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Abstract—The LEGaTO project leverages task-based pro-
gramming models to provide a software ecosystem for Made
in-Europe heterogeneous hardware composed of CPUs, GPUs,
FPGAs and dataflow engines. The aim is to attain one order
of magnitude energy savings from the edge to the converged
cloud/HPC, balanced with the security and resilience challenges.
LEGaTO is an ongoing three-year EU H2020 project started in
December 2017.

I. INTRODUCTION

In the last couple of decades, technological advances in
the ICT sector have been the dominant factors in global
economic growth, not to mention an increase in the quality
of life for billions of people. At the heart of this advance lies
Moores Law, which states that the number of transistors in an
integrated chip will double every 18 to 24 months with each
step in the silicon manufacturing technology node. However,
due to the fundamental limitations of scaling at the atomic
scale, coupled with heat density problems of packing an ever-
increasing number of transistors in a unit area, Moores Law
has slowed down in the last two years or so and will soon
stop altogether [1]. The implication is that, in the future,
the number of transistors that could be incorporated into a
processor chip will not increase. This development threatens
the future of the ICT sector as a whole. As a solution to this
challenge, there has recently been a dramatic increase in efforts
toward heterogeneous computing, including the integration of
heterogeneous cores on die, utilizing general-purpose GPUs
and combining CPUs, GPUs and FPGAs in integrated SoCs.

Heterogeneity aims to solve the problems associated with
the end of Moores Law by incorporating more specialized
compute units in the system hardware and by utilizing the
most efficient compute unit for each computation. However,
while software-stack support for heterogeneity is relatively
well developed for performance, it is severely lacking for
power- and energy-efficient computing. Given that the ICT
sector is responsible for 5% of global electricity consumption
[2], software stack support for energy-efficient heterogeneous
computing is critical to the future growth of the ICT industry.
The primary ambition of the LEGaTO project is to address
this challenge by starting with a Made-in-Europe mature
software stack and by optimizing this stack to support energy-
efficient computing on a commercial cutting-edge European

Fig. 1: LEGaTO ecosystem.

developed CPUGPUFPGA heterogeneous hardware substrate
[3] and FPGA-based Dataflow Engines (DFE), which will
lead to an order of magnitude increase in energy efficiency.
The LEGaTO project will utilize a completely integrated
software system stack supporting generalized tasks for low-
energy, secure and reliable parallel computing. We foresee that
optimization opportunities for low-energy computing can be
maximized through the task abstraction.

Also, it is important to balance the advantage of a low-
energy heterogeneous CPU/FPGA/GPU hardware platform
with security and resilience challenges. We are therefore
working on ensuring the resilience of the software stack
running on this hardware, while simultaneously optimizing
for performance and low power. For fault tolerance we would
like to exploit the unique characteristics of the heterogeneous
CPU/GPU/FPGA platform in the runtime; for example by
replicating tasks intelligently on diverse processing elements
exploiting the spatial/temporal slack; additionally, we will
investigate energy-efficient selective replication where only the
most reliability-critical tasks will be replicated. Furthermore,
we will leverage the task programming model for detecting
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Fig. 2: LEGaTO hardware-software stack.

error propagation across task boundaries and walking the task
dependency graph at runtime, which will help with failure
root cause analysis. Finally, we will use the properties of the
task model to design application-level energy-efficient check-
pointing where only the necessary and sufficient data (declared
at the task entry) will be checkpointed. For security, we
will develop energy-efficient security-by-design by leveraging
instruction-level hardware support for security (SGX in x86
and TrustZone in ARM) to accelerate software-based security
implementations. The LEGaTO ecosystem is shown in Fig. 1.

In the rest of the paper, we will briefly introduce the
LEGaTO full stack ecosystem including hardware platforms,
runtime and middleware system, compiler and programming
models, and use cases (Section II). Then for each LEGaTO
abstraction layers, we will highlight a representative tech-
nology already-developed during the project. More specifi-
cally, we elaborate on the hardware-level aggressive under-
volting technology for FPGAs (Section III), middleware-level
GPU checkpointing (Section IV), compiler-level task-oriented
and energy-aware orchestrator for heterogeneous clusters or
HEATS (Section V), and finally Smart Mirror as one of the
LEGaTO use cases (Section VI). In Section VII, we will
briefly mention the ongoing efforts to the end of the project.

II. THE LEGATO APPROACH

In Fig. 2, we present the LEGaTO-ecosystem, on the higher
level, namely the application use cases, LEGaTO targets a
wide variety of application domains such as machine learn-
ing, Smart Homes and healthcare. These applications have a
different set of requirements in terms of energy efficiency,
Fault Tolerance, and Security. All these requirements will be
facilitated by a single programming model which increases
the productivity of the development process and allows the
developer to specify their requirements. At execution time
two runtime systems will be responsible to satisfy the user
requirements. The runtime systems will reduce the energy
efficiency of the application by scheduling the computations to

Fig. 3: LEGaTO hardware platform RECS|BOX: Heteroge-
neous microserver platform with carriers for low-power and
high-performance microserver modules

the most energy-efficient device of the heterogeneous hardware
architecture. We provide more details below.

A. Hardware

The RECS|BOX platform used in LEGaTO supports the
full range of heterogeneous microserver technology in high-
performance as well as low-power variants (see Fig. 3). The
server supports up to 144 heterogeneous, modular microserver
nodes like CPU (x86 or ARM64), GPU, FPGA and SoCs in
a compact 3 RU form factor. Due to the modular approach
the hardware platform provides an optimal match for a wide
range of use cases and offers the ability to tightly intercon-
nect the microservers via a flexible high-speed, low-latency
communication infrastructure (see Fig. 4). More details can
be found in [4]. In addition to the cloud platform, a scalable,
heterogeneous edge platform is developed within the project,
supporting microservers for cloud as well as edge use cases.
The modular approach allows to tailor the platform towards
the specific use cases, an example is provided in section VI.

B. Middleware

The management and composition of resources is one main
task of the LEGaTO middleware layer. This requires a good
understanding of the available hardware and its configuration.
A suitable middleware layer is required to abstract out the
complexity of the various hardware management possibilities.
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This will also improve the user-level experience. Toward
this goal, in LEGaTO an embedded firmware is running on
management CPUs within the hardware, managing, controlling
and monitoring it on a low-level. The other main block of the
LEGaTO middleware is OpenStack, which is an open source
software platform for managing cloud computing with the idea
of providing infrastructure as a service.

C. Runtime

The main task of the runtime is to make efficient use of
the underlying hardware by smart scheduling of tasks across
different resources. LEGaTO is based on two runtime systems,
including OmpSs [5] and XiTAO [6]. OmpSs is based on
task parallelism, and very similar to OpenMP tasking. It
is being used as a forerunner prototyping environment for
future OpenMP features. On GPUs, both CUDA and OpenCL
kernels are supported. For FPGAs, OmpSs uses the vendor IP
generation tools (Xilinx Vivado and Vivado HLS, or Altera
Quartus), to generate the hardware configuration from high-
level code. Also, XiTAO is a task-based runtime that gener-
alizes the concept of a task into a parallel computation with
arbitrary (elastic) resources. By matching task requirements
with hardware resources (cores, memory, etc) at runtime, Xi-
TAO targets high parallelism and provides constructive sharing
and interference freedom. Overall, this strategy improves the
energy efficiency of the computation.

D. Compiler and High-Level Synthesis (HLS)

To develop applications for different hardware resources
targeting objectives like energy efficiency, performance, se-
curity, reliability, or productivity, we are building a toolchain
to map applications written in a high-level task-based dataflow
language onto such heterogeneous platforms.

E. Programming Model

In LEGaTO, we developed a front-end system to support
applications at compilation and runtime. In the heart of this
toochain there is OmpSs programming model that allows
expressing parallelism for available resources among the host
SMP cores, integrated/discrete GPUs, and/or FPGAs.

F. Use Cases

In LEGaTO, we develop and optimize different real use
cases with the help of the LEGaTO workflow, including Smart
Home, Smart City, Infection Research, Machine Learning, and
Secure IoT Gateway. These benchmarks have been already
able to be optimized using one of the toolflows that the
LEGaTO project provides.

III. HARDWARE: FPGA UNDERVOLTING

Aggressive undervolting, i.e., supply voltage underscaling
below the nominal level is one of the most efficient techniques
to reduce the power consumption of the chip, because dynamic
power is quadratic in voltage. In addition, usually vendors add
a very large voltage guardband below the nominal voltage level
to guarantee the correct functionality in the worst case process
and environmental conditions. This guardband is not necessary

Fig. 5: Voltage behavior and power/reliability trade-off behav-
ior of FPGAs (shown for VC707 at ambient temperature).

for many real-world applications and thus, eliminating it
can deliver significant power saving. However, by further
undervolting below the guardband level, the reliability of the
underlying hardware can be affected due to the aggressive
circuit delay increase. In LEGaTO, we aim to leverage the
aggressive undervolting technique and initially we evaluated
it for FPGAs, as described below in more detail.

A. Experimental Methodology

Experiments are performed on representative FPGAs from
Xilinx, a main vendor, including VC707 (performance-
oriented Virtex), two identical samples of KC705 (A &
B, power-oriented Kintex), and ZC702 (CPU-based Zynq).
Among various FPGA components, a major part of exper-
iments is initially performed on on-chip memories or Block
RAMs (BRAMs), thanks to their importance in the architecture
of state-of-the-art applications like FPGA-based DNNs as well
as the capability of their voltage rail to be independently
regulated. BRAMs are a set of small blocks of SRAMs,
distributed over the chip, and in a programmable-fashion can
be chained to build larger memories. All evaluated platforms
are fabricated with 28nm technology and their nominal/default
BRAMs voltage level (VCCBRAM ) is 1V.

B. Experimental Results

As shown in Fig. 5, undervolting VCCBRAM below the
nominal level, the performance or reliability of the BRAMs
are not affected until a certain level, i.e., minimum safe voltage
or Vmin. This region is the guardband, which is mainly con-
sidered by vendors to ensure the worst-case environmental and
process scenarios. In the guardband voltage region, data can
be safely retrieved without compromising reliability. Further
undervolting, although the FPGA is still accessible, the content
of some BRAMs experience faults or bit-flips. We call it as the
critical region. Finally, further undervolting, the DONE pin is
unset at Vcrash and the FPGA does not respond for any request
in the crash region. As seen, there is a slight difference of
mentioned voltage margins among platforms even for identical
samples of KC705; however, those three voltage regions are
recognizable for all. As shown in Fig. 5 (for VC707), the
power is continuously reduced through undervolting in both
guardband and critical voltage regions, led to more than 90%
of power saving at Vcrash vs. Vnom. However, within the
critical region, some of the memories are infected. The fault



1 i n t main ( i n t a rgc , c h a r * a rgv [ ] ){
2 i n t rank , nbProcs ;
3 d ou b l e *h , * g ;
4 i n t i ;
5 M P I I n i t (& argc , &argv ) ;
6 FTI Init ( a rgv [ 1 ] , MPI COMM WORLD) ;
7 MPI Comm size ( FTI COMM WORLD , &nbProcs ) ;
8 MPI Comm rank ( FTI COMM WORLD , &rank ) ;
9 cudaMallocManaged (&h , s i z e o f ( do ub l e ) * nElements , f l a g s ) ;

10 cudaMal loc (&g , s i z e o f ( do ub l e ) * nElement s ) ;
11 i n i t D a t a (&h ,&g ) ;
12 FTI Protect ( 0 , &i , 1 , FTI INTG ) ;
13 FTI Protect ( 1 , h , nElements , FTI DBLE ) ;
14 FTI Protect ( 2 , g , nElements , FTI DBLE ) ;
15 f o r ( i = 0 ; i < N; i ++){
16 FTI Snapshot ( ) ;
17 p e r f o r m C o m p u t a t i o n s ( h , g , i ) ;
18 }
19 FTI Finalize ( ) ;
20 M P I F i n a l i z e ( ) ;
21 }

Listing 1: FTI API to support transparent GPU/CPU check-
points. FTI API calls and variables are marked as red.

rate exponentially increases by further undervolting within the
critical region up to to 652 faults/Mbit at Vcrash. In the same
line, we observe that the fault rate exponentially increases up
to 153, 254, and 60 faults/Mbit at Vcrash for ZC702, KC705-
A, and KC705-B, respectively.

C. Ongoing Work

Our initial experimental study on the FPGAs reveals that
aggressive undervolting is potentially a promising technique
as in detail described in [7]; thus, we aim to exploit it to
achieve the major goal of the LEGaTO project, i.e., energy-
efficiency, as well as improving the resilience of the underlying
hardware as another goal of LEGaTO. Hence, we are working
on the integration of the aggressive undervolting with LEGaTO
software stack such as task-based low-voltage OmpSs@FPGA
as well as further evaluations with the LEGaTO use cases like
ML-based application. Note that due to inherent resilience of
ML models [8], aggressive undervolting can lead to significant
power saving even below the voltage guardband region.

IV. MIDDLEWARE: GPU CHECKPOINTING

Most scientific applications do not divide the same workload
among the GPU and the CPU in parallel. The computational
power of a GPU device is magnitudes larger than the one of a
CPU. Assigning a workload to execute simultaneously in both
devices raises severe load balancing issues. Hence, applica-
tions are executed in different phases, each phase is executed
by a specific device. GPUs are used for massively parallel
computational intensive phases, whereas CPUs are used for
non-parallelizable, communication heavy phases. Therefore,
for a every MPI-process, the application memory is distributed
across the main memory (CPU) and the GPU memory. Our
target is to provide a single API to support checkpoint of
different memory regions regardless of their actual physical
location. We extend a multilevel checkpoint library called FTI
[9]. FTI is a library that provides an API to the developer to
efficiently perform multi-level checkpointing. The developer
uses library function calls to define which data need to be
checkpointed as well as at which execution points a checkpoint
can be taken. An example using the extended GPU/CPU
checkpoint API is presented in Listing 1. Noticeably, in line 9
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Fig. 6: Execution time spent to C/R Heat2D.

the developer allocates memory space using a unified virtual
memory (UVM) address , thus this address is accessible in
the host code, whereas in line 10 the developer allocates a
device pointer, which is not directly accessible through host
code. In lines 12,13,14 the developer protects three different
memory address, a host address , a UVM address and a device
address however there are no API extensions. In FTI Protect
the developer specifies a single address which can be either
a host-memory address, a device memory address or a UVM
address and the FTI runtime library will handle accordingly
each different address type.

To support Hybrid GPU/CPU in FTI we extend the imple-
mentation of the FTI Protect API call. The function identifies
the physical location of the data. When the checkpoint takes
place, depending on the location of each address we perform
a different action. In the case of CPU or UVM addresses, we
invoke the normal FTI C/R procedure. In the case of UVM
addresses we use the CUDA driver to fetch the data from
their actual location and move them to the stable storage.
Finally, in the case of GPU addresses, we overlap the writing
of the file with the data movement from the GPU side to
the CPU side. This is done through streams and asynchronous
memory copies of chunks from GPU memory to host memory.
The reversed procedure takes place during recovery. After
the initial implementation we performed several optimizations
which achieve a speed up of 10X in comparison with the
initial implementation.

We use Head2D to test the behavior of our multi-gpu/multi-
node checkpoint methodology when the application is using
UVM memory allocations. We checkpoint Heat2D for two
different problem sizes, namely in the first problem we check-
point 16Gb per process whereas in the second we checkpoint
32Gb per-process, in each node we execute 4 processes,one
per GPU device, therefore the GPU devices are not shared
among the processes. Finally, the problem size is weakly
scaled as the number of nodes increases. When we use 16
nodes the total size of the problem size and thus the total size
of the checkpointed data is equal to 1Tb and 2Tb respectively.
Figure 6 depicts the results of our experiments for the different
methods. The x-axis corresponds to the different problem
sizes and the different node configurations, whereas the y-axis
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corresponds to the execution time spend for the checkpoint
and the recovery procedure respectively . Interestingly, the
checkpoint overhead does not increase as we increase the
number of nodes for the different problem sizes. During the
checkpoint each process stores the data into the local NVMe ,
regardless of the number of nodes. The overhead decreases as
we apply our optimized methods. Namely when we compare
the initial version with the async version we obtain respec-
tively a 12.05X and 5.13X reduction in the checkpoint and
recover overhead. The same amount of reduction is observed in
both problem sizes, consequently our implementation strongly
scales. Our initial estimations expect, for the same amount of
application overhead, the extended FTI version can sustain
execution in systems with 7 times smaller MTBF.

V. COMPILER: HETEROGENEITY- AND ENERGY-AWARE
SCHEDULER (HEATS)

HEATS is a heterogeneity- and energy-aware scheduler
which allows customers to trade performance vs. energy
requirements. Our system first learns the performance and
energy features of the physical hosts. Then, it monitors the
execution of tasks on the hosts and opportunistically migrates
them onto different cluster nodes to match the customer-
required deployment trade-offs.

The architecture of HEATS is composed of several interact-
ing components. Fig. 7 depicts these interactions. The resource
requirements of a task, as for instance memory or number of
cores, are specified before submission. Resource availability
in the hardware nodes is monitored and reported to HEATS
monitoring module. Then, HEATS computes suitable nodes
for execution considering the resource requirements for all
previously running tasks as well as the availability reported
by the underlying system. Next, the algorithm executes a
profiling phase and estimates the performance and energy
requirements of the given task in each of the previously
computed available nodes. Finally, the scheduling module
relies on these estimations to compute scores for each node,
to be weighted by the energy/performance ratio defined by the
client. The best fitting node is chosen to deploy the given task.

In summary, the HEATS strategy will attempt to place tasks
on the most efficient host that still has enough resources to run

Fig. 8: User interface and interaction with the Smart Mirror.

the given task. We define most efficient as the closest match
to the demanded energy/performance trade-off. However, the
ideal node for a task will not always be available at scheduling
time. Therefore, we recompute our scheduling decision every
now and then. When a better fit than the current host of a task
is found, the scheduler performs a migration.

The scheduling phase is triggered for the queue of all
pending tasks. The algorithm initially finds the best fit for
the next task. It identifies its resource requirements, e.g., CPU
and memory, as well as the available nodes for these resources.
Then, it computes the score for each of the nodes. The model
is used for the profiling of nodes. The scores are computed by
normalizing the predictions and adding the demanded weights.
Every x seconds the rescheduling phase is triggered for the set
of all running tasks. If the re-execution of the best fit decides
on a different target node, the task is migrated to the new host
and removed from the current one [10].

VI. USE CASE: SMART MIRROR

An increasingly used interaction interface in smart homes
is a Smart Mirror. Fig. 8 illustrates the composition and
the user interface of an example. It consists of a semi-
transparent mirror with an underlying monitor, an RGBD
camera and a microphone. In this way, you can see your
mirror image like a normal mirror and the elements shown
on the display. In order to display personalised information
such as public transport timetables, weather forecasts or menus
for the respective user or to control the intelligent home
environment such as temperature or lighting conditions, the
most important features of a smart home are combined in this.
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These are face, object, gesture, and speech recognition and are
individually realized in modules underneath the MagicMirror
as the graphical overlay. Unlike other approaches, everything
is thereby processed locally and no data gets into the cloud,
which guarantees the personal privacy. Neural networks like
Yolov3 are providing the detections and Kalman and Hungar-
ian filters are used to keep track. These algorithms require
a lot of computing power and have previously met on a
high-end workstation with two NVIDIA GTX 1080 GPGPUs.
Currently, the performance for the object, gesture, and face-
detection is about 21 FPS at 400 W. Further optimizations on
the implementation and algorithmic level including the use of
specialized target architectures like FPGAs or GPU SoCs aim
for a power consumption of 50 W at 10 FPS, which is sufficient
for a seamless user experience.

Based on these high demands of the Smart Mirror use-case
with regard to computing power, power/energy consumption,
input/outputs, integration capability into a living room, which
comes with inaudible operating noise and a compact design,
an optimized edge server which also supports embedded use
cases is developed. The edge server is based on 3 modular
microservers utilising on the upcoming PICMG COM-HPC
specification in a compact enclosure which is about 20x40 cm
(Fig. 9). The modular approach allows to quickly evaluate
different microserver compositions for the appliances, e. g.,
the Smart Mirror use case can be implemented with 1x CPU
+ 2x GPU or 1 CPU + 1 GPU + 1 FPGA SoC or any
other microserver configuration. It should be noted that the
microservers are self-sustained, the PCIe communication is
used in a host-2-host fashion, such that each microserver can
operate independently and is not just a PCIe peripheral of the
CPU microserver. This approach supports a wide range of edge
computing appliances like ADAS or Machine Learning.

VII. ONGOING AND FUTURE PLANS OF LEGATO

Efforts in LEGaTO for the last year of the project con-
centrated on the optimization/developing tools/technologies
aiming to achieve the final goals of the energy-saving (10X),
security (10X), reliability (5X), and productivity (5X), as well
as on the integration of the different components to make
the full hardware-software stack tightly coupled. For instance,
we are working on the extension of tools such as OmpSs
for FPGA cluster, on the optimization of the backend system
such as energy-aware runtime, on the integration of different

LEGaTO components such as checkpointing for FPGA-based
applications, and on the optimization of use cases for energy,
security, reliability, and productivity.
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