
ESP4ML: Platform-Based Design of
Systems-on-Chip for Embedded Machine Learning

Davide Giri, Kuan-Lin Chiu, Giuseppe Di Guglielmo, Paolo Mantovani and Luca P. Carloni
Department of Computer Science · Columbia University, New York

[davide giri, chiu, giuseppe, paolo, luca]@cs.columbia.edu

Abstract—We present ESP4ML, an open-source system-level
design flow to build and program SoC architectures for embedded
applications that require the hardware acceleration of machine
learning and signal processing algorithms. We realized ESP4ML
by combining two established open-source projects (ESP and
HLS4ML) into a new, fully-automated design flow. For the SoC
integration of accelerators generated by HLS4ML, we designed
a set of new parameterized interface circuits synthesizable with
high-level synthesis. For accelerator configuration and manage-
ment, we developed an embedded software runtime system on top
of Linux. With this HW/SW layer, we addressed the challenge of
dynamically shaping the data traffic on a network-on-chip to acti-
vate and support the reconfigurable pipelines of accelerators that
are needed by the application workloads currently running on
the SoC. We demonstrate our vertically-integrated contributions
with the FPGA-based implementations of complete SoC instances
booting Linux and executing computer-vision applications that
process images taken from the Google Street View database.

I. INTRODUCTION

Since 2012, when the use of deep neural networks for
classifying million of images from the web gave spectacular
results [1], [2], the design of specialized accelerators for
machine learning (ML) has become the main trend across
all types of computing systems [3]. While the initial focus
was mostly on systems in the cloud, the demand for enabling
machine learning into embedded devices at the edge keeps
growing [4]. To date, most research efforts have focused on the
accelerator design in isolation, rather than on their integration
into a complete system-on-chip (SoC). However, to realize
innovative embedded systems for such domains as robotics,
autonomous driving, and personal assistance, ML accelerators
must be coupled with accelerators for other types of algorithms
such as signal processing or feedback control. Furthermore,
as the complexity of ML applications keeps growing, the
challenges of integrating many different accelerators into an
SoC at design time and managing the shared resources of the
SoC at runtime become much harder.

In this paper we present ESP4ML, a system-level design
flow that enables the rapid realization of SoC architectures
for embedded machine learning. With ESP4ML, SoC designers
can integrate at design time many heterogeneous accelerators
that can be easily connected at run-time form various tightly-
coupled pipelines (Fig. 1). These accelerator pipelines are
reconfigured dynamically (and transparently to the application
programmer) to support the particular embedded application
that is currently running on top of Linux on the SoC processor.

Vision
Kernel

Vision
Kernel

Vision
Kernel ML ML

SoC
Instances

Embedded
Software

Application

Fig. 1. The proposed design flow maps full embedded applications into a
complete SoC instance, which hosts reconfigurable pipelines of ML acceler-
ators and other accelerators (e.g. for Computer Vision) connected via a NoC.

To realize ESP4ML, we embraced the concept of open-
source hardware (OSH) [5], in multiple ways. First, our main
goal is to simplify the process of designing complete SoCs
that can be rapidly prototyped on FPGA boards. The ESP4ML
users can focus on the design of specific accelerators, which
is simplified with high-level synthesis (HLS), while reusing
available OSH designs for the main SoC components (e.g. the
Ariane RISC-V processor core [6]). Second, ESP4ML is the
result of combining two existing OSH projects that have been
independently developed: ESP and HLS4ML.
• ESP is a platform for developing heterogeneous SoCs that

promotes the ideas of platform-based design [7], [8].
• HLS4ML is a compiler that translates ML models devel-

oped with commonly used open-source packages such as
KERAS and PYTORCH into accelerator specifications that
can be synthesized with HLS for FPGAs [9], [10]. While
originally developed for research in particle physics,
HLS4ML has broad applicability.

To combine these two projects and reach our main goal 1:
1) We enhanced the ESP architecture to support the re-

configurable activation of pipelines of accelerators, by
implementing point-to-point (p2p) communication chan-
nels among them. This is done by reusing only the
preexisting interconnection infrastructure without any
overhead, i.e. without any addition of channel queues,
routers, or links in the network-on-chip (NoC).

2) We augmented the ESP methodology with an application
programming interface (API) that for a given embedded
application and a target SoC architecture allows the
specification of the software part to be accelerated as
a simple dataflow of computational kernels.

1We released the contributions of this paper as part of the ESP project on
Github [8].

ar
X

iv
:2

00
4.

03
64

0v
2

 [
cs

.A
R

]
 1

8
Ju

n
20

20

3) We developed a runtime system on top of Linux that
takes this dataflow and translates it into a pipeline of
accelerators that are dynamically configured, managed,
and kept synchronized as they access shared data. This is
done in a way that is fully transparent to the application
programmer.

4) We enhanced the SoC integration flow of ESP by design-
ing new parameterized interface circuits (synthesizable
with HLS) that encapsulate accelerators designed for
Vivado HLS [11], without requiring any modification
to their designs. This provides an adapter layer to
bridge the ap fifo protocol from Vivado HLS to the
ESP accelerator interface so that ESP4ML users are only
responsible for setting the appropriate parameters for
DMA transactions (i.e., transaction length and offset
within the virtual address space of the accelerator).

5) We encapsulated HLS4ML into a fully automated de-
sign flow that takes an ML application developed with
KERAS TensorFlow and the reuse factor parameter to
control parallelization specified within HLS4ML and
returns an accelerator that can be integrated within a
complete SoC. This required no modification to the code
generated with the HLS4ML compiler.

We demonstrate the successful vertical integration of these
contributions by presenting a set of experimental results that
we obtained with ESP4ML. Specifically, we designed two
complete SoC architectures, implemented them on FPGA
boards, and used them to run embedded applications, which
invoke various pipelines of accelerators for ML and computer
vision. Compared to an Intel processor, an ARM processor,
and an NVIDIA embedded GPU, energy-efficiency speedups
(measured in terms of frames/Joule) are above 100× in some
cases. Furthermore, thanks to the efficient p2p-communication
mechanisms of ESP4ML, the execution of these applications
presents a major reduction of the off-chip memory access
compared to the corresponding versions that use off-chip mem-
ory for inter-accelerator communication, which is normally
the most efficient accelerator cache-coherence model for non-
trivial workloads with regular memory access pattern [12].

II. BACKGROUND

We give a quick overview of the ESP and HLS4ML projects
to provide basic information to read the subsequent sections.

Embedded Scalable Platforms. ESP is an open-source
research platform for the design of heterogeneous SoCs [7].
The platform combines an architecture and a methodology.
The flexible tile-based architecture simplifies the integration of
heterogeneous components through a combination of hardware
and software sockets. The companion methodology raises the
level of abstraction to system-level design by decoupling the
system integration from the design and optimization of the
various SoC components (accelerator, processors, etc.) [13].

The ESP tile-based architecture relies on a multi-plane
packet-switched network-on-chip (NoC) as the communication
medium for the entire SoC. The interface between a tile
and the NoC consists of a wrapper (the hardware part of

accelerator

cache

coherence
protocol

1 2 3

TLB DMA engine

6

cfg
regs IRQ

coherent
DMA

IO/IRQ

doneread/write port config port

bank

bankbank

bank
PLM

N
o
C4 5 5 4

non-coherent
DMA

accelerator wrapper for HLS design flow

req reqresp resp

aux acc μp

mem

Fig. 2. Example of a 3×3 instance of ESP with zoom into the accelerator tile,
taken from Giri et al. [14]. Components in gray with shaded text are integrated
from ESP without modifications, while we modified the components in color
with black text to support the ESP4ML design flow.

a socket) that implements the communication mechanisms
together with other platform services. For example, the socket
of an accelerator tile typically implements: a configurable
direct-memory access (DMA) engine, interrupt-request logic,
memory-mapped registers, and the register-configuration logic.

In ESP, an NoC is an M × N 2D-mesh, corresponding
to a grid of tiles of configurable size: e.g., Fig. 2 shows a
3 × 3 instance of an ESP SoC with two processor tiles, one
memory tile, one auxiliary tile, and five accelerator tiles. An
NoC plane is a set of bi-directional links of configurable width
(e.g. 32 or 64 bits) that connect pairs of adjacent tiles in
the NoC. The ESP architecture allots two full planes of the
NoC to the accelerators, which use them to move efficiently
long sequences of data between their on-chip local private
memories and the off-chip main memory (DRAM). These
data exchanges, called either loads or stores depending on
their direction, happen via DMA, i.e. without involving the
processor cores, which instead typically transfer data at a
finer granularity (i.e. one or few cache lines) [15]. Note that
DMA requests and responses are routed through decoupled
NoC planes to prevent deadlock when multiple accelerators
and multiple memory tiles are present. In Section IV we show
how we leverage this DMA queues decoupling to efficiently
implement p2p communication for ESP4ML.

The ESP methodology supports a design flow that leverages
SystemC and Cadence Stratus HLS [16] for the specification
and implementation of an accelerator to be plugged into
the accelerator wrapper, as shown in Fig. 2. ESP users are
responsible for the core functionality of their accelerators and
for adapting the template load/store functions provided in the
synthesizable SystemC ESP library.

HLS4ML. The HLS4ML project allows designers to specify
ML models and neural-network architectures for a specific task
(e.g. image classification) by using a common open-source
software such as Keras [17], PyTorch [18], and ONNX [19].
A trained ML model to be used for inference is described
with a couple of standard-format files: a JSON file for the
network topology and a HDF5 file for the model weights
and biases. These are the inputs of the HLS4ML compiler,
which automatically derives a hardware implementation of
the corresponding ML accelerator that can be synthesized
for FPGAs using HLS tools [20]. While HLS4ML currently
supports only Vivado HLS [11], its approach can be extended

Keras training

hls4ml tuning

model.JSON
model.h5

compute.cpp
directives.tcl

accelerator_templates.h

model.py
dataset.h5

ML
Kernel

Generic
Kernel

compute.cpp

load_store.cpp

directives.tcl

tuning

Vivado HLS Stratus HLS

acc0.xml

user-app-dataflow.h

acc0.v

SoC.bit user-app.exe
devtree.dtb driver.ko

ESP

accN.v... accN.xml

.esp_config (GUI)NoC

SystemC

user input

provided
by ESP

generated

newly integrated
in the ESP flow*

*

*

*

*

*

Fig. 3. The proposed design flow for embedded machine learning.

to other HLS tools [9], possibly targeting ASIC as well.
For an ML accelerator, the trade-offs among latency, initia-

tion interval, and FPGA-resource usage depend on the degree
of parallelization of its inference logic. In HLS4ML, these can
be balanced by setting the reuse factor, which is a single
configuration parameter that specifies the number of times a
multiplier is used in the computation of a layer of neurons.

III. THE PROPOSED DESIGN FLOW

Fig. 3 shows the ESP4ML flow to design SoCs for embedded
ML applications. From the ESP project, we adopted the flow
to design and integrate accelerators for generic computational
kernels (right) and we implemented a new flow to design
accelerators for ML applications, which leverages HLS4ML
(left). Furthermore, we enabled the runtime reconfiguration
of the communication among accelerators through a software
application (generated from a user-specified dataflow) and a
new platform service for reconfigurable p2p communication
(implemented in the wrapper of the accelerator tile).

In order to integrate accelerators compiled by HLS4ML,
we extended the SoC generation flow of ESP to host RTL
components synthesized with Vivado HLS. We designed a new
template wrapper that is split into a source file for Vivado HLS
synthesis directives and an RTL adapter for the ESP accelerator
tile. These template source files are automatically specialized
for a particular instance of ML accelerator depending on input
and output size as well as on precision and data type (e.g. 16-
bits fixed-point).

The portion of the wrapper processed by Vivado HLS im-
plements the control logic to make DMA transaction requests
and handles the synchronization between DMA transactions
and the computational kernel. Fig. 4 shows the gist of the top-
level function: the LOAD function gets and unpacks data from
the data read port into local memories; the COMPUTE function
calls the computational kernel (e.g. generated from HLS4ML);
the STORE function packs the data from local memory and

Code snippet 1:
void TOP (word *out, word *in1, unsigned conf_size,

dma_info_t *load_ctrl, dma_info_t *store_ctrl)
{
word _inbuff[IN_BUF_SIZE];
word _outbuff[OUT_BUF_SIZE];

go:
for (unsigned i = 0; i < n_chunks; i++) {

LOAD(_inbuff, in1, i, load_ctrl, 0);
COMPUTE(_inbuff, _outbuff);
STORE(_outbuff, out, i, store_ctrl, conf_size);

}
}

Fig. 4. Example of top-level function of the ESP wrapper for Vivado HLS.

pushes them to the data write port. In addition, both LOAD and
STORE functions set the appropriate virtual address and length
for the current transaction. This information is computed based
on the current iteration index of the main loop, the size of
the dataset and the size of the local buffers. Some of the
parameters needed are set at runtime through configuration
registers (e.g. conf_size).

The RTL portion of the wrapper includes a set of shallow
FIFO queues that decouple the control requirements of the
FIFO interface in Vivado HLS from the protocol of the
accelerator tile in ESP. In addition to FIFO queues, the wrapper
binds the ESP configuration registers to the corresponding
signals of the accelerator, such as conf_size in Fig. 4. The
list of registers is specified into an XML file for each accelerator
following the default ESP integration flow.

IV. POINT-TO-POINT COMMUNICATION SERVICES

Section III explains how ESP4ML users can specify the
accelerators for their target embedded applications. Once these
are implemented as RTL intellectual property (IP) blocks,
the ESP graphic configuration interface can be used to pick
the location of each accelerator in the SoC and generate the
appropriate hardware wrappers, including routing tables, and
Linux device drivers. The ESP infrastructure then generates a
bitstream for Xilinx FPGAs and a bootable image of Linux
that can run on the embedded RISC-V processor in the ESP
SoC [21].

The ESP design flow, however, used to lack the ability
to map the application dataflow onto the user-level software
and to dynamically reconfigure the NoC routers to remap
DMA transactions onto p2p data transfers among accelerators.
Hence, we developed a new p2p platform service for ESP
architectures that is compatible with the generic accelerator
tile wrapper.

First, we defined two additional registers common to all
accelerators. The LOCATION_REG is a read-only register that
exposes the x-y coordinates of an accelerator on the NoC to
the operating system. The P2P_REG is the p2p configuration
register, which holds the following information: p2p store is
enabled, p2p load is enabled, number of source tiles (1 to
4) for the load transactions, x-y coordinates of the source
tiles. We also modified the ESP device driver such that any
registered accelerator, (discovered when probe is executed)
is added to a global linked list protected by a spinlock. This

Code snippet 2:
#include "libesp.h"
#include "dflow1.h"

int main(int argc, char **argv)
{

int errors = 0;
contig_handle_t contig;
uint8_t *buf;

// Allocate memory
buf = (uint8_t*) esp_alloc(&contig, DATASET_SIZE);

// Initialize buffer
init_buffer(buf);

// Execute accelerator(s) dataflow.
// The configuration specifies the communication
// for each accelerator invocation: DMA or P2P.
esp_run(dflow1_cfg, NACC);

// Validation
errors += validate_buffer(buf);

// Free memory
esp_cleanup();

return errors;
}

Fig. 5. Generated ESP4ML code to spawn multiple HW-accelerated threads.

list allows any thread executing the code of an accelerator
device-driver in kernel mode to access information related to
other accelerators. Since this information includes the base
address of the configuration registers, a device name, already
known in user space, can be mapped to the corresponding x-y
coordinates. These coordinates are not exposed to user space
and the application dataflow can be specified by simply using
the accelerator names. Hence, the application is completely
independent from the particular SoC floorplan.

To support accelerator p2p transactions we made minor
modifications to translation-lookaside buffer (TLB) and DMA
controller in the ESP accelerator tile wrapper [15]. A key
aspect of our implementation is that all p2p transactions are
on-demand, that is they must be initiated by the receiver. The
sender accelerator tile waits for a p2p load request before for-
warding data to the NoC. Implementing p2p stores on-demand
is necessary to prevent long packets of data being stalled in
the NoC links while the accelerator that is downstream in the
dataflow is not ready to accept them. For the same reason our
solution guarantees the “consumption assumption” [22] for all
supported dataflow configurations. An accelerator tile will only
request data when it has enough space to store it locally.

This mechanism is completely transparent to the accelerator,
which still operates as if regular DMA transactions were to oc-
cur, while performance and energy consumption largely benefit
from close-distance communication and a drastic reduction in
accesses to DRAM or to the last-level cache.

We built this p2p communication service without adding
any NoC planes, nor queues at the NoC interface, because
we rely on queues that are otherwise unused for regular DMA
transactions. Specifically, we carefully reused available queues
in the ESP accelerator tile.

Ni
gh
t

Vi
si
on

Cl
as
sifi
erDark

Images Label

Ni
gh
t

Vi
si
on

Ni
gh
t

Vi
si
on

Dark
Images

Cl
as
sifi
er

... Label

De
no
ise
r

Noisy
Images

Cl
as
sifi
er

Label

Classifier

Images Label1 2 3 4 5

Classifier

Images Label1 2 3 4 5

Fig. 6. Dataflow of the four case-study applications discussed in the evaluation
and corresponding mapping onto two instances of ESP.

V. RUNTIME SYSTEM FOR ACCELERATORS

After implementing the p2p service, we developed a soft-
ware API to hide the details of memory allocation, accelerator
invocation, and synchronization from user-space software.
Dependencies across accelerators are specified through a sim-
ple dataflow. By modifying a template that is automatically
generated for the given SoC architecture, the ESP4ML users
can define a dataflow of accelerator invocations. For each
invocation they can specify whether to use DMA or p2p
communication and they can set other accelerator-specific
communication parameters.

The snippet in Fig. 5 shows an example of automatically
generated applications that reads two dataflow configura-
tions from dflow1.h. For each configuration the application
spawns as many threads as the number of running accelerators
to exploit all the available parallelism in the dataflow. Since
accelerators that use the p2p service are automatically syn-
chronized in hardware, the software runtime incurs minimal
overhead. This is limited to the ioctl system calls that are
used to start the accelerators [15]. When ESP4ML users set
the dataflow parameters to use DMA only, dependencies are
enforced with pthread primitives. Thanks to our software
runtime, ESP4ML users can dynamically reshape the data
traffic on the NoC to activate a reconfigurable pipeline of
accelerators for the given embedded application In addition,
they can tune the throughput of the system by balancing each
stage of this pipeline: e.g., if a slow accelerator is feeding a
faster one, multiple instances of the slower accelerator can be
activated to feed a single accelerator downstream.

VI. EXPERIMENTAL RESULTS

Applications. Street View House Numbers (SVHN) is a
real-world image dataset obtained from Google Street View
pictures [23]. SVHN is similar to the MNIST dataset, but it is
ten times bigger (600,000 images split in training, test, extra-
training datasets). For SVHN, the problems get significantly
more laborious due to the environmental noise in the pictures
(including shadows and distortions). We developed two em-
bedded applications for the SVHN dataset: digit classification
and image denoising. For both, we adopted ML solutions and

TABLE I
SUMMARY OF RESULTS USING THE BEST-CASE CONFIGURATION

NIGHTVISION & DENOISER & MULTI-TILE
CLASSIFIER CLASSIFIER CLASSIFIER.

LUTS 48% 48% 19%
FFS 24% 24% 11%
BRAMS 57% 57% 21%
POWER (W) 1.70 1.70 0.98
FRAMES/S ESP4ML 35,572 5,220 28,376
FRAMES/S INTEL I7 1,858 30,435 82,476
FRAMES/S JETSON 377 2,798 6,750

trained our models in KERAS. Recalling the ESP4ML flow
overview of Fig. 1, the upper part of Fig. 6 shows concrete
instances for these two applications.

For the digit classification problem, we defined a Multilayer
Perceptron (MLP) with four hidden layers. The size of the
fully connected network is 1024x256x128x64x32x10. We used
dropout layers with a 0.2 rate to prevent overfitting during
training. The trained model accuracy is 92%. For the denoising
problem, we designed an autoencoder model. The network
size is 1024x256x128x1024, and the compression factor in
the bottleneck is 8. We added Gaussian noise to the SVHN
dataset and trained the model with a 3.1% reconstruction error.

We also developed one application outside the ML domain,
which is a night computer vision application consisting of
three kernels: noise filtering, histogram, and histogram equal-
ization. For the purpose of this evaluation, we darkened the
SVHN dataset and we used this Night-Vision application as a
pre-processing step of the MLP classifier described above.

Accelerators and SoCs. We designed two SoCs that we
synthesized for FPGA with the ESP4ML flow. As shown in
Fig. 6, these SoCs contain many (up to ten) accelerators for
the target applications and one Ariane RISC-V core. Table I
shows the FPGA resources usage and the dynamic power
dissipation as reported by Xilinx Vivado. We designed the
Classifier and the Denoiser with KERAS and we compiled
them with HLS4ML within the ESP4ML flow. We then designed
a partitioned version of the Classifier, by distributing the
computation across five accelerators. Finally, we designed the
accelerator for the Night-Vision kernels by leveraging another
HLS-based design flow within ESP: i.e., we designed them in
SystemC and synthesized them with Cadence Stratus HLS.

Experimental Setup. We implemented the two ESP4ML
SoCs of Fig. 6 on a Xilinx Ultrascale+ FPGA board with
a clock frequency of 78MHz. We ran all the experiments by
using this board and executing the test embedded applications
on top of Linux running on the Ariane core. We compared
the execution of these applications on the ESP4ML SoC with
the hardware accelerators versus the execution of the same
applications in software on the following two platforms: (a)
an Intel i7 8700K processor and (b) an NVIDIA Jetson TX1
model, which is an embedded system that combines a 256-
core NVIDIA Maxwell GPU with a Quad-Core ARM Cortex-
A57 MPCore. Based on the available datasheet, we considered
values of power consumption equal to 1.5W and 10W for the
ARM core and the GPU, respectively. For the Intel core, we
estimated a TDP of 78.6W (the nominal value is 95W).

Results. The three bottom lines of Table I report the perfor-

 0.1

 1

 10

 100

b
a
se

p
ip

e
p
2
p

b
a
se

p
ip

e
p
2
p

b
a
se

p
ip

e
p
2
p

fr
a
m

e
s
/J

 (
n
o
rm

a
liz

e
d
)

Night-Vision and
Classifier

i7 8700k

Jetson TX1

4NV+4Cl4NV+1Cl1NV+1Cl

 0.1

 1

 10

 100

b
a
se

p
ip

e
p
2
p

Denoiser and
Classifier

i7 8700k

Jetson TX1

1De+1Cl

 0.1

 1

 10

 100

b
a
se

p
ip

e
p
2
p

Multi-tile
Classifier

i7 8700k

Jetson TX1

1Cl split

Fig. 7. Energy efficiency in terms of frames/Joules for the ESP4ML
compared to an NVIDIA embedded GPU and an Intel i7 core. The three bars
show the performance of two ESP4ML techniques: reconfigurable pipelines of
accelerators w/ (p2p) and w/o (p2p) p2p communication.

mance of the three platforms measured in terms of processed
frames per second. The FPGA implementations of the SoC
designed with ESP4ML offer better performance compared to
a commercial embedded platform like the Jetson TX1. The
Intel i7 cores predictably provides the best performance, aside
for the case of the Night-Vision application, which is a single-
threaded program.

Fig. 7 compares the execution of the applications on the
three platforms in terms of energy efficiency, measured as
frames/Joule (in logarithmic scale). Notice that all the
accelerator execution-time measurements include the overhead
of the ESP4ML runtime system managing the accelerators
invocations as well as the overhead of the accelerators Linux
device drivers. The horizontal blue and red lines show the
efficiency of the CPU and GPU, respectively. For the purpose
of this comparison, we report the average dynamic power
consumption for the two ESP4ML SoCs as estimated by Xilinx
Vivado for the whole SoC (i.e. not just for the accelerators
active in a specific test). This is a conservative assumption, par-
ticularly if one considers that the power consumption depends
on the choice of the FPGA and that a Xilinx Ultrascale+ is a
particularly large FPGA. Still, the ESP4ML SoCs outperforms
both the GPU and the CPU across all three applications,
yielding in some cases an energy-efficiency gain of over 100×.

Each cluster of bars in Fig. 7 represents an execution based
on a different pipeline of accelerators, with the number of
accelerators varying from two to eight. The left bar of each
cluster shows results for the case where the accelerators are
invoked serially in a single-thread application. The middle
bars (label pipe) correspond to concurrent executions in a
reconfigurable pipeline, as the accelerators are invoked with
a multi-threaded application (one thread per accelerator). The
right bar adds the ESP4ML p2p communication to this pipeline
execution. The results for the Night-Vision and Classifier show
that the performance increases significantly when the accelera-
tors work concurrently in pipeline. While p2p communication
does not provide a major gain in performance in this case, its
main benefit is the reduction of off-chip memory accesses,
which translates into a major energy saving: as shown in

0%

20%

40%

60%

80%

100%

n
o
-p

2
p

p
2
p

n
o
-p

2
p

p
2
p

n
o
-p

2
p

p
2
p

D
R

A
M

 a
c
c
e
s
s
e
s

(n
o
rm

a
liz

e
d
)

Multi-tile
Classifier

Denoise
and

Classifier

NightVision
and

Classifier

Fig. 8. Relative number of DRAM accesses w/ and w/o point-to-point
communication among accelerators for three test applications. The energy
savings due to a reduced access to memory are the main benefit of the point-
to-point communication among accelerators.

Fig. 8, this reduction varies between 2× and 3× for the target
applications.

VII. RELATED WORK

As efforts in accelerators for ML continue to grow, HLS
is recognized as a critical technology to build efficient op-
timization flows [24]. For instance, Hao et al. recently pro-
posed a PYNQ-ZI based approach to design deep neural
network accelerators [25]. Meanwhile, various optimization
techniques to deploy deep neural networks on FPGA have
been proposed [24], [26]–[28]. In this context, HLS4ML [9]
is being increasingly adopted by research organizations and is
raising interest in the industry [29], [30]. To date, however,
most open-source projects focus on the design of accelerators
in isolation. Instead, we propose the first automated open-
source design flow that leverages ESP and HLS4ML to integrate
multi-accelerator pipelines into SoCs. The ESP project initially
focused on the integration of generic accelerators specified
in SystemC that could operate in pipeline through shared
memory [13]. The ESP4ML flow augments ESP with the
support of accelerators designed also with common ML API
and enable runtime reconfiguration of pipelines with efficient
p2p communication.

VIII. CONCLUSIONS

ESP4ML is a complete system-level design flow to imple-
ment SoCs for embedded applications that leverage tightly-
coupled pipelines of many heterogeneous accelerators. We
realized ESP4ML by building on the prior efforts of two distinct
open-source projects: ESP and HLS4ML. In particular, we
augmented ESP with a HW/SW layer that enables the recon-
figurable activation of accelerators pipelines through efficient
point-to-point communication mechanisms. In addition, we
built a library of interface circuits that allow for the first time
to integrate HLS4ML accelerators for machine learning into a
complete SoC using only open-source hardware components.
We demonstrated our work with the FPGA implementations of
various SoC instances running computer-vision applications.

Acknowledgments. This work was supported in part by DARPA (C#:
FA8650-18-2-7862) and in part by the National Science Foundation (A#:
1764000). The views and conclusions contained herein are those of the authors

and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied,of Air Force Research Laboratory
(AFRL) and Defense Advanced Research Projects Agency (DARPA) or the
U.S. Government.
We thank the developer team of hls4ml. We acknowledge the Fast Machine
Learning collective as an open community of multi-domain experts and
collaborators. This community was important for the development of this
project.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. of NIPS, May 2012,
pp. 1097–1105.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.

[3] V. Sze et al., “Efficient processing of deep neural networks: A tutorial
and survey,” Proc. of the IEEE, vol. 105, no. 12, pp. 2295–2329, Dec.
2017.

[4] Y. Deng, “Deep learning on mobile devices: a review,” in Proc. of SPIE,
May 2019, pp. 52 – 66.

[5] G. Gupta et al., “Kickstarting semiconductor innovation with open
source hardware,” IEEE Computer, Jun. 2017.

[6] Ariane, https://github.com/pulp-platform/ariane.
[7] L. P. Carloni, “The case for Embedded Scalable Platforms,” in Proc. of

DAC, Jun. 2016, pp. 17:1–17:6.
[8] Columbia SLD Group, “ESP,” www.esp.cs.columbia.edu.
[9] J. Duarte et al., “Fast inference of deep neural networks in FPGAs for

particle physics,” Journal of Instrumentation, vol. 13, no. 07, Jul. 2018.
[10] “HLS4ML,” https://fastmachinelearning.org/hls4ml/.
[11] Xilinx, “The Xilinx Vivado design suite.”
[12] D. Giri, P. Mantovani, and L. P. Carloni, “Accelerators & Coherence:

An SoC Perspective,” IEEE Micro, vol. 38, no. 6, pp. 36–45, Nov. 2018.
[13] P. Mantovani, G. Di Guglielmo, and L. P. Carloni, “High-level synthesis

of accelerators in embedded scalable platforms,” in Proc. of ASPDAC,
Jan. 2016, pp. 204–211.

[14] D. Giri, P. Mantovani, and L. P. Carloni, “NoC-based support of
heterogeneous cache-coherence models for accelerators,” in Proc. of
NOCS, Oct. 2018, pp. 1:1–1:8.

[15] P. Mantovani et al., “Handling large data sets for high-performance
embedded applications in heterogeneous systems-on-chip,” in Proc. of
CASES, Oct. 2016, pp. 3:1–3:10.

[16] D. Pursley and T. Yeh, “High-level low-power system design optimiza-
tion,” in VLSI-DAT, Apr. 2017, pp. 1–4.

[17] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2017.
[18] A. Paszke et al., “Automatic differentiation in PyTorch,” 2017.
[19] “Open Neural Network Exchange,” https://github.com/onnx/onnx, 2018.
[20] R. Nane et al., “A survey and evaluation of FPGA high-level synthesis

tools,” IEEE Trans. on CAD, vol. 35, no. 10, pp. 1591–1604, Oct. 2015.
[21] P. Mantovani et al., “An FPGA-based Infrastructure for Fine-Grained

DVFS Analysis in High-Performance Embedded Systems,” in Proc. of
DAC, 2016, pp. 157:1–157:6.

[22] Y. Ho Song and T. M. Pinkston, “A progressive approach to handling
message-dependent deadlock in parallel computer systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 14, no. 3, pp. 259–275, Mar. 2003.

[23] N. Yuval et al., “The Street View House Numbers (SVHN) Dataset,”
http://ufldl.stanford.edu/housenumbers/, 2011.

[24] X. Zhang et al., “Machine learning on FPGAs to face the IoT revolu-
tion,” in Proc. of ICCAD, Nov. 2017, pp. 894–901.

[25] C. Hao et al., “FPGA/DNN co-design: An efficient design methodology
for IoT intelligence on the edge,” in Proc. of DAC, Jun. 2019, pp. 1–6.

[26] Y. Wang et al., “DeepBurning: Automatic generation of FPGA-based
learning accelerators for the neural network family,” in Proc. of DAC,
Jun. 2016, pp. 1–6.

[27] C. Zhang et al., “Caffeine: Towards uniformed representation and
acceleration for deep convolutional neural networks,” in Proc. of ICCAD,
Nov. 2016, pp. 1–8.

[28] C. Hao and D. Chen, “Deep neural network model and FPGA accelerator
co-design: Opportunities and challenges,” in Proc. of ICSICT, Oct. 2018.

[29] Xilinx, Inc., “Artificial intelligence accelerates dark matter search,” https:
//www.xilinx.com/publications/powered-by-xilinx/cerncasestudy-final.pdf.

[30] Fast Machine Learning Lab, https://fastmachinelearning.org/.

https://github.com/pulp-platform/ariane
www.esp.cs.columbia.edu
https://fastmachinelearning.org/hls4ml/
https://github.com/fchollet/keras
https://github.com/onnx/onnx
http://ufldl.stanford.edu/housenumbers/
https://www.xilinx.com/publications/powered-by-xilinx/cerncasestudy-final.pdf
https://www.xilinx.com/publications/powered-by-xilinx/cerncasestudy-final.pdf
https://fastmachinelearning.org/

	I Introduction
	II Background
	III The Proposed Design Flow
	IV Point-to-Point Communication Services
	V Runtime System for Accelerators
	VI Experimental Results
	VII Related Work
	VIII Conclusions
	References

