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Abstract—Recent advances in Capsule Networks (CapsNets)
have shown their superior learning capability, compared to the
traditional Convolutional Neural Networks (CNNs). However, the
extremely high complexity of CapsNets limits their fast deploy-
ment in real-world applications. Moreover, while the resilience of
CNNs have been extensively investigated to enable their energy-
efficient implementations, the analysis of CapsNets’ resilience is
a largely unexplored area, that can provide a strong foundation
to investigate techniques to overcome the CapsNets’ complexity
challenge.

Following the trend of Approximate Computing to enable
energy-efficient designs, we perform an extensive resilience anal-
ysis of the CapsNets inference subjected to the approximation
errors. Our methodology models the errors arising from the
approximate components (like multipliers), and analyze their
impact on the classification accuracy of CapsNets. This enables
the selection of approximate components based on the resilience
of each operation of the CapsNet inference. We modify the Ten-
sorFlow framework to simulate the injection of approximation
noise (based on the models of the approximate components) at
different computational operations of the CapsNet inference. Our
results show that the CapsNets are more resilient to the errors
injected in the computations that occur during the dynamic
routing (the softmax and the update of the coefficients), rather
than other stages like convolutions and activation functions. Our
analysis is extremely useful towards designing efficient CapsNet
hardware accelerators with approximate components. To the best
of our knowledge, this is the first proof-of-concept for employing
approximations on the specialized CapsNet hardware.

Index Terms—Resilience, Capsule Networks, Approximation.

I. INTRODUCTION

The recently introduced breakthrough concept of Capsule
Networks (CapsNets) by the Google Brain team has achieved
a significant spotlight due to its powerful new features offering
high accuracy and better learning capabilities [25]. Traditional
Convolutional Neural Networks (CNNs) are not able to learn
the spatial relations in the images much efficiently [25]. More-
over, they make extensive use of the pooling layer to reduce the
dimensionality of the space, and consequently as a drawback,
the learning capabilities are reduced. Therefore, a huge amount
of training data is required to mitigate such deficit. On
the other hand, CapsNets take advantage from their novel
structure, with so-called capsules and their cross-coupling
learnt through the dynamic routing algorithm, to overcome
this problem. Capsules produce vector outputs, as opposed to
scalar outputs of CNNs [25]. In a vector format, CapsNets are
able to learn the spatial relationships between the features. For
example, the Google Brain team [25] demonstrated that CNNs
recognize an image where the nose is below the mouth as a
“face”, while CapsNets do not make such mistake because they
have learned the spatial correlations between features (e.g.,

the nose must appear above the mouth). Other than image
classification, CapsNets have been successfully showcased to
perform vehicle detection [30], speech recognition [28] and
natural language processing [33].

The biggest roadblock in the real-world deployments of
CapsNet inference is their extremely high complexity, re-
quiring a specialized hardware architecture (like the recent
one in [17]) that may consume a significant amount of
energy/power. Not only deep CapsNet models [24], but also
shallow models like [25] require intense computations due
to matrix multiplications in the capsule processing and the
iterative dynamic routing algorithm for learning the cross-
coupling between capsules. To deploy CapsNets at the edge,
as commonly adopted for the traditional CNNs [4], network
compression techniques (like pruning and quantization) [5] can
be applied, but at the cost of some accuracy loss. Moreover, the
current trends in Approximate Computing can be leveraged to
achieve energy-efficient hardware architectures, as well as for
enabling design-/run-time energy-quality tradeoffs. However,
this requires a comprehensive resilience analysis of CapsNets
considering approximation errors in the hardware, in order to
make correct design decisions on which computational steps
of the CapsNets are more likely to be approximated and which
not. Note, unlike in the case of approximations, an error
can also be caused by a misfunctioning of the computing
hardware [11] or of the memory [12]. Fault injections have
demonstrated to fool CNNs [16], and can potentially cause a
CapsNet misclassification as well.

Concept Overview and our Novel Contributions:
To address these challenges, we propose ReD-CaNe, a

novel methodology (see Fig. 1) for analyzing the resilience
of CapsNets under approximations, which, to the best of our
knowledge, is the first of its kind. First, we devise a noise
injection model to simulate real-case scenarios of errors com-
ing from approximate hardware components like multipliers,
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Fig. 1: Overview of our ReD-CaNe methodology. The novel contributions are
shown in green boxes.
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Fig. 2: The architecture of the DeepCaps network [24].

which are very common in multiply-and-accumulate (MAC)
operations for the matrix multiplications of capsules. Then,
we analyze the error resilience of the CapsNets by building
a systematic methodology for injecting noise into different
operations of the CapsNet inference, and evaluating their
impact on the accuracy. The outcome of such analysis will
produce guidelines for designing and selecting approximate
components, based on the resilience of each operation. At the
output, our methodology produces an approximated version of
a given CapsNet, to achieve an energy-efficient inference.

A. In a nutshell, our novel contributions are:

• We analyze and model the noise injections that can be
generated by different approximate arithmetic components,
e.g., multipliers. (Section III)

• We devise ReD-CaNe, a novel methodology for analyzing
the Resilience and Designing Capsule Networks under ap-
proximations, by systematically adding noise at different
operations of the CapsNet inference and by monitoring the
test accuracy. The approximated components are selected
based on the resilience level of the different operations of
the CapsNet inference. (Section IV)

• We test our methodology on several benchmarks. On the
DeepCaps model [24] for CIFAR-10 [13], MNIST [14],
and SVHN [22] datasets, and on the CapsNet model [25]
for MNIST and Fashion-MNIST [29] datasets. Our results
demonstrate that the least resilient operations are the con-
volutions in CapsLayers, while the operations performed
during the dynamic routing of the Caps3D and ClassCaps
layers are relatively more resilient. (Section VI)
Before proceeding to the technical sections, in Section

II, we summarize the concepts of CapsNets and review the
existing works of error resilience for traditional CNNs, with
necessary details to understand the rest of the paper.

II. BACKGROUND AND RELATED WORK

A. Capsule Networks (CapsNets)

CapsNets, first introduced in [9], have become popular
in [25], thanks to the new concepts like capsules and the
dynamic routing algorithm. Following this trend, DeepCaps
[24] proposed to increase the depth of CapsNets, achieving
state-of-the-art accuracy for the CIFAR10 [13] dataset.

A capsule is a group of neurons where the instantiation
parameters are represented as the orientation of each element
of the vector, and the vector length represents the probability
that the entity exists. Moreover, vector predictions of the cap-
sules need to be supported by nonlinear vectorized activation
functions. Towards this end, the squashing function bounds
the output of the capsule between 0 and 1.

In the dynamic routing, the coupling coefficients, which
are connecting two consecutive capsule layers, learn the
agreement during the inference by iteratively updating their
values according to the relevance of the path. As an example,
the architecture1 of the DeepCaps is shown in the Fig. 2. It
has 16 convolutional capsule layers (ConvCaps), where one of
them is 3D, and one fully-connected capsule layer (ClassCaps)
at the end. A special focus is on the operations required for
the dynamic routing, which is performed in the 3D ConvCaps
and in the ClassCaps layers, as shown in Fig. 3. Note that the
operations like matrix-vector multiplications and squash are
different from the traditional CNNs. Hence, a challenge that
we want to address in this paper is to study the inter-relation
between the precision of these operations and the accuracy of
the CapsNets, when subjected to errors due to approximations.
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Fig. 3: The operations to be computed for the dynamic routing.

B. Error Resilience of Traditional CNNs
The resilience of traditional CNNs has recently been in-

vestigated in the literature. Du et al. [2] analyzed the error
resilience, showing that it is possible to obtain high energy
savings with minimal accuracy loss. Hanif et al. [7] proposed
a methodology to apply approximations for CNNs, based on
the error resilience. Li et al. [15] studied the error propa-
gation with the end goal of adopting countermeasures for
obtaining resilient hardware accelerators. Zhang et al. [31]
proposed a method to design fault tolerant systolic array-
based accelerators. Hanif et al. [6] introduced a method
for applying approximate multipliers into CNN accelerators
without any error in the final result. Mrazek et al. [21][20]
proposed a methodology to successfully search and select
approximate components for CNN accelerators. Hanif et al. [8]
and Marchisio et al. [18] analyzed cross-layer approximations
for CNNs. However, these works analyzed only traditional
CNN accelerators, and such studies cannot be efficiently
extrapolated for CapsNets, as discussed before. Hence, there
is a dire need to perform the resilience analysis for CapsNets

1Since we focus on the CapsNet inference, we do not discuss the operations
that are involved in the training process only (e.g., decoder and reconstruction
loss). For further details on CapsNets, we refer the readers to [25][24].
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in a systematic way, such that we can take efficient decisions
about approximating the appropriate operations of CapsNets.

C. Error Sources
In a generic Deep Learning application, errors may oc-

cur due to different sources like software approximations
(e.g., quantization), hardware approximations (e.g., approxi-
mate multipliers), transient faults (i.e., bit flips due to particle
strikes) and permanent faults (e.g., stuck-at-zero and stuck-at-
one). In this paper, due to the focus on energy-efficiency, we
target approximation errors2.

If the CapsNet inference is performed by specialized hard-
ware accelerators [17], a fixed-point representation is typically
preferred, as compared to the floating-point counterpart [10].
Therefore, a floating-point value x, which must be represented
in a b-bit fixed-point arithmetic [23], is mapped to a range
[0 : sb − 1]. The quantization function Q is defined in Eq. 1.

Q(x) =
x−min(x)

max(x)−min(x)
· (2b − 1) (1)

In this work, we simulate the CapsNets with floating-
point arithmetic, but the behavior of approximate fixed-point
components is simulated by adjusting their values according to
the quantization effect. Hence, we focus on modeling the errors
subjected to the employment of approximate components in
CapsNet hardware accelerators.

III. MODELING THE ERRORS AS INJECTED NOISE

A. Analysis of Different Operations in CapsNets
We perform a comprehensive analysis to investigate which

hardware components have the highest impact on the total
energy consumption of the CapsNets’ computational blocks.
Table I reports the number of operations that occur in the
computational path of the DeepCaps [24] inference and the
energy consumption per operation. The latter has been gener-
ated by synthesizing the implementation with 8 bits fixed-point
operations, in a 45nm CMOS technology with the Synopsys
Design Compiler tool. Fig. 4 presents the breakdown of the
estimated energy share for each operation. It is worth noticing
that the multipliers count for 96% of the total energy share
of the computational path of the DeepCaps. The occurrences
of the addition is also high, but energy-wise the additions
consume only 3% of the total share due to their reduced
complexity as compared to that of the multipliers. Hence, it is
important to explore the energy savings from approximating
the multiplier operations first, as we target in this paper.

TABLE I: Number and unit energy consumption
of different basic operation of the DeepCaps [24].

OPERATION # OPS Unit Energy [pJ]
Addition 1.91 G 0.0202

Multiplication 2.15 G 0.5354
Division 4.17 M 1.0717

Exponential 175 K 0.1578
Square Root 502 K 0.7805

96%

3%
< 1%

Mult

Add

Other

Fig. 4: Energy break-
down for different ops.

2For further details on reliability and security related works on DNNs that
study soft errors, permanent faults, and adversarial noise, we refer the readers
to [3][11][26][32].

In the following, we study the energy optimization potential
of employing approximate components. As a case study, we
select from the EvoApprox8B library [19] the NGR approxi-
mate multiplier and the 5LT approximate adder. The results in
Fig. 5 show that approximating only the multipliers (XM) can
save more than 28% of the energy consumption, compared to
the accurate implementation (Acc). Due to the low share of
energy consumed by the additions, the advantage of employing
approximate adders (XA) or employing approximate adders
and multipliers (XAM) is negligible compared to Acc and
XM solutions, respectively.

-28.3% -1.9% -30.2%

Accurate Energy

Fig. 5: Optimization potential by applying approx. components in CapsNets.

Motivated by the above discussions and analysis, in the
following, without loss of generality and for the ease of proof-
of-concept development, we focus our analyses on the approx-
imate multipliers, since they have high impact on the energy
consumption, thus opening huge optimization potentials.

B. Error Profiles for the Approximate Hardware Multipliers

We selected 35 approximate multipliers from the EvoAp-
prox8B library [19] and analyzed the distributions of the er-
roneous products P ′ generated by such multipliers, compared
to the accurate product P of an 8-bit multiplier (i.e., 16-bit
output). The arithmetic error is computed in Eq. 2, where a, b
denotes the inputs to the multipliers from a representative set
of inputs I .

∆P ′ = {∀a, b ∈ I : P ′(a, b)− P (a, b)} (2)

The distributions of the arithmetic errors are calculated
as having a single multiplier, a sequence of 9 multiply-and-
accumulate (MAC) units, and as a sequence of 81 MAC units,
with |I| = 105 random samples per each scenario. These
analyses are performed for estimating the accumulated error
of a convolution with 3 × 3 and 9 × 9 filters, respectively.
We selected these values because they reflect the size of the
convolutional kernels of the DeepCaps [24] and CapsNet [25].

The majority of the components (31 of 35) has a Gaussian-
like distribution of the arithmetic error ∆, with a mean value
m and a standard deviation std. The error distributions of two
approximated multipliers3 from [19] are shown in Fig. 6.

Modeling a Gaussian noise ∆, when employing b-bit
fixed-point approximate components in a CapsNet which has
floating-point operations, is an open research problem. We
propose to adjust the noise w.r.t. the range R of values of
a given array X . Hence, we introduce the noise magnitude
(NM ) to indicate the standard deviation (std) of the noise ∆

3Since the remaining 29 elements from the EvoApprox8B library [19]
which have a Gaussian-like distribution show a similar behavior, we only
report these two examples of approximate multipliers.

3
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Fig. 6: Artimetic error (w.r.t. accurate 8-bit multiplier) distributions and their
interpolations by Gaussian noise by having an approximate multiplier from
the EvoApprox8B library [19]. (top) Distribution for the NGR multiplier.
(bottom) Distribution for the DM1 multiplier.

scaled w.r.t. R(X), and the noise average (NA) to indicate
the mean value (m) of the noise ∆ scaled w.r.t. R(X).

NM(∆M ) =
stdev(∆X)

R(X)
, NA(∆M ) =

m(∆X)

R(X)

Since the inputs of components (I) employed in CapsNets
have typically some specific distribution patterns, the NM of
the approximate component is dependent on the application.
This implies that the NM can change significantly for dif-
ferent CapsNet models and different dataset used. Hence, we
show several experiments for different benchmarks in Sec. VI.

C. Noise Injection Modeling
Based on the above analysis, without loss of generality,

we can model the error source coming from approximate
components as a Gaussian random noise added to the array X
under consideration.

An error with certain values of NM and NA, associated to
a given tensor X (i.e., a multidimensional output of a CapsNet
operation) with shape s is modelled as in Equation 3. The
noisy output is denoted as X ′ in Equation 4.

∆X = Gauss(s, (NM ·R(X))) + (NA ·R(X)) (3)

X ′ = X + ∆X (4)

Here, Gauss(s, std) + m is a function which generates a
tensor of random numbers with shape s, following a Gaussian
distribution with mean m and standard deviation std.

IV. RED-CANE: OUR METHODOLOGY FOR ERROR
RESILIENCE ANALYSIS AND DESIGN OF APPROXIMATE

CAPSNETS

Our methodology is composed of 6 steps, as shown in Fig.
7. Once we identify the lists of arrays in which we want
to inject noise, called Groups, we apply the noise injection,
as described in Sec. III-C. By monitoring the impact on
the test accuracy of different arrays of operations, we can
identify the most and the least critical operations in a given
CapsNet from the accuracy point of view. Therefore, our

ReD-CANE methodology can provide useful guidelines for
designing energy-efficient inference, showing the potential to
apply approximations to specific layers and operations (i.e.,
the more resilient ones) without significantly sacrificing the
accuracy. A step-by-step flow of our methodology is described
in the following:
1) Group Extraction: We divide the operations of the Cap-

sNet inference into groups, based on the type of operation
(e.g., MAC, activation function, softmax or logits update).
This step generates the Groups.

2) Group-Wise Resilience Analysis: We monitor the test
accuracy drop by injecting noise to different groups.

3) Mark Resilient Groups: Based on the results of the
analysis performed at the Step 2, we mark the more
resilient groups. After this step, there are two categories
of Groups, the Resilient and Non-Resilient ones.

4) Layer-Wise Resilience Analysis for Non-Resilient
Groups: For each non-resilient group4, we monitor the test
accuracy drop by injecting noise at each layer.

5) Mark Resilient Layers for Each Non-Resilient Group:
Based on the results of the analysis performed at the Step
4, we mark the more resilient layers.

6) Select Approximate Components: For each operation, we
select approximate components from a given library, based
on the resilience measured as the noise magnitude (NM).

Input: CapsNet
Operations STEP 1: Group 

Extraction
STEP 2: Group-Wise 
Resilience Analysis

Groups of
Operations

STEP 3: Mark 
Resilient 
Groups

STEP 4: Layer-Wise 
Resilience Analysis for 
Non-Resilient Groups

STEP 5: Mark Resilient 
Layers for Each Non-

Resilient Group

Output: Design of 
Approximate 
CapsNet for 

Efficient Inference

ReD-CaNe Methodology

STEP 6: Select 
Approximate 
Components

Input: Approx. 
Component 

Library

Fig. 7: ReDCaNe: our methodology for resilience analysis and design of
Approximate CapsNets.

Note, a step of resilience analysis consists of setting the
input parameters of the noise injection, i.e., NM and NA,
to add the noise to the selected CapsNet operations, and
monitoring the accuracy for the noisy CapsNet.

The output of our methodology is the approximated version
of a given CapsNet, which is ready to be executed in a spe-
cialized hardware accelerator for inference with approximate
components. For the purpose of saving area and energy, we
select, for each operation, the approximate components, from
a given library, that correspond to their level of resilience.
Hence, more aggressive approximations are selected for more
resilient operations, without significantly affecting the classi-
fication accuracy of the CapsNet inference.

V. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 8. We train a
given CapsNet model for a given dataset using TensorFlow [1],

4Compared to a layer-wise analysis for each group, by performing such
analysis to the non-resilient groups only, a considerable amount of unuseful
testing can be skipped, and a significant exploration time is saved.
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running on two Nvidia GTX 1080 Ti GPUs. The trained model
serves as an input to our ReD-Cane methodology. The noise
is injected to the arrays and then the accuracy is monitored to
identify the resilience of the operations.

CapsNet
Model

Train
Dataset

Trained
CapsNet

Test
Accuracy

Training

TensorFlow GPU

ReD-CaNe Methodology

Inference

Noise Injection

Noisy
CapsNet

Test
Dataset

Fig. 8: Experimental setup for our simulations.

A. CapsNet Models and Datasets

We test our methodology on two networks, the DeepCaps
[24] and the original CapsNet [25]. We use the datasets
CIFAR-10 [13], SVHN [22], MNIST [14], and Fashion-
MINST [29], to classify generic images, house numbers,
handwritten digits, and fashion clothes, respectively. The ac-
curacy results obtained by training these networks for different
datasets are reported in Table II. Table III shows the partition
of the CapsNet operation into groups, which is then used for
the group extraction step.

TABLE II: Classification accuracy results using accurate multipliers.
Architecture Dataset Accuracy

DeepCaps [24]
CIFAR-10 92.74

SVHN 97.56
MNIST 99.72

CapsNet [25] Fashion-MNIST 92.88
MNIST 99.67

TABLE III: Grouping the operations of the CapsNet inference.
# Group Name Description
1 MAC Outputs Outpus of the matrix multiplications
2 Activations Output of the activation functions (RELU or SQUASH)
3 Softmax Results of the softmax (k coefficnents in dynamic routing)
4 Logits Update Update of the logits (b coefficients in dynamic routing)

B. TensorFlow Implementation

The proposed methodology is implemented in TensorFlow
[1]. First, the network is trained using standard approaches.
We modified the computational graph in protobuf format by
including our noise injection model in the Graph tool. We
implemented a specialized node for the noise injection, where
the values of NA and NM can be specified as inputs to this
node. Hence, for each node τ , a new set of nodes T is added
to the graph. The nodes in T have the same shape as τ and
they consist of the set of operations for adding a Gaussian
noise with std = NM ·R(τ) and m = NA ·R(τ), given the
range R of the node τ .

C. Approximate Multiplier Library

We use the EvoApprox8b library, which consists in 35 8-
bit unsigned components. We select 8-bit wordlength since it
was shown to be enough accurate in the computational path
of CapsNets [17].

VI. EXPERIMENTAL RESULTS

A. Detailed Analysis for the CIFAR-10 Dataset
As a case study analysis, we report detailed results for the

DeepCaps on the CIFAR-10 datasets. The results for other
benchmarks are reported in Section VI-C.

For the following analyses, we used a NM ∈
[0.5 . . . 0.001]. To analyze the general case of error resilience,
we selected the average error NA = 0. In the experiment for
the Step 2 of our methodology, we inject the same noise to
every operation within a group, while keeping the other groups
accurate. From the results shown in Fig. 9, we notice that the
Softmax and the Logits update groups are more resilient than
MAC outputs and Activations, because the CapsNet accuracy
starts to decrease with a correspondent lower NM . Note, for
low NM , the noise injection slightly increases the accuracy
due to regularization, with a similar effect as the dropout [27].

0.
5

0.
2

0.
1

0.
05

0.
02

0.
01

0.
00

5

0.
00

2

0.
00

1 0

Noise magnitude

-80%

-60%

-40%

-20%

0%

Ac
cu

ra
cy

 d
ro

p 
[%

]

0.
05

0.
02

0.
01

0.
00

5

0.
00

2

0.
00

1 0

Noise magnitude

-1.0%

-0.5%

0.0%

0.5%

1.0%#1: MAC outputs #2: activations #3: softmax #4: logits update

Fig. 9: Group-wise resilience for the CIFAR-10 dataset. (left) Complete
results. (right) Zoomed view of the accuracy drop, centered at 0%.

In Fig. 10, we analyze the resilience of each layer of the
non-resilient groups (i.e., MAC outputs and Activations). We
notice that the first convolutional layer is the least resilient,
followed by the layers in the middle. Moreover, the Caps3D
layer is the most resilient one. Since this layer is the only con-
volutional layer that employs the dynamic routing algorithm,
we correlate the higher resilience to the iterations performed
in this layer, because the coefficients are updated dynamically
at run-time, thus they can adapt to the noise.
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Fig. 10: Layer-wise analysis of the non-resilient groups for CIFAR-10 dataset.
The noise is injected in (left) the MAC outputs and (right) the activations.

B. Evaluating the Selection of Approximate Components
The choice of the approximate component for each opera-

tion depends on the level of NM corresponding to a tolerable
accuracy loss, which is typically null or very low. Recalling
Eq. 2, the parameters NM and NA are dataset dependent
because their values change accordingly to the input range R.
In our case study (DeepCaps for CIFAR-10), we select a subset
of 106 elements from the inputs of every Conv2D layers of
the DeepCaps, with its corresponding distribution (frequency
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of occurrence) shown in Fig. 11 (left). The distribution is
approximately Gaussian, but there is a peak between 40 and
50 for the input feature maps, which is caused by a specific
distribution of the input dataset. Indeed, the peak occurs in the
first Caps2D layer, as shown in Fig. 11 (right).
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Fig. 11: (left) Distribution of 106 random samples from the inputs of the
convolutions in the DeepCaps for the CIFAR-10 dataset. (right) A focus on
some layers, showing the peak in the first Caps2D layer.

Hence, we measure the NM and NA parameters of the
selected multipliers in the library (Tab. IV). We use two
different input distributions, the modeled one that is based on
random inputs generated with a uniform distribution, and the
real one, which is based on the input distribution previously
shown in Fig. 11. Note, these values slightly differ, because
the NM and NA parameters are dataset dependent. The
major differences are due to an overestimation of the NM
and NA by our modeled distribution. Therefore, the selection
of approximate components based on our models can be
systematically employed for designing approximate CapsNets.
TABLE IV: Power, area, and noise magnitude, computed with a modeled
input dataset (with uniform distribution) and with a real input distribution I ,
for different∗ approximated multipliers from the EvoApprox8B library [19].

Multiplier Power Area Modeled ∆X Real ∆X

mul8u µW µm2 NA NM NA NM

1JFF 391 (-0%) 710 (-0%) 0.0000 0.0000 0.0000 0.0000

14VP 364 (-7%) 654 (-8%) 0.0000 0.0001 0.0000 0.0001
GS2 356 (-9%) 633 (-11%) 0.0004 0.0017 0.0001 0.0013
CK5 345 (-12%) 604 (-15%) 0.0000 0.0002 0.0000 0.0002
7C1 329 (-16%) 607 (-14%) 0.0011 0.0033 0.0007 0.0026
96D 309 (-21%) 605 (-15%) 0.0035 0.0077 0.0020 0.0051
2HH 302 (-23%) 542 (-24%) -0.0001 0.0007 -0.0001 0.0007
NGR 276 (-29%) 512 (-28%) 0.0001 0.0008 0.0002 0.0009
19DB 206 (-47%) 396 (-44%) 0.0010 0.0019 0.0010 0.0021
DM1 195 (-50%) 402 (-43%) 0.0003 0.0025 0.0005 0.0025
12N4 142 (-64%) 390 (-45%) 0.0018 0.0054 0.0019 0.0056
1AGV 95 (-76%) 228 (-68%) 0.0027 0.0080 0.0026 0.0117
YX7 61 (-84%) 221 (-69%) 0.0484 0.0741 0.0268 0.0347
JV3 34 (-91%) 111 (-84%) 0.0021 0.0267 -0.0028 0.0301

QKX 29 (-93%) 112 (-84%) 0.0509 0.0736 0.0293 0.0350
∗We have randomly selected 14 components, representative for the complete library.

C. Testing our Methodology on Different Benchmarks
We apply our methodology to the other benchmarks. The

results coming from the resilience analysis of the Step 2 are
shown in Fig. 12. A key property that we can observe is
that MAC outputs and activations are less resilient than the
other two groups. Moreover, we noticed that the logits update
on the CapsNet [25] for MNIST (bottom right) is slightly
less resilient than the same group on the DeepCaps [24] for
MNIST (top right), because the CapsNet has only one layer
that performs Dynamic routing, while the DeepCaps has two.

D. Results Discussion
From our analyses, we can derive that the CapsNets have

interesting resilience properties. A key observation, valid for
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Fig. 12: Group-wise resilience for different benchmarks.

every benchmark, is that the layers computing the the dy-
namic routing (ClassCaps and Caps3D), and the corresponding
groups of operations (softmax and logits update) are more
resilient than others. Such outcome is attributed to a common
feature of the dynamic routing. The values of the involved
coefficients (logits b and coupling coefficients k, see Fig. 3) are
updated dynamically, thereby adapting to the injected noise.
Hence, more aggressive approximations can be tolerated for
these computations.

VII. CONCLUSION

We proposed a systematic methodology for analyzing the
resilience of CapsNets under approximation errors that can
provide foundation to design approximate CapsNet hardware.
We designed an error injection model, which accounts for
the approximation errors. We modeled the errors of applying
approximate multipliers in the computational units of CapsNet
accelerators. We systematically analyzed the (group-wise and
layer-wise) resilience of the operations and designed approx-
imated CapsNets, based on different resilience levels. We
showed that the operations in the dynamic routing are more
resilient to approximation errors. Hence, more aggressive ap-
proximations can be adopted for these computations, without
sacrificing the classification accuracy much. Our methodology
provides the first step towards real-world approximate Cap-
sNets to realize their energy-efficient inference.
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