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ABSTRACT
We propose a design-time framework (named HYDRA-C) for

integrating security tasks into partitioned
1
real-time systems (RTS)

running on multicore platforms. Our goal is to opportunistically
execute security monitoring mechanisms in a ‘continuous’ manner

– i.e., as often as possible, across cores, to ensure that security

tasks run with as few interruptions as possible. Our framework

will allow designers to integrate security mechanisms without

perturbing existing real-time (RT) task properties or execution

order. We demonstrate the framework using a proof-of-concept

implementation with intrusion detection mechanisms as security

tasks. We develop and use both, (a) a custom intrusion detection

system (IDS), as well as (b) Tripwire – an open source data

integrity checking tool. These are implemented on a realistic rover

platform designed using an ARM multicore chip. We compare

the performance of HYDRA-C with a state-of-the-art RT security

integration approach for multicore-based RTS and find that our

method can, on average, detect intrusions 19.05% faster without

impacting the performance of RT tasks.

1 INTRODUCTION
Limited resources in terms of processing power, memory, energy,

etc. coupled with the fact that security was not considered a design

priority has led to the deployment of a large number of real-

time systems (RTS) that include little to no security mechanisms.

Hence, retrofitting such legacy RTS with general-purpose security

solutions is a challenging problem since any perturbation of the

real-time (RT) constraints (runtimes, periods, task execution orders,

deadlines, etc.) could be detrimental to the correct and safe operation

of RTS. Besides, security mechanisms need to be designed in such

a way that an adversary can not easily evade them. Successful

attacks/intrusions into RTS are often aimed at impacting the safety

guarantees of such systems, as evidenced by recent intrusions

(e.g., attacks on control systems [2, 3], automobiles [4, 5], medical

devices [6], etc. to name but a few). Systems with RT properties

pose unique security challenges – these systems are required

to meet stringent timing requirements along with strong safety

requirements. Limited resources (i.e., computational power, storage,

energy, etc.) prevent security mechanisms that have been primarily

developed for general purpose systems from being effective for

safety-critical RTS.

In this paper we aim to improve the security posture of RTS

through integration of security tasks while ensuring that the

existing RT tasks are not affected by such integration. The security

1
In partitioned scheduling (a widely accepted multicore scheduling scheme), tasks are

statically partitioned onto identical cores (i.e., runtime migration across cores is not

permitted) [1].

Table 1: Example of Security Tasks

Security Task Approach/Tools
File-system checking Tripwire [17], AIDE [18], etc.
Network packet monitoring Bro [19], Snort [20], etc.
Hardware event monitoring Statistical analysis based

checks [21] using performance

monitors (e.g., perf [22],
OProfile [23], etc.)

Application specific

checking

Behavior-based detection (see

the related work [11–13, 24])

tasks considered could be carrying out any one of protection,

detection or response-based operations, depending on the system

requirements. For instance, a sensor measurement correlation task

may be added for detecting sensor manipulation or a change

detection task (or other intrusion detection programs) may be

added to detect changes/intrusions into the system. In Table 1 we

present some examples of security tasks that can be integrated into

legacy systems (this is by no stretch meant to be an exhaustive list).

Note that the addition of any security mechanisms (such as IDS,

encryption/authentication, behavior-based monitoring, etc.) may

require modification of the system or the RT task parameters as

was the case in prior work [7–15].

Further, to provide the best protection, security tasks may
need to be executed as often as possible. If the interval between

consecutive checking events is too large then an attacker may

remain undetected and cause harm to the system between two

invocations of the security task. In contrast, if the security tasks are

executed very frequently, it may impact the schedulability of the RT

(and other security) tasks. The challenge is then to determining the

right periods (i.e., minimum inter-invocation time) for the security

tasks [16].

As a step towards enabling the design of secure RT platforms,

opportunistic execution [25, 26] has been proposed as a potential

way to integrate security mechanisms into legacy RTS – this allows

the execution of security mechanisms as background services

without impacting the timing constraints of the RT tasks. Other

approaches have been built on this technique for integrating tasks

into both legacy and non-legacy systems [7–11, 27, 28]. However,

most of that work was focused on single core RTS (that are

a majority of such systems in use today). However, multicore
processors have found increased use in the design of RTS to improve

overall performance and energy efficiency [29, 30]. While the use

of such processors increases the security problems in RTS (e.g.,
due to parallel execution of critical tasks) [31] to our knowledge

very few security solutions have been proposed in literature [26].

In prior work (called HYDRA) [26] researchers have developed a
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mechanism for integrating security into multicore RTS. However

this work uses a partitioned scheduling approach and does not allow

runtime migration of security tasks across cores. We show that this

results in delayed detection of intrusions
2
as the security tasks are

not able to execute as frequently. Our main goal in this paper is

to raise the responsiveness of such security tasks by increasing their
frequency of execution. For instance, consider an intrusion detection

system (IDS) – say one that checks the integrity of file systems. If

such a system is interrupted (before it can complete checking the

entire system), then an adversary could use that opportunity to

intrude into the system and, perhaps, stay resident in the part of the

filesystem that has already been checked (assuming that the IDS

is carrying out the check in parts). If, on the other hand, the IDS

task is able to execute with as few interruptions as possible (e.g.,
by moving immediately to an empty core when it is interrupted),

then there is much higher chance of success and, correspondingly,

a much lower chance of a successful adversarial action.

Our Contributions. In this paper, we propose a design-time

methodology and a framework named HYDRA-C for partitioned
3

RTS that (a) leverages semi-partitioned scheduling [35] to enable

continuous execution of security tasks (i.e., execute as frequently as

possible) across cores, and (b) does not impact the timing constraints

of other, existing, RT tasks.

HYDRA-C takes advantage of the properties of a multicore

platform and allows security tasks to migrate across available

cores and execute opportunistically (i.e., when the RT tasks are not

running). This framework extends existing work [26] and ensures

better security (e.g., faster detection time) and schedulability (see

Section 5). HYDRA-C is able to do this without violating timing

constraints for either the existing RT tasks or the security ones

(Section 3). We develop a mathematical model and iterative solution

that allows security tasks to execute as frequently as possible

while still considering the schedulability constraints of other tasks

(Section 4). In addition, we also present an implementation on

a realistic ARM-based multicore rover platform (running a RT

variant of Linux system and realistic security applications). We then

perform comparisons with the state-of-the-art [26] (Section 5.1).

Finally, we carry out a design space exploration using synthetic

workloads and study trade-offs for schedulability and security.

Our evaluation shows that proposed semi-partitioned approach

can achieve better execution frequency for security tasks and

consequently quicker intrusion detection (19.05% faster on average)

when compared with both fully-partitioned and global scheduling

approaches while providing the same or better schedulability

(Section 5.2).

Note: We do not target our framework towards any specific

security mechanism – our focus is to integrate any designer-

provided security solution into a multicore-based RTS. In our

experiments we used Tripwire [17] (a data integrity checking

tool) as well as our in-house custom-developed malicious kernel
module checker to demonstrate the feasibility of our approach –

2
We discuss this issue further in Section 5.

3
Since this is the commonly used multicore scheduling approach for many commercial

and open-source OSs (such as OKL4 [32], QNX [33], RT-Linux [34], etc.) – mainly due

to its simplicity and efficiency [1, 26].

the integration framework proposed in this paper is more broadly

applicable to other security mechanisms.

2 MODEL AND ASSUMPTIONS
2.1 Real-time Tasks and Scheduling Model
Consider a set of NR RT tasks ΓR = {τ1,τ2, · · · ,τNR }, scheduled on
a multicore platform withM identical coresM = {π1,π2, · · · ,τM }.
Each RT task τr releases an infinite sequence of task instances,

also called jobs, and is represented by the tuple (Cr ,Tr ,Dr ) where
Cr is the worst-case execution time (WCET), Tr is the minimum

inter-arrival time (e.g., period) and Dr is the relative deadline.

The utilization of each task is denoted by Ur =
Cr
Tr . We assume

constrained deadlines for RT tasks (e.g., Dr ≤ Tr ) and that the task

priorities are assigned according to rate-monotonic (RM) [36] order

(e.g., shorter period implies higher priority).

All events in the system happen with the precision of integer

clock ticks (i.e., processor clock cycles), that is, any time t involved
in scheduling is a non-negative integer. In this paper we consider RT

tasks that are scheduled using partitioned fixed-priority preemptive

scheme [30] and assigned to the cores using a standard task

partitioning algorithm [1, 30]. We further assume that the RT tasks

are schedulable, viz., the worst-case response time (WCRT), denoted

as Rr , is less than deadline (e.g., Rr ≤ Dr ,∀τr ) and the following
necessary and sufficient schedulability condition holds for each RT

tasks τr assigned to any given core πm [1]:

∃t : 0 < t ≤ Dr and Cr +
∑

τi ∈hp(τr ,πm )

⌈
t

Ti

⌉
Ci ≤ t , (1)

where hp(τr ,πm ) denotes the set of RT tasks with higher priority

than τr assigned to core πm .

2.2 Security Model
Our focus is on integrating given security mechanisms abstracted

as security tasks into a legacy multicore RTS without impacting

the RT functionality of the RTS. While we use specific intrusion

detection mechanisms (e.g., Tripwire) to demonstrate our approach,

our approach is somewhat agnostic to the security mechanisms. The

security model used and the design of security tasks are orthogonal

problems. Since we aim to maximize the frequency of execution of

security tasks, security mechanisms whose performance improves

with frequency of execution (e.g., intrusion monitoring and

detection tasks) benefit from our framework.

3 SECURITY INTEGRATION FRAMEWORK
We propose to improve the security posture of multicore based RT

systems by integrating additional periodic security tasks (e.g., tasks
that are specifically designed for intrusion detection purposes).

We highlight that HYDRA-C abstracts security tasks and allows

designers to execute any given techniques. Our focus here is on

integration of a given set of security tasks (e.g., intrusion detection

mechanisms) in an existing multicore RTS without impacting

the RT task parameters (e.g., WCET, periods, etc.) or their task
execution order. In general, the addition of security mechanisms

may increase the execution time of existing tasks [7, 8] or reduce

schedulability [15]. As we mentioned earlier, our focus is on legacy

2
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Schedule (vanilla)

Schedule (with security task)
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RT Task 2 (core 1)

Core idle (slack time)
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Figure 1: Illustration of our security integration framework
for a dual-core platform: two RT tasks (blue and green)
are statically assigned to two cores (core 0 and core 1,
respectively). We propose to integrate a security task (red)
that will execute with lowest priority and can be migrated
to ether core (whichever is idle) at runtime.

multicore systems where designers may not have enough flexibility

to modify system parameters to integrate security mechanisms. We

address this problem by allowing security tasks to execute with

a priority lower than all the RT tasks, i.e., leverage opportunistic
execution [25, 26]. This way, security tasks will only execute during

the slack time (e.g.,when a core is idle) and the timing requirements

of the RT tasks will not be perturbed. However, in contrast to prior

work (HYDRA) [26] where the security tasks are statically bound

to their respective cores, in this paper we allow security tasks to

continuously migrate at runtime (i.e., the combined taskset with

RT and security tasks follows a semi-partitioned scheduling policy)

whenever any core is available (e.g., when other RT or higher-

priority security tasks are not running). An illustration of HYDRA-

C is presented in Fig. 1 where two RT tasks (represented by blue

and green rectangles) are partitioned into two cores and a newly

added security task (red rectangle) can move across cores.

As we shall see in Section 5, allowing security tasks to execute

on any available core will give us the opportunity to execute

security tasks more frequently (e.g., with shorter period) and that

leads to better responsiveness (faster intrusion detection time).

One fundamental question with our security integration approach

is to figure out how often to execute security tasks so that the

system remains schedulable (e.g.,WCRT is less than period), and

also can execute within a designer provided frequency bound

(so that the security checking remains effective). This is different

when compared to scheduling traditional RT tasks since the RT

task parameters (e.g., periods) are often derived from physical

system properties and cannot be adjusted due to control/application

requirements. We now formally define security tasks.

Security Tasks. Let us include a set of NS security tasks ΓS =
{τ1,τ2, · · · ,τNS } in the system. We adopt the periodic security

task model [25] and represent each security task by the tuple

(Cs ,Ts ,Tmax
s ) where Cs is the WCET, Ts is the (unknown) period

(e.g., 1

Ts is the monitoring frequency) and Tmax
s is a designer

provided upper bound of the period – if the period of the security

task is higher than Tmax
s then the responsiveness is too low and

security checking may not be effective.

We assume that priority of the security tasks are distinct and

specified by the designers (e.g., derived from specific security

requirements). Security tasks have implicit deadlines, i.e., they need
to finish execution before the next invocation. We also assume that

task migration and context switch overhead is negligible compared

to WCET of the task. Our goal here is to find a minimum period

Ts ≤ Tmax
s (so that the security tasks can execute more frequently)

such that the taskset remains schedulable (e.g., ∀τs ∈ ΓS : Rs ≤ Ts
where Rs is the WCRT

4
of τs ).

4 PERIOD SELECTION
The actual periods for the security tasks are not known – we need

to find the periods that ensures schedulability and gives us better

monitoring frequency. Mathematically this can be expressed as

the following optimization problem: minimize

Ts ,∀τs ∈ΓS
∑

τs ∈ΓS
Ts , subject to

Rs ≤ Ts ≤ Tmax
s ,∀τs ∈ ΓS . This is a non-trivial problem since the

period of τs can be anything in [Rs ,Tmax
s ] and the response time

Rs is variable as it depends on the period of other higher priority

security tasks. We first derive the WCRT of the security tasks and

use it as a (lower) bound to find the periods. Our WCRT calculation

for security tasks is based on the existing iterative analysis for

global multicore scheduling [37–39] and we modify it to account

the fact that RT tasks are partitioned.

4.1 Preliminaries
We start by briefly reviewing the relevant terminology and

parameters. We are interested in determining the response time

of a job τks of task τs (e.g., job under analysis) using an iterative

method and the response time in each iteration is denoted by x .

Definition 1 (Busy Period). The busy period of τks is the maximal

continuous time interval [t1, t2) (until τks finishes) where all the

cores are executing either higher priority tasks or τks itself.

Definition 2 (Interference). Given task τi , the interference Iτs←τi
caused by τi on τks is the number of time units in the busy period

when τi executes while τ
k
s does not.

Note that the job under analysis τks cannot execute if all cores

are busy with higher priority tasks; hence, the length of the busy

period is at most

⌊
Ωs
M

⌋
+ Cs by definition, where Ωs is the sum

of the interference caused by all higher priority tasks on τks . To
compute the value of Iτs←τi , we rely on the concept of workload.

Definition 3 (Workload). The workload Wi (x) of a task τi in a

window of length x represents the accumulated execution time of

τi within this time interval.

It remains to compute the workload and corresponding

interference for each higher priority task τi . We first show how to

do so for RT tasks and then for security tasks with higher priority

than τs .

4.2 Interference Calculation for RT Tasks
Since RT tasks are statically partitioned to cores and they have

higher priority than any task that is allowed to migrate between

cores, the worst-case workload for RT tasks can be trivially obtained

4
The calculation of WCRT is presented in Section 4.4.
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Figure 2: Workload of the RT tasks for a window of size x .
The arrival time of the task τi is denoted by ai .

based on the same critical instant used for single core fixed-priority

scheduling case [36].

Lemma 1. For a given core πm , the maximum workload of RT tasks
executed on πm in any possible time interval of length x is obtained
when all RT tasks are released synchronously at the beginning of the
interval.

Proof. Since RT tasks are partitioned and they have higher

priorities than security tasks, the schedule of RT tasks executed on

πm does not depend on any other task in the system. Now consider

any interval [t , t + x) of length x . We show that we can obtain an

interval [t ′, t ′ + x) where all tasks are released at t ′, such that the

workload of RT tasks on πm is higher in [t ′, t ′ + x) compared to

[t , t + x).
First step: let t ′ be the earliest time such that πm continuously

executes RT tasks in [t ′, t); if such time does not exist, then let

t ′ = t . By definition, πm does not execute RT tasks at time t ′ − 1.

Also since RT tasks continuously execute in [t ′, t), the workload
of RT tasks in [t ′, t ′ + x) cannot be smaller than the workload in

[t , t + x).
Second step: since πm is idle at t ′ − 1, no job of RT tasks on

πm released before t ′ can contribute to the workload in [t ′, t).
Hence, the workload can be maximized by anticipating the release

of each RT task τr so that it corresponds with t ′. This concludes
the proof. □

Let ΓπmR ⊆ ΓR denote the set of RT tasks partitioned to core πm .

Based on Lemma 1, an upper bound to the workload of RT tasks on

πm can be obtained by assuming that each RT task τr is released at

the beginning of the interval and each job of τr executes as early
as possible after being released, as shown in Fig. 2. We thus obtain

the workload for RT task τr :

W R
r (x) =

⌊
x

Tr

⌋
Cr +min(x mod Tr ,Cr ), (2)

and summing over all RT tasks on πm yields a total workload∑
τi ∈ΓπmR

W R
i (x). Finally, we notice that by definition the interference

caused by a group of tasks executing on the same core πm on

τs cannot be greater than x − Cs + 1. Therefore, the maximum

interference caused by RT tasks on πm to τs can be bounded as:

Iτs←ΓπmR

(
x ,

∑
τi ∈ΓπmR

W R
i (x)

)
= min

©«
∑

τi ∈ΓπmR

W R
i (x),x −Cs + 1

ª®®¬ . (3)
The ‘+1’ term in the upper bound of the interference (e.g., Eq. (3))
ensures the convergence of iterative search for the response time

(recall from Section 4.1 that at each iteration the response time

is denoted by x) to the correct value [40]. For example, when the

iterative search for the response time is started with x = Cs (i.e.,

Time
!" − $"

%0 Arrival ($")             Finish (!")
$" − %0

Busy Period

Figure 3: Extension of busy period for bounding the number
of carry-in higher priority security tasks.

Time
%0 %0 + (

$1														$1														$101
(

Time
						%0 %0 + (

		$1														$1														$101
(

ℛ1

Figure 4: Illustration of carry-in task for a window of size x .

x − Cs = 0), the search would stop immediately (and outputs an

incorrect WCRT) since min

( ∑
τi ∈ΓπmR

W R
i (x),x −Cs

)
= 0.

4.3 Interference Calculation for Security Tasks
Wenext consider the workload of security tasks with higher priority

than τs . The workload computation depends on the arrival time of

the task relative to the beginning of the busy period, as specified in

the following definition.

Definition 4 (Carry-in). A task τi is called a carry-in task if there

exists one job of τi that has been released before the beginning of a

given time window of length x and executes within the window. If

no such job exists, τi is referred to as a non-carry-in task.

Generally (but not always), the workload of a task τi in the

busy period is higher if τi is a carry-in task than a non-carry-in

task. Hence, it is important to limit the number of higher priority

carry-in tasks. To this end, we follow an approach similar to prior

research [37, 39] and extend the busy period of τks from its arrival

time (denoted by as ) to an earlier time instance t0 (see Fig. 3)

such that during any time instance t ∈ [t0,as ) all cores are busy
executing tasks with higher priority than τs . Note that by definition,
this implies that there was at least one free core (i.e., not executing
higher priority tasks) at time t0 − 1.

Lemma 2. At mostM − 1 higher priority tasks can have carry-in
at time t0.

Proof. The maximum number of higher priority tasks that can

have carry-in at t0 is M − 1 since by definition there have to be

strictly less than M higher priority tasks active at time t0 − 1

(otherwise they will occupy all the cores). □

Since Lemma 2 holds for all tasks with higher priority than τs ,
an immediate corollary is that the number of security tasks with

carry-in at t0 also cannot be larger thanM − 1. If a security task τi
does not have carry-in, its workload is maximized when the task

is released at the beginning of the busy interval. Hence, we can

calculate the workload boundW SNC
i (x) for the interval x using

Eq. (2), e.g.,W SNC
i (x) =

⌊
x
Ti

⌋
Ci +min(x modTi ,Ci ). Likewise, the

workload bound for a carry-in security task τi in an interval of

length x starting at t0 is given by (see Fig. 4):

W SCI
i (x) =W SNC

i (max(x − x̄i , 0)) +min(x ,Ci − 1), (4)

4



where x̄i = Ci − 1+Ti −Ri . We can bound the workload of the first

carry-in job toCi −1 because the job must have started executing at

the latest at t0 − 1 (given that not all cores are busy). Finally, using

the same argument as in Section 4.2, the interference of τi can be

bounded as follows:

Iτs←τi (x ,Wi (x)) = min (Wi (x),x −Cs + 1) , (5)

whereWi (x) is eitherW SNC
i (x) orW SCI

i (x). Notice that the WCRT

and periods of security task in the carry-in workload function (see

Eq. (4)) is actually an unknown parameter. However, we follow an

iterative scheme that allows us to calculate the period andWCRT of

all higher priority security tasks before we calculate the interference

for task τs (refer to Section 4.5 for details).

4.4 Response Time Analysis
Let hpS (τs ) denote the set of security tasks with a higher priority

than τs . Note that we do not know which (at most)M − 1 security

tasks in hpS (τs ) have carry-in. In order to derive the WCRT of τs ,
let us defineZτs ⊂ Γ × Γ as the set of all partitions of hpS (τs ) into
two subsets ΓNC

s and ΓCIs (e.g., the non overlapping set of carry-in

and non-carry-in tasks) such that:

ΓNC
s ∩ ΓCIs = ∅, ΓNC

s ∪ ΓCIs = hpS (τs ), and |ΓCIs | ≤ M − 1,

e.g., there are at mostM − 1 carry-in tasks.

For a given carry-in and non-carry-in set (e.g., ΓNC
s and ΓCIs ),

we can calculate the total interference experienced by τs as follows:

Ωs (x , ΓNC
s , ΓCIs ) =

∑
πm ∈M

Iτs←ΓπmR

(
x ,

∑
τi ∈ΓπmR

W R
i (x)

)
+

∑
τi ∈ΓNC

s

Iτs←τi

(
x ,W SNC

i (x)
)
+

∑
τi ∈ΓCIs

Iτs←τi

(
x ,W SCI

i (x)
)
. (6)

For a given ΓNC
s , ΓCIs sets response time Rs |(ΓNC

s ,ΓCIs ) will be

the minimal solution of the following iteration
5
[37]:

x =

⌊
Ωs (x , ΓNC

s , ΓCIs )
M

⌋
+Cs . (7)

We can solve this using an iterative fixed-point search with the

initial condition x (0) = Cs . The search terminates if there exists a

solution (i.e., x = x (k ) = x (k−1)
for some iteration k) or when x (k ) >

Tmax
s for any iteration k since τs becomes trivially unschedulable

for WCRT greater than Tmax
s . Finally we can calculate the WCRT

of τs as follows:

Rs = max

(ΓNC
s ,ΓCIs )∈Zτs

Rs |(ΓNC
s ,ΓCIs ). (8)

4.5 Algorithm
The security task τs remains schedulable with any period Ts ∈
[Rs ,Tmax

s ]. However as mentioned earlier, the calculation of Rs
requires us to know the period and response time of other high

priority tasks τh ∈ hpS (τs ). Also if we arbitrarily setTs = Rs (since
this allows us to execute security tasks more frequently) it may

negatively affect the schedulability of other tasks that are at a lower

priority than τs because of a high degree of interference from τs .

5
Note that the worst-case is when the job arrives at t0 (i.e., as = t0).

Algorithm 1 Period Selection

Input: Set of real-time and security tasks Γ = ΓR ∪ ΓS
Output: Periods of the security tasks, T (if the security tasks are schedulable);

Unschedulable otherwise

1: Set Ts := Tmax
s and calculate Rs for ∀τs ∈ ΓS

2: if ∃τs such that Rs > Tmax
s then

3: return Unschedulable
4: end if
5: for each security task τs ∈ ΓS (from higher to lower priority) do
6: /* Find period for which all lower priority tasks are schedulable */
7: Find minimum T ∗s ∈ [Rs , Tmax

s ] using Algorithm 2 such that ∀τj ∈ lp(τs )
remains schedulable (e.g., Rj ≤ Tmax

j )

8: Update Rj for ∀τj ∈ lp(τs ) considering the interference with new periodT ∗s
9: end for
10: return T := [T ∗s ]∀τs ∈ΓS /* return the periods */

Hence, we developed an iterative algorithm that gives us a trade-off

between schedulability and monitoring frequency.

Our proposed solution (refer to Algorithm 1 for a formal

description) works as follows.We first fix the period of each security

task Tmax
s and calculate the response time Rs using the approach

presented in Section 4.3 (Line 1). If there exists a task τj such that

Rj > Tmax
j we report the taskset as unschedulable (Line 2) since

it is not possible to find a period for the security tasks within the

designer provided bounds – this unschedulability result will help

the designer in modifying the requirements (and perhaps RT tasks’

parameters, if possible) accordingly to integrate security tasks for

the target system. If the taskset is schedulable with Tmax
s , we then

iteratively optimize the periods from higher to lower priority order

(Lines 5-9) and return the period (Line 10). To be specific, for each

task τs ∈ ΓS we perform a logarithmic search [41, Ch. 6] (see

Algorithm 2 for the pseudocode) and find the minimum period T ∗s
within the range [Rs ,Tmax

s ] such that all low priority tasks (denoted

as lp(τs )) remain schedulable, e.g., ∀τj ∈ lp(τs ) : Rj ≤ Tmax
j (Line

7). Note that since we perform these steps from higher to lower

priority order, WCRT and period of all higher priority tasks (e.g.,
∀τh ∈ hp(τs )) are already known. We then update the response

times of all low priority task τj ∈ lp(τs ) considering the interference
from the newly calculated period T ∗s (Line 8) and repeat the search

for next security task.

5 EVALUATION
We evaluate HYDRA-C on two fronts: (i) a proof-of-concept

implementation on an ARM-based rover platform with security

applications – to demonstrate the viability of our scheme in a

realistic setup (Section 5.1); and (ii) with synthetically generated

workloads for broader design-space exploration (Section 5.2). Our

implementation code will be made available in a public, open-

sourced repository [42].

5.1 Experiment with an Embedded Platform
and Security Applications

5.1.1 Platform Overview. We implemented our ideas on a

rover platform manufactured by Waveshare [43]. The rover

hardware/peripherals (e.g., wheel, motor, servo, sensor, etc.) are
controlled by a Raspberry Pi 3 (RPi3) Model B [44] SBC (single

board computer). The RPi3 is equipped with a 1.2 GHz 64-bit

quad-core ARM Cortex-A53 CPU on top of Broadcom BCM2837
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Algorithm 2 Calculation of Minimum Feasible Period for the

Security Task τs

Input: Set of real-time and security tasks Γ = ΓR ∪ ΓS
Output: A feasible period T ∗s for the security task under analysis (i.e., τs )

1: Define T l
s := Rs , T r

s := Tmax
s , T c

s := 0

2: Set T̂s := {Tmax
s } /* Initialize a variable to store the set of feasible periods */

3: while T l
s <= T r

s do

4: Update T c
s := ⌊ T

l
s +T

r
s

2
⌋

5: if ∃τj ∈ lp(τs ) such that τj is not schedulable with Ts = T c
s then

6: /* Increase the period of τs to make the taskset schedulable (e.g., by reducing
the interference) */

7: Update T l
s := T c

s + 1

8: else
9: /* Taskset is schedulable with T c

s */
10: T̂s := T̂s ∪ {T c

s } /* Add T c
s to the feasible period list */

11: /* Check schedulability with smaller period for next iteration */
12: Update T r

s := T c
s − 1

13: end if
14: end while
15: Set T ∗s := min

(
T̂s

)
/* Find the minimum period from the set of feasible periods */

16: return T ∗s /* return the period of τs */

SoC (system-on-chip). In our experiments we focus on a dual-

core setup (e.g., activated only core0 and core1) and disabled the

other two cores) – this was done by modifying the boot command

file /boot/cmdline.txt and set the flag maxcpus=2. The base

hardware unit of the rover is connected with RPi3 using a 40-pin

GPIO (general-purpose input/output) header. The rover supports

omni-directional movement and can move avoiding obstacles using

an infrared sensor (e.g., ST188 [45]).We also attached a camera (RPi3

camera module) that can capture static images (3280 × 2464 pixel
resolution). The detailed specifications of the rover hardware (e.g.,
base chassis, adapter, etc.) are available on the vendor website [43].

5.1.2 Experiment Setup and Implementation. We implemented

our security integration scheme in Linux kernel 4.9 and enabled

real-time capabilities by applying the PREEMPT_RT patch [34]

(version 4.9.80-rt62-v7+). In our experiments the rover moved

around autonomously and periodically captured images (and stored

them in the internal storage). We assumed implicit deadlines for

RT tasks and considered two RT tasks: (a) a navigation task – that

avoids obstacles (by reading measurements from infrared sensor)

and navigates the rover and (b) a camera task that captures and

stores still images. We do not make any modifications to the vendor

provided control codes (e.g., navigation task). In our experiments

we used the following parameters (Cr ,Tr ): (240, 500) ms and

(1120, 5000) ms, for navigation and camera tasks, respectively (i.e.,
total RT task utilization was 0.7040). We calculated the WCET

values using ARM cycle counter registers (CCNT) and set periods

in a way that the rover can navigate and capture images without

overloading the RPi3 CPU. Since CCNT is not accessible by default,

we developed a Linux loadable kernel module and activated the

registers so that our measurement scripts can access counter values.

To integrate security into this rover platform, we included two

additional security tasks: (a) an open-source security application,

Tripwire [17], that checks intrusions in the image data-store and

(b) our custom security task that checks current kernel modules

(as a preventive measure to detect rootkits) and compares with an

expected profile of modules. The WCET of the security tasks were

5342 ms and 223 ms, respectively and the maximum periods of

Table 2: Summary of the Evaluation Platform

Artifact Configuration/Tools
Platform 1.2 GHz 64-bit Broadcom BCM2837

CPU ARM Cortex-A53

Memory 1 Gigabyte

Operating System Debian Linux (Raspbian Stretch Lite)

Kernel version Linux Kernel 4.9

Real-time patch PREEMPT_RT 4.9.80-rt62-v7+

Kernel flags CONFIG_PREEMPT_RT_FULL enabled

Boot parameters maxcpus=2, force_turbo=1,
arm_freq=700, arm_freq_min=700

WCET measurement ARM cycle counter registers

Task partition Linux taskset
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Figure 5: Experiments with rover platform: (a) time (cycle
counts) to detect intrusions; (b) average number of context
switches. On average our scheme can detect the intrusions
faster without impacting the performance of RT tasks.

security tasks were assumed to be 10000 ms (e.g., total system
utilization is at least 0.7040 + 0.5565 = 1.2605) – we picked

this maximum period value by trial and error so that the taskset

became schedulable for demonstration purposes. We used the Linux

taskset utility [46] for partitioning tasks to the cores and the

tasks were scheduled using Linux native sched_setscheduler()
function. For accuracy of our measurements we disabled all CPU

frequency scaling features in the kernel and executed RPi with a

constant frequency (e.g., 700 MHz – the default value). The system

configurations and tools used in our experiments are summarized

in Table 2.

We compared the performance of our scheme with prior work,

HYDRA [26]. In that work, researchers proposed to statically

partition the security tasks among the multiple cores – to

our knowledge HYDRA is the state-of-the-art mechanism for

integrating security in legacy multicore-based RT platforms. The

key idea in HYDRA was to allocate security tasks using a greedy

best-fit strategy: for each task, allocate it to a core that gives

maximum monitoring frequency (i.e., shorter period) without

violating schedulability constraints of already allocated tasks.

5.1.3 Experience and Evaluation. We observed the performance

of HYDRA-C by analyzing how quickly an intrusion can be detected.
We considered the following two realistic attacks

6
: (i) an ARM

6
Note: our focus here is on the integration of any given security mechanisms rather

the detection of any particular class of intrusions. Hence we assumed that there were

no zero-day attacks and the security tasks were able the detect the corresponding

attacks correctly (i.e., there were no false-positive/negative errors) – although the
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Table 3: Simulation Parameters

Parameter Values
Process cores,M {2, 4}
Number of real-time tasks, NR [3 ×M, 10 ×M]
Number of security tasks, NS [2 ×M, 5 ×M]
Period distribution (RT and security tasks) Log-uniform

RT task allocation Best-fit

RT task period, Tr [10, 1000] ms

Maximum period for security tasks, Tmax
s [1500, 3000] ms

Minimum utilization of security tasks At least 30% of

RT tasks

Base utilization groups 10

Number of taskset in each configuration 250

shellcode [47] that allows the attacker to modify the contents of

the image data-store – this attack can be detected by Tripwire; (ii) a
rootkit [48] that intercepts all the read() system calls – our custom

security task can detect the presence of the malicious kernel module

that is used to inject the rootkit. For each of our experimental trials

we launched attacks at random points during program execution

(i.e., from the RT tasks) and used ARM cycle counters to measure

the detection time. In Fig. 5a we show the average time to detect

both the intrusions (in terms of cycle counts, collected from 35

trials) for HYDRA-C and HYDRA schemes. From our experiments

we found that, on average, our scheme can detect intrusions 19.05%

faster compared to the HYDRA approach (Fig. 5a). Since our scheme

allows security tasks to migrate across cores, it provides smaller

response time (e.g., shorter period) in general and that leads to

faster detection times.

We next measured the overhead of our security integration

approach in terms of number of context switches (CS). For each of

the trials we observed the schedule of the RT and security tasks for

45 seconds and counted the number of CS using the Linux perf
tool [22]. In Fig. 5b we show the number of CS (y-axis in the figure)

for HYDRA-C and HYDRA schemes (for 35 trials). As shown in

the figure, our approach increases the number of CS (since we

permit migration across cores) compared to the other scheme that

statically partitions security tasks. From our experiments we found

that, on average, our scheme increases CS by 1.75 times. However,

this increased CS overhead does not impact the deadlines of RT tasks
(since the security tasks always execute with a priority lower than

the RT tasks) and thus may be acceptable for many RT applications.

5.2 Experiment with Synthetic Tasksets
We also conducted experiments with (randomly generated)

synthetic workloads for broader design-space exploration.

5.2.1 Taskset Generation and Parameters. In our experiments

we used parameters similar to those in related work [15, 25, 26,

38, 49, 50] (see Table 3). We consideredM ∈ {2, 4} cores and each

taskset instance contained [3 ×M, 10 ×M] RT and [2 ×M, 5 ×M]
security tasks. To generate tasksets with an even distribution of

tasks, we grouped the real-time and security tasksets by base-

utilization from [(0.01 + 0.1i)M, (0.1 + 0.1i)M] where i ∈ Z, 0 ≤

generic framework proposed in this paper allows the designers to accommodate any

desired security (e.g., intrusion detection/prevention) technique.
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Figure 6: Euclidean distance between achievable period and
maximum period vectors for different utilizations. Larger
distance (y-axis in the figure) implies security tasks execute
more frequently.

i ≤ 9. Each utilization group contained 250 tasksets (e.g., total
10 × 250 = 2500 tasksets were tested for each core configuration).

We only considered the schedulable tasksets (e.g., the condition

in Section 2.1 was satisfied for all RT tasks) – since tasksets that

fail to meet this condition are trivially unschedulable. Task periods

were generated according to a log-uniform distribution. Each RT

task had periods between [10, 1000] ms and the maximum periods

for security tasks were selected from [1500, 3000] ms. We assumed

that RT tasks were partitioned using a best-fit [1] strategy and

the total utilization of the security tasks was at least 30% of the

system utilization. For a given number of tasks and total system

utilization, the utilization of individual tasks were generated using

Randfixedsum algorithm [51].

5.2.2 Impact on Inter-Monitoring Interval. We first observe how

frequently we can execute (schedule) security tasks compared to

the designer specified bound (Fig. 6). The x-axis of Fig. 6 shows

the normalized utilization
U
M where U is the minimum utilization

requirement and given as follows:U =
∑

τr ∈ΓR

Cr
Tr +

∑
τs ∈ΓS

Cs
Tmax
s
. The

y-axis represents the Euclidean distance between the calculated

period vector T∗ = [T ∗s ]∀τs ∈ΓS and maximum period vector Tmax =
[Tmax
s ]∀τs ∈ΓS (normalized to 1). A higher distance implies that

tasks can run more frequently. As we can see from the figure for

higher utilizations, the distance reduces (e.g., periods are closer to
the maximum value) – this is mainly due to the interference from

higher priority (RT and security) tasks. The results from this figure

suggest that we can execute security tasks more frequently for low

to medium utilization cases.

5.2.3 Impact on Schedulability and Security Trade-off. While in

this work we consider a legacy RT system (i.e., where RT tasks

are partitioned to respective cores), for comparison purposes we

considered the following two schemes (in addition to the related

work, HYDRA, introduced in Section 5.1) that do not consider any

period adaptation for security tasks.

• GLOBAL-TMax: In this scheme all the RT and security

tasks are scheduled using a global fixed-priority multicore

scheduling scheme [30]. Since our focus here is on

schedulability we set Ts = Tmax
s , ∀τs ∈ ΓS (recall that

a taskset can be considered schedulable if the following

conditions hold: Rr ≤ Dr ,∀τr ∈ ΓR and Rs ≤ Tmax
s ,∀τs ∈

ΓS ). This scheme allows us to observe the performance
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Figure 7: Impact on schedulability and security. (a) The acceptance ratio vs taskset utilizations for 2 and 4 core platforms: our
scheme outperforms HYDRA and GLOBAL-TMax approaches for higher utilizations. (b) Difference in period vectors for our
approach and reference schemes (e.g.,HYDRA, GLOBAL-TMax, HYDRA-TMax): the non-negative distance (y-axis in the figure)
implies that HYDRA-C finds shorter periods than other schemes.

impacts of binding RT tasks to the cores (due to legacy

compatibility).

• HYDRA-TMax: This is similar to the HYDRA approach

introduced in Section 5.1 (i.e., security tasks were partitioned
using best-fit allocation as before) but instead of minimizing

periods here we set Ts = Tmax
s ,∀τs . This allows us to

observe the trade-offs between schedulability and security

in a fully-partitioned system.

In Fig. 7a we compare the performance of HYDRA-C with the

HYDRA, GLOBAL-TMax and HYDRA-TMax strategies in terms

of acceptance ratio (y-axis in the figure) defined as the number

of schedulable tasksets (e.g., Rs ≤ Tmax
s ,∀τs ) over the generated

one and the x-axis shows the normalized utilization
U
M . As we

can see from the figure, HYDRA-C outperforms HYDRA when the

utilization increases (i.e., U
M > 0.2). This is because our scheme

allows security tasks to execute in parallel across cores and also

allocate periods considering the schedulability constrains of all

low priority tasks – this results in a smaller response time and

can find more tasksets that satisfy the designer specified bound.

In contrast HYDRA uses a greedy approach that minimizes the

periods of higher priority tasks first without considering the global

state. Also HYDRA statically binds the security task to the core and

hence suffers interference from the higher priority tasks assigned

to that core – this leads to lower acceptance ratios. For higher

utilizations (i.e., UM ≥ 0.7) HYDRA-C can find tasksets schedulable

that can not be easily partitioned by using the HYDRA-TMax

scheme. The acceptance ratio of our method and the HYDRA-

TMax scheme is equal when
U
M < 0.7. This is because, for lower

utilizations some lower priority security tasks experience less

interference due to longer periods and specific core assignment

(recall we set Ts = Tmax
s for all security tasks). While we bind

the RT tasks to cores (due to legacy compatibility), it does not

affect the schedulability (i.e., the acceptance ratio of HYDRA-C

is higher when compared to the GLOBAL-TMax scheme). This is

because, RT tasks are already schedulable when partitioned (e.g.,
by assumption on taskset generation, see Section 5.2.1) and our

analysis reduces the interference that RT tasks have on security

ones. For higher utilizations, the acceptance ratio drops for all the

schemes since it is not possible to satisfy all the constraints due to

the high interference from RT and security tasks. We also highlight

that while our approach results in better schedulability, HYDRA-

C/HYDRA-TMax (i.e., where legacy RT tasks are partitioned to

the cores) and GLOBAL-TMax (i.e., where all tasks can migrate)

schemes are incomparable in general (e.g., there exists taskset that
may be schedulable by task partitioning but not in global scheme

where migration is allowed and vice-versa) – we allow security

tasks to migrate due to security requirements (e.g., to achieve faster
intrusion detection – as we explain in the next experiments, see

Fig. 7b).

In the final set of experiments (Fig. 7b) we compare the achievable

periods (in terms of Euclidean distance) for our approach and the

other schemes. The x-axis in the Fig. 7b shows the normalized

utilizations and the y-axis represents the average difference

between the following period vectors: (a) between HYDRA-C and

HYDRA (dashed line); (b) HYDRA-C and other strategies (e.g.,
GLOBAL-TMax and HYDRA-TMax) that do not consider period

minimization (dotted marker) for dual and quad core setup. Higher

distance values imply that the periods calculated by HYDRA-C

are smaller (i.e., leads to faster detection time) and our approach

outperforms the other scheme. For low to medium utilizations

(e.g., 0.2 ≤ U ≤ 0.5) HYDRA-C performs better when compared to

HYDRA. In situations with higher utilizations, the lesser availability

of slack time results in HYDRA-C and HYDRA performing in a

similar manner. Also, for higher utilizations HYDRA is unable to

find schedulable tasksets and hence there exist fewer data points.

Our experiments also show that compared to GLOBAL-TMax

and HYDRA-TMax our approach finds smaller periods in most cases

(Fig. 7b). This is expected since there is no period adaptation (i.e.,
we set Ts = Tmax

s for those schemes). However it is important

to note that HYDRA-C achieves better execution frequency (i.e.,
smaller periods) without sacrificing schedulability as seen in Fig. 7a.

That is, our semi-partitioned approach achieves better continuous

monitoring when compared with both a fully-partitioned approach

(HYDRA, HYDRA-TMax) and a global scheduling approach

(GLOBAL-TMax) while providing the same or better schedulability.
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6 DISCUSSION
In this paper we do not design for any specific security tasks (the

IDS system used is meant for demonstration purposes only) and

allow designers to integrate their preferred techniques. Depending

on the actual implementation of the security tasks some attack

may not be detectable. For instance, the system may be vulnerable

to zero-day attacks if the security tasks are not designed to

detect unforeseen exploits or anomalous behaviors. There exists

cases where security tasks may require some amount of system

modifications and/or porting efforts – say a timing behavior based

security checking [11, 28, 52] may require the insertion of probing

mechanisms inside the RT application tasks (or additional hardware)

so that security tasks can validate their expected execution profiles.

HYDRA-C abstracts security tasks (and underlying monitoring

events) and works in a proactive manner. However, designers may

want to integrate security tasks that react, based on anomalous

behavior. For instance, let at time t , j-th job of task τs (e.g., τ js )
performs action a0 (e.g., runtime of real-time tasks). Because of

intrusions (or perhaps due to other system artifacts) in time [t , t+Ts ]
(Ts is the period of τs ), job τ

j+1

s finds that a0 is not behaving as

expected. Therefore τ
j+1

s may perform both actions, a0 and a1 (say

that checks the list of system calls, to see if any undesired calls

are executed). One way to support such a feature is to consider

the dependency (i.e., a1 depends on a0 in this case) between

security checks (e.g., sub-tasks). We intend to extend our framework

considering dependency between security tasks.

7 RELATEDWORK
RT Scheduling and Period Optimization. Although not in the

context of RT security, the scheduling approaches present in this

paper can be considered as a special case of prior work [53] where

each task can bind to any arbitrary number of available cores.

For a given period, this prior analysis [53] is pessimistic for the

model considered by HYDRA-C (i.e., RT tasks are partitioned and

security tasks can migrate on any core) in a sense that it over-

approximates carry-in interference from the tasks bound to single

cores (e.g., RT tasks) and hence results in lower schedulability (e.g.,
identical to the GLOBAL-TMax scheme in Fig. 7a). Researchers also

propose various semi-partitioned scheduling strategies for fixed-

priority RTS [35, 54]. However, this work primarily focuses on

improving schedulability (e.g., by allowing highest priority task

to migrate) and they are not designed for security requirements

in consideration (e.g., minimizing periods and executing security

tasks with fewer interruption for faster anomaly detection). There

exists other work [55] in which the authors statically assign the

periods for multiple independent control tasks considering control

delay as a cost metric. Davare et al. [56] propose to assign task and

message periods as well as satisfy end-to-end latency constraints

for distributed automotive systems. While the previous work focus

on optimizing period of all the tasks in the system for a single

core setup, our goal is to ensure security without violating timing

constraints of the RT tasks in a multicore platform.

Security Solutions for RTS. In recent years researchers proposed

various mechanisms to provide security guarantees into legacy

and non-legacy RTS (both single and multicore platforms) in

several directions, viz., integration of security mechanisms [25–

27], authenticating/encrypting communication channels [7–10,

14, 57], side-channel defence techniques [15, 58–61] as well as

hardware/software-based frameworks [11–13, 62–65].

Perhaps the closest line of research is HYDRA [26] where authors

proposed to statically partition security tasks to the cores and

used an optimization-based solution to obtain the periods. While

this approach does not have the overhead of context switches

across cores, as we observed from our experiments (Section 5),

that scheme results in a poor acceptance ratio for larger utilizations,

and suffers interference from other high priority tasks leading to

slower detection of intrusions (i.e., less effective). The problem

of integrating security for single core RTS is addressed in prior

research [25] where authors used hierarchical scheduling [66] and

proposed to execute security tasks with a low priority server. This

approach is also extended to a multi-mode framework [27] that

allows security tasks to execute in different modes (i.e., passive
monitoring with lowest priority as well as exhaustive checking

with higher priority). These server-based approaches, however,

may require additional porting efforts for legacy systems.

There exists recent work [9, 10] to secure cyber-physical

systems fromman-in-the-middle attacks by enabling authentication

mechanisms and timing-aware network resource scheduling.

There has also been work [7, 8, 14] where authors proposed

to add protective security mechanisms into RTS and considered

periodic task scheduling where each task requires a security

service whose overhead varies according to the required level

of service. The problem of designing secure multi-mode RTS

have also been addressed in prior work [57] under dynamic-

priority scheduling. In contrast, we consider a multicore fixed-

priority scheduling mechanism where security tasks are executed

periodically, across cores, while meeting real-time requirements.

The above mentioned work are designed for single core platforms

and it is not straightforward to retrofit those approaches for

multicore legacy systems.

In another direction, the issues related to information leakage

through storage timing channels using shared architectural

resources (e.g., caches) is introduced in prior work [15, 58, 59]. The

key idea is to use a modified fixed-priority scheduling algorithm

with a state cleanup mechanism to mitigate information leakage

through shared resources. However, this leakage prevention comes

at a cost of reduced schedulability. Researchers also proposed to

limit inferability of deterministic RT schedulers by randomizing

the task execution patterns. Yoon et al. [60] proposed a schedule

obfuscation method for fixed-priority RM systems. A combined

online/offline randomization scheme [61] is also proposed to reduce

determinism for time-triggered (TT) systems where tasks are

executed based on a pre-computed, offline, slot-based schedule.

We highlight that all the aforementioned work either requires

modification to the scheduler or RT task parameters, and is designed

for single core systems only.

Unlike our approach that works at the scheduler-level,

researchers also proposed hardware/software-based architectural

solutions [11–13, 62–65, 67] to improve the security posture of

future RTS. Those solutions require system-level modifications

and are not suitable for legacy systems. To our knowledge this

9



is the first work that aims to achieve continuous monitoring for

multicore-based legacy RT platforms.

8 CONCLUSION
Threats to safety-critical RTS are growing and there is a need

for developing layered defense mechanisms to secure such

critical systems. We present algorithms to integrate continuous

security monitoring for legacy multicore-based RTS. By using our

framework, systems engineers can improve the security posture

of RTS. This additional security guarantee also enhances safety –

which is the main goal for such systems.
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