploits these corruptions in intermediate rounds for extracting
the key. The advantage of this strategy is that we need not care
about the precise location of the faulty bit anymore. The details
of the DRPFA attack is presented in the following subsection.

A. Deep Round Persistent Fault Attack

Let us now describe the DRPFA attack algorithm. The
pseudo-code for the algorithm is depicted in Algorithm [T} The
main idea is to guess a part of the secret and partially decrypt
the ciphertexts up to the round where the statistical bias is
being observed. More precisely, the partial decryption should
continue up to the inverse MixColumns of the target round so
that the bias at the S-Box outputs can be exploited. According
to the well-known wrong-key assumption, the aforementioned
statistical bias becomes visible for the correct key guess with
a very high probability, and for the wrong guesses with
negligibly small probability. This fact enables the recovery
of the key with a fairly simple statistical test. We utilize
the Squared-Euclidean-Imbalance (SEI) test for identifying
the bias and thus the correct key. Also, in order to reduce
the complexity, our attack mainly targets the 9th round of
the AES computation. One important observation regarding
DRPFA is that, the attack remains equally applicable even
in the presence of combined Side-Channel Analysis (SCA)
and Fault Attack (FA) countermeasures. From this perspective,
DRPFA is equally powerful as of SIFA [9] and PFA [10].

VI. EXPERIMENTAL VALIDATION

The results of inducing faults in OpenSSL AES T-tables
is shown in Table [lIl In order to validate the practicality of
DRPFA with these faults, we encrypt 20000 plaintexts after the
fault is induced. Here the fault has been induced in the table
TO, and is present throughout the encryption campaign. The
9th round S-Box output is considered for attack. Consequently,
the key is extracted in chunks of 32-bits (i.e. s = 32 according
to Algorithm. [1} It is worth mentioning that the PFA attack did
not work with this specific fault even with 100000 ciphertexts.

Algorithm 1: The DRPFA Algorithm

Input: Ciphertexts from Rowhammer fault injection campaign (C), target round 7.
Output: Key k.
set s := size of the partial key guess based on r

1

2 set Ky :={0,1,---,2° — 1}

3 set SElgict := 0

4 for k, € K, do

5 set Sy, =0

6 for c € C do

7 ‘ Sky = Sk,U Partial Decrypt(c, 1)
s end

9 SFElIgict|kg) ::SE‘.I(Skg)
10 end

1 set k. := argmax SEIgict[kg]

kg€EKg
12 return k.

However, DRPFA successfully extracts the key with roughly
8000 ciphertexts. In order to elaborate the relation of the attack

No Time T-table Value Value

* | (mins) index before flip after flip
1 1035 Tel[139] | 477a 3d3d | 47fa 3d3d
2 538 TeO0[25] b3d4 d467 | a3d4 d467
3 224 Tel[254] | d66d bbbb | c66d bbbb
4 3623 Tel[38] ae3d 9393 | ae3d 9193
5 12 Te3[87] cbeb 468d | cbeb 460d
6 105 Te3[148] | 2222 6644 | 0222 6644
7 256 Tel[88] bed4 6aba bed4 2a6a
8 67 Tel[193] | 88f0 7878 880 7868

TABLE II: Faults induced by ExplFrame on AES T-tables

with the number of ciphertexts, we present a convergence plot
in Fig. @] The blue region in this plot presents the SEI values

7le=4

— Correct Key

— Wrong Keys

78000.0 ___ 16000.0
#Ciphertexts

Fig. 4: SEI convergence plot for the DRPFA attack.

for wrong key guesses. The red line, on the other hand, refers
to the SEI value corresponding to the correct key. For the
attack to be successful, the red line should remain over the
blue region. One may observe that in our experiment, the
red line crosses the blue region near 7000 ciphertexts and
the separation becomes prominent with 8000 ciphertexts. This
clearly establishes the efficacy of the DRPFA.

VII. DISCUSSION

The attack use-case presented in the last section assumes
that the AES is implemented by means of T-tables. Certain
modern AES implementations use dedicated hardware accel-
erators, such as AES-NI [11] instead of T-tables. However,
this fact does not rule out the efficacy of the proposed attack

strategy as it is not specific to AES. In contrast, the hardware
accelerators available in modern processors provide support
for AES only. Moreover, there exist cryptographic primitives
such as pseudorandom number generators which still utilize
the T-tables in OpenSSL implementation [12]. The proposed
attack thus remains completely relevant for modern systems.

Error Correcting Codes (ECC) are often considered as effec-
tive countermeasures against Rowhammer faults [[1]. However,
we claim that a straightforward application of ECC as in [1]]
cannot prevent information leakage by means of faults. This
claim is based on the observation [13]] that the error correction
operation takes considerably large number of clock cycles
with respect to the normal operation [4]]. It is thus feasible to
detect and pinpoint when error correction takes place during
the encryption (with a timing channel) by using some of the
strategies described in [14], [[15]. Interestingly, if the attacker
possess the knowledge of the exact corrupted entry within
the faulted T-table she can figure out the input to the
table. Figuring out the table input is equivalent to the key
recovery as the secret intermediate states of a block cipher
get exposed by this mean. Moreover, this timing-assisted fault
analysis strategy does not require any access to the ciphertexts
of the encryption block which enhances its scope for certain
other classes of crypto-primitives. Future work will present a
practical realization of this attack on state-of-the-art systems.

VIII. CONCLUSION

In this paper, we presented ExplFrame, a novel attack
technique that combines the vulnerability of page frame cache
with Rowhammer to induce faults in victim process’s data,
entirely from user space. We highlighted how PFC can be
used as an attack vector to restrict a process to attacker-chosen
locations in DRAM. To validate the practicality of our claims,
we demonstrated an end-to-end attack on OpenSSL AES to
induce faults in T-tables. We also presented an improvised
Fault Analysis technique to extract the key from the faulty
ciphertexts, created due to faulted T-tables.

REFERENCES

[1] Y. Kim and et. al., “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” in ISCA '14. IEEE
Press, 2014, pp. 361-372.

[2] OpenSSL, “Openssl cryptography and ssl/tls toolkit,” 2019, [Online;
accessed 25-June-2019].

[3] V. van der Veen and et. al., “Drammer: Deterministic rowhammer attacks
on mobile platforms,” in CCS ’16. ACM, 2016, pp. 1675-1689.

[4] A. Kwong and et. al., “Rambleed: Reading bits in memory without
accessing them,” in S&P ’20. IEEE Computer Society, 2020.

[5] V. van der Veen and et. al., “Guardion: Practical mitigation of dma-based
rowhammer attacks on arm,” in DIMVA 18. Springer International
Publishing, 2018, pp. 92-113.

[6] F.Zhang and et. al., “Persistent fault analysis on block ciphers,” in JACR
TCHES, 2018, pp. 150-172.

[7]1 P. Pessl and et. al., “Drama: Exploiting dram addressing for cross-cpu
attacks,” in USENIX Security 16. USENIX Association, 2016, pp. 565—
581.

[8] M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential fault analysis
of the advanced encryption standard using a single fault,” in WISTP
2011. Springer Berlin Heidelberg, 2011, pp. 224-233.

10which is reasonable if the T-table is kept in a shared memory, and attacker
have a read access to it.

[9]

[10]
(1]
[12]

[13]

[14]

[15]

C. Dobraunig and et. al., “Statistical ineffective fault attacks on masked
aes with fault countermeasures,” in ASIACRYPT 2018. Springer
International Publishing, 2018, pp. 315-342.

J. Pan and et. al.,, “One fault is all it needs: Breaking higher-order
masking with persistent fault analysis,” in DATE 19, 2019, pp. 1-6.

K. Akdemir and et. al., “Breakthrough AES performance with Intel AES
New Instruction,” Intel, Tech. Rep., April 2004.

S. Cohney and et. al., “Pseudorandom Black Swans: Cache attacks on
CTR_DRBG,” 2019.

L. Cojocara and et. al., “Exploiting correcting codes: On the effective-
ness of ecc memory against rowhammer attacks,” in S&P 19. IEEE
Computer Society, 2019.

D. Gullasch and et. al., “Cache games — bringing access-based cache
attacks on aes to practice,” in SP ’/1. IEEE Computer Society, 2011,
pp. 490-505.

Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
13 cache side-channel attack,” in USENIX Security 14). USENIX
Association, 2014, pp. 719-732.

	I Introduction
	II Background
	II-A Linux memory allocation subsystem
	II-B The Rowhammer bug

	III The ExplFrame Approach
	III-A Exploiting Page Frame Cache
	III-B Threat Model
	III-C Outline of the attack

	IV Attacking AES T-tables: A case study
	IV-A Deterministic Rowhammer from user-space
	IV-B Putting it all together

	V Practical Exploitation of Induced Faults
	V-A Deep Round Persistent Fault Attack

	VI Experimental Validation
	VII Discussion
	VIII Conclusion
	References

