An Approximation-based Fault Detection Scheme
for Image Processing Applications

Matteo Biasielli, Luca Cassano, Antonio Miele
Dip. Elettronica, Informazione e Bioingegneria — Politecnico di Milano — Italy
{first_name.last_name} @polimi.it

Abstract—Image processing applications expose an intrinsic
resilience to faults. In this application field the classical Dupli-
cation with Comparison (DWC) scheme, where output images
are discarded as soon as the two replicas’ outputs differ for at
least one pixel, may be over-conseravative. This paper introduces
a novel lightweight fault detection scheme for image processing
applications; i) it extends the DWC scheme by substituting one of
the two exact replicas with a faster approximated one; and ii) it
features a Neural Network-based checker designed to distinguish
between usable and unusable images instead of faulty/unfaulty
ones. The application of the hardening scheme on a case study has
shown an execution time reduction from 27% to 34% w.r.t. the
DWC, while guaranteeing a comparable fault detection capability.

Index Terms—Approximate Computing, Convolutional Neural
Networks, Fault Detection, Image Processing

I. INTRODUCTION

Image processing applications are very often inherently
resilient to a certain degree of errors, because i) they may
deal with noisy inputs (e.g., images coming from sensors), or
ii) the output may be a probabilistic estimate (e.g., in machine
learning applications), or iii) the final user of the application’s
output may effectively carry out the task although the input im-
age is corrupted [1]. Image processing is nowadays employed
in a variety of systems (e.g., automotive and aerospace) where
safety-/mission-critical applications and non-critical applica-
tions coexist. Classical fault detection/tolerance approaches
either employ special-purpose radiation-hardened devices [2],
which are generally slower than commercial ones, or rely on
functionality replication and on a bit-wise comparison [3]. In
all cases, the performance degradation introduced to satisfy
reliability-related requirements is significant.

Indeed, non-safety-/mission-critical applications may not
require a 100% bit-wise error tolerance. Let us consider as
an example a satellite that takes aerial pictures of the Earth,
executes a pipeline of filters on the captured images and sends
then the output images to a ground station. As it has already
been discussed by Biasielli et al. [4], if a fault affects the
execution of the image processing filters, it would be highly
beneficial for the satellite to be able to decide whether the
corrupted output image is unusable by the application running
on the ground station or it is still usable although being
corrupted. In the latter case, re-execution of the application
would be avoided, thus saving time.

We propose a lightweight fault detection scheme for image
processing applications that combines image usability clas-

sification with approximate computing to reduce the time
overhead introduced by duplication and to avoid unnecessary
re-executions, thus, further saving time. We borrow from [4]
the idea of classifying output images based on their usability
by the final end-user application and the use of a Convolutional
Neural Network (CNN) as a checker instead of the classical
Two-Rail Checker (TRC). On the other hand, we extend the
proposal in [4] by introducing approximate computing. Indeed,
instead of having two exact replicas of the pipeline, our
hardening scheme pairs the nominal pipeline producing output
images at the minimum quality level required by the applica-
tion designer with a redundant approximated counterpart. The
approximated counterpart executes same functionality as the
nominal pipeline but on downscaled images, as in [5] (where
such technique is not used for fault detection but exclusively
for power saving). The defined fault detection scheme allows
for a significant time saving w.r.t. both the classical DWC and
the proposal in [4] without loosing fault detection capability.

We applied the proposed approach to a case study applica-
tion for the identification of buildings in aerial photos and
we ran the hardened pipeline on a single-core commercial
embedded microprocessor. The achieved time savings range
from 27% to 34% w.r.t. the traditional DWC approach and
from 22% to 34% w.r.t. the proposal in [4], with a false
negative rate (images that are not usable by the end-user
application that are wrongly not discarded) always lower than
1%, that is acceptably low and comparable with the one in [4].

II. WORKING SCENARIO AND RELATED WORK
A. The considered working scenario

We consider a microprocessor-based system running an
image processing application being a pipeline of several image
filters. We focus on Single Event Upsets (SEUs) occurring in
the registers of the microprocessor. As discussed in [6], an
SEU affecting a non-hardened processor running a software
may may lead to effects such as application crashes or
hangs, software exceptions and application wrong results. This
last case, called Silent Data Corruption (SDC), is the most
problematic one since the operating system is not able to
autonomously detect the failure. We assume a time-triggered
scheduling of the pipeline’s filters; therefore, we focus faults
causing a wrong output (generally an intermediate image or a
data matrix representing a heat map or a feature map) to be
returned by a pipeline stage. Finally, we assume that at most
a single fault per time may corrupt the application execution.

Redundant pipeline

i Downscale | [J Control Control Control
i| Block Block 1 Block 2 Block 3 |

ctrl, ctrl,

img,|

(D-/D),

(D-/D),

B
D - /D]

output_image

iNpUt_image “--=——---==-- e
Nominal pipeline

Figure 1. Overall scheme of the proposed fault detection approach.

B. Related work

The idea of producing inexact, acceptable results after the
occurrence of a fault has been proposed in the past mainly
for Register-Transfer Level (RTL) designs of Digital Signal
Processing (DSP) circuits [7], [8]. The purpose of such a
redefinition of the error detection paradigm has been used
by approximate computing techniques to reduce the overhead
introduced by redundancy-based hardening schemes. In [7] the
error is detected only if the difference between two redundant
results is larger than a given threshold. Reduced Precision
Redundancy (RPR) is applied to Triple Modular Redundancy
(TMR) in [8] in order to define replicas that elaborate only on
a subset of the most significant bits processed by the nominal
system. All these works measure the impact of approximation
on the single processed value (e.g., the single pixel) and at that
granularity they decide whether the results are good or not.
As opposite, the fault detection scheme we are here proposing
takes into account the usability of the entire output image.

Approximate computing has also been employed at logic
the level to design fault-tolerant circuits with a reduced area
occupation [9], [10]. Again, such approaches suffer from the
limitation of working on a single logic value at the time.

The idea of analysing the usability of the overall result of
an image processing application has been considered in recent
publications to assess the robustness of machine learning
applications for image processing [11], [12]. In particular,
SDCs affecting pedestrian detection applications are analyzed
and classified as critical/not critical based on the fact that
the corrupted output is still usable or not. As previously
discussed, the paradigm shift in fault detection from the
classical correct/corrupted output to usable/unusable one has
been proposed in [4]. However, no approximation was adopted
to reduce the overhead introduced by the redundancy scheme.

III. THE PROPOSED FAULT DETECTION SCHEME

The overall structure of the fault detection scheme is de-
picted in Figure 1, where we considered a generic example
of image processing pipeline composed of three filters. The
proposed scheme extends the classical DWC applied at the
granularity of the single pipeline stage. The nominal pipeline is
paired with a redundant pipeline composed of several control
blocks (one for each stage of the nominal pipeline). The
outputs of the control blocks are exclusively used to check
the outputs of the nominal pipeline. Unlike DWC, where the

Redundand pipeline

- ctrl,

| P 3 ctrl_img,
m Filter 1]:' o Fi ‘v-{ Filter 3 H—’D
3 Control i 3 Control i Control i

i | Downscale
Block

(ok/fail),
{ Blocki || Block2
Filter 1 %-{ Filter 2]ﬁ
i it iR ctrl_img, |

Downscaled
Input image

F ctrl,
(ok/fail),

ctrl_img, |

Input image [crh

e (ok/fal, |

Figure 2. Internal structure of the control block.

two replicas perform exactly the same computation, in the
proposed scheme, the redundant pipeline is an approximated
version of the nominal pipeline. Approximation is obtained
by downscaling ¢nput_image, i.e., the input image to the
nominal pipeline, by means of the downscale block, and then
by applying the same functionality of the nominal pipeline.
Execution time of the redundant pipeline is significantly
shorter even if its output presents a lower quality.

The proposed scheme aims at deciding whether to discard
(D) or not (/D) possibly faulty intermediate images based on
the usability of the final pipeline’s output_image. To do so we
substituted the classical TRC with a CNN-based checker. Each
it" stage of the pipeline will have its own checker. The main
peculiarity of the new checker is that it receives in input two
different images, the nominal output img; produced by the i*"
nominal filter and the smaller approximated one contained in
the control information ctrl; produced by the i*” control block.
Therefore, the checker has to be able to distinguish between
the differences in the two images caused by the approximation
and those additional ones that are caused by faults. In the latter
case, the checker has also to be able to predict whether the
fault will cause a disruptive effect in the final output_image
or not. To recover from the occurrence of a fault, the proposed
scheme adopts re-execution at the granularity of the single
pipeline stage to compute the correct result.

A. The redundant pipeline architecture

Figure 2 depicts the internal organization of the redun-
dant pipeline. As previously discussed, it is composed of a
downscale block and one control block for each stage of the
nominal pipeline. Each control block is composed of two
replicas of the corresponding nominal filter, both taking in
input a downscaled version of either input_image or the
output data of the previous control block, dubbed ctri_img; 1.
The output of each filters pair is checked through a classical
TRC. The response of the TRC, dubbed (ok/ fail);, together
with the output data of one of the two filter replicas (which is a
downscaled version of the output of the corresponding nominal
filter) represents the control information (ctrl;) produced by
the control block for filter 3.

We introduced filter duplication in the control blocks to
reduce the number of false positives, i.e., those cases where
the output image would be usable but the checker triggers a re-

ctrl_img;

L 7
input_image i

(ok/fail); | I
Figure 3. Conceptual representation of the i” checker.

execution. Indeed, in case the filter in the control block is not
duplicated and its outputs checked, a fault occurring during
the execution of the control block may lead the checker to
classify the output image of the nominal filter as unusable
although it is even uncorrupted. Conversely, in case the filter
in the control block is duplicated and checked, when a fault
occurs in one of the two control replicas, the TRC will detect it
and notify this (ok/fail); message in the control information
sent to the checker. As discussed in the following subsection,
the checker will assume that the output of the nominal filter
is uncorrupted in case the (ok/ fail); message is set to fail,
given the considered single fault scenario.

Even if the architecture comprises three replicas (one nom-
inal and two approximated), the proposed scheme does not
allow to achieve an approximate TMR as done in [8], where
the system provides an approximated result if the nominal
pipeline fails. Indeed our redundant pipeline works on an
extremely downscaled input image and its output could not
be provided as output of the system, already being the quality
of the nominal pipeline’s output the minimum required by the
application designer. Finally, it is worth mentioning that the
proposed scheme with the duplicated filters in the redundant
pipelines is affordable from the execution time point of view
because of the introduced approximation.

B. The checker architecture

The checker represents the brain of the proposed fault
detection scheme. Indeed, based on the intermediate data
img; produced by the filter and the corresponding control
information ctrl;, it is in charge of deciding whether to discard
the intermediate result (D) or not (/D) by predicting the
usability of the final nominal output_image w.rt. the end-
user application purposes. This is achieved by exploiting a
CNN that is specifically trained for each filter in the considered
application, as discussed in the next section and that will notify
the predicted usability (U*) vs. unusability (/U*).

A representation of the checker for a given nominal filter ¢ is
shown in Figure 3. The checker takes the output of the nominal
filter (img;), the control information ctrl; produced by the
associated control block (being ctril_img; and (ok/ fail);) and
the global input image of the nominal pipeline input_image.

First, the checker analyzes the (ok/fail); signal sent by
the control block. As previously discussed, under the single

Table 1
FILTERS AND CHECKERS EXECUTION TIMES
Module Execution time (ms)
Sharp. 97.00
R&C 184.00
Thresh. 32.00
Aggreg. 34.00
Approx. Sharp. 3.90
Approx. R&C 6.94
Approx. Thresh. 1.34
Approx. Aggreg. 1.45
Checker SHA 3.31
Checker AGGR 2.15
Checker THR 15.50
Checker RC 2.13
TRC 0.20

fault assumption, if this signal states a fail, the output of the
checker will be automatically set to /D since a fault occurred
in the control block and the output of the nominal filter is
assumed to be fault-free. Otherwise, the CNN is invoked. The
CNN takes in input ¢mg;, ctrl_img; and input_image.

It is worth mentioning that img; and input_image are
downscaled to the same size of ctrl_img; to have matrices
of the same size, thus composing a three-dimensional matrix.
Moreover, if ctrl_img; and img; are feature maps or heat
maps with values in a range different from the color intensity
of the pixels of input_image, this last one is normalized to
be compliant with the former ones. This step is necessary to
improve the performance of the CNN. The output of the CNN
is the usable/unusable prediction that is used to decide whether
to discard or not the output of the nominal filter.

Finally, the methodology proposed in [4] has been here
adopted to design the checker architecture.

IV. EXPERIMENTAL EVALUATION

We experimentally evaluated the proposed fault detection
scheme also comparing against the classical DWC and the
enhanced DWC proposed in [4]. We considered the same
experimental setup described in [4] which allowed us to have a
fair comparison against this work. In particular, we considered
the same application meant to identify buildings in aerial im-
ages and the same companion Oracle. The application pipeline
is composed of a sequence of four filters namely: Sharpening,
Reshape&Convolution, Thresholding and Aggregation. The
Oracle first applies a low-pass filter on the output images to
remove noise and then compares the current result with the
golden counterpart: the current output is declared to be usable
if the areas identified as buildings overlap for at least a given
threshold. We employed the same dataset composed of 1,000
images downloaded from Microsoft Bing Maps.

The hardened version of the application has been imple-
mented in C++ and the design methodology in Python, by
using TensorFlow [13] for the CNN. LLFI [6] has been used
as fault injector. The hardened pipeline has been executed on
an ARM A15 core hosted on a Samsung Exynos device.

The execution times of the four filters measured on the target
architecture are reported in rows 1-4 of Table I. We obtained
the redundant pipeline with a 5x image downscaling on each

Table 11
STAGE-BY-STAGE CLASSIFICATION ACCURACY IN FAULTY CONDITIONS

DWC (4] Our
Step b/ DU | DU /MU DU /MD/U | D/U /DU DU /D/U
Sharp. 56.7 433 56.1 39.1 42 0.6 56.2 40.4 29 0.5
R&C 552 448 55.1 41.3 3.6 0.1 54.3 41.9 29 0.9
Tresh. 51.1 489 48.3 38.9 11.0 1.8 472 442 5.6 29
Aggreg. | 405 595 | 403 547 48 02| 396 546 49 09
AVG 509 49.1 50.0 43.5 59 0.7 49.3 453 4.1 1.3
Table III
COMPLETE PIPELINE CLASSIFICATION ACCURACY WITH FAULTS

D/U /DU DU /D/U | Avg time (ms)

DWC 50.5 0.0 495 0.0 733.60

4] 50.2 41.0 8.5 0.3 624.33

Our 49.6 423 7.2 0.9 536.12

size; thus, from the 1080 x 720 input images we obtain 216 x
156 smaller ones. The execution times of the control blocks
for the four stages of the considered pipeline are reported in
rows 5-8 of Table I. The last five rows report the execution
times of the four checkers and of the TRC, respectively.

As a first analysis we assessed the capability of each checker
in identifying unusable images when faults were injected
solely in the corresponding pipeline’s stage. The results from
these experiments are reported in Table II. When comparing
the proposed approach with the classical DWC it is possible
to observe a significant shift from D Uto /D U, meaning that
the checkers are able to identify those faulty images that will
not lead to unusable global outputs. This demonstrates that the
approach would actually prevent unnecessary re-executions.
When compared with [4], our approach achieves comparable
results although operating with an approximated replica.

The second experiment aimed at assessing the benefit of
the proposed approach in a realistic scenario, where the entire
application was considered for random fault injection. This
experiment is very important since it allows us to analyse
possible interactions among checkers, e.g., a faulty image
could be classified as usable by the checker associated with the
corrupted stage and it could then be discarded by a subsequent
checker. This experiment also allowed us to measure the
average execution time of the hardened pipeline and thus the
execution time reduction achieved by the proposed approach
w.r.t. the classical DWC and [4]. Results from this experiment
are reported in Table III. As a first comment, we can again
observe a significant shift from D Uto /D U both w.r.t. DWC
and [4]. Moreover, it has to be noticed that the amount of false
positives (D U) is much lower than in [4], while the amount of
false negatives (/D /U) is slightly higher but still below 1%.
Finally, the average execution time reduction achieved with
our approach in the presence of faults is significantly high:
about 27% w.r.t. DWC and 22% w.r.t. the approach in [4].

As a final experiment, we analysed the behavior of our
approach in a fault-free scenario. This allowed us to assess
the capability of our solution in considering as “normal” the
physiological difference between the output of the nominal
pipeline and the redundant approximated one. Moreover, this
experiment allowed us to measure the execution time of the
hardened pipeline when no fault occurs. Results from this
experiment are reported in Table IV, where DWC and [4]

Table IV
COMPLETE PIPELINE CLASSIFICATION ACCURACY WITHOUT FAULTS
D/U /DU DU /D/U | Avgtime
DWC / [4] 0.0 100.0 0.0 0.0 | 652.80ms
Our 0.0 94.7 53 0.0 | 429.19ms

are aggregated since they have the same behavior in ab-
sence of faults. Unlike, DWC and [4], our approach wrongly
discards about 5% of the unfaulty images. This “waste of
time” is totally balanced by the time saving introduced by
approximation. Indeed, the average execution time reduction
is about 34% w.r.t. the considered baseline solutions. As a final
consideration, it is worth mentioning that when discarding an
image in absence of faults our approach may lead to an infinite
loop. Such problem may easily be circumvented by avoiding
checker’s execution after a pipeline’s stage re-execution (which
is consistent with the considered single fault scenario).

V. CONCLUSIONS

We presented a lightweight fault detection scheme for image
processing applications that combines image usability predic-
tion with approximate computing to avoid unnecessary re-
executions thus reducing overhead introduced by duplication.
The application of the methodology to a case study reduced
execution time from 27% to 34% w.r.t. DWC and from 22%
to 34% w.r.t. [4], with comparable fault detection capabilities.

REFERENCES

[1] S. Mittal, “A Survey of Techniques for Approximate Computing,” ACM
Computing Surv., vol. 48, no. 4, pp. 62:1-62:33, 2016.

[2] J. Andersson, M. Hjorth, F. Johansson, and S. Habinc, “LEON Processor
Devices for Space Missions: First 20 Years of LEON in Space,” in Int.
Conf. Space Mission Challenges for Inform. Tech., 2017, pp. 136-141.

[3] M. Fayyaz and T. Vladimirova, “Fault-tolerant distributed approach to
satellite on-board computer design,” in Aerospace Conf., 2014, pp. 1-12.

[4] M. Biasielli, C. Bolchini, L. Cassano, and A. Miele, “A Smart Fault
Detection Scheme for Reliable Image Processing Applications,” in Proc.
Design, Automa. and Test in Europe Conf. (DATE), 2019, pp. 698-703.

[5] A. Raha and V. Raghunathan, “Towards full-system energy-accuracy
tradeoffs: A case study of an approximate smart camera system,” in
Proc. Design Automation Conference (DAC). IEEE, 2017, pp. 1-6.

[6] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the Accu-
racy of High-Level Fault Injection Techniques for Hardware Faults,” in
Proc. Intl. Conf. Dep. Systems and Networks (DSN), 2014, pp. 375-382.

[71 B. Shim, S. R. Sridhara, and N. R. Shanbhag, “Reliable low-power
digital signal processing via reduced precision redundancy,” IEEE Trans.
on VLSI Systems, vol. 12, no. 5, pp. 497-510, 2004.

[8] A. Ullah, P. Reviriego, S. Pontarelli, and J. A. Maestro, “Majority voting-
based reduced precision redundancy adders,” IEEE Trans. Device and
Materials Reliability, vol. 18, no. 1, pp. 122-124, 2018.

[9] 1. Albandes, A. Serrano-Cases, A. J. Sanchez-Clemente, M. Martins,
A. Martl’nez—Alvarez, S. Cuenca-Asensi, and F. L. Kastensmidt, “Im-
proving approximate-TMR using multi-objective optimization genetic
algorithm,” in Proc. of Latin-Amer. Test Symp. (LATS), 2018, pp. 1-6.

[10] A. J. Sanchez-Clemente, L. Entrena, R. Hrbacek, and L. Sekanina,
“Error Mitigation Using Approximate Logic Circuits: A Comparison of
Probabilistic and Evolutionary Approaches,” IEEE Trans. on Reliability,
vol. 65, no. 4, pp. 1871-1883, 2016.

[11] F. Fernandes dos Santos, P. F. Pimenta, C. Lunardi, L. Draghetti,
L. Carro, D. Kaeli, and P. Rech, “Analyzing and Increasing the Relia-
bility of Convolutional Neural Networks on GPUs,” IEEE Transactions
on Reliability, vol. 68, no. 2, pp. 663677, June 2019.

[12] F. Fernandes dos Santos, L. Carro, and P. Rech, “Kernel and layer
vulnerability factor to evaluate object detection reliability in GPUs,”
IET Computers Digital Techniques, vol. 13, no. 3, pp. 178-186, 2019.

[13] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems,” 2015. [Online]. Available: www.tensorflow.org/

