
An Event-Based System for Low-Power ECG QRS
Complex Detection

Silvio Zanoli1 , Tomas Teijeiro1 , Fabio Montagna2, and David Atienza1
1Embedded Systems Laboratory (ESL), EPFL, Lausanne, Switzerland.

2DEI, University of Bologna, Bologna, Italy

Abstract—One of the greatest challenges in the design of
modern wearable devices is energy efficiency. While data pro-
cessing and communication have received a lot of attention from
the industry and academia, leading to highly efficient micro-
controllers and transmission devices, sensor data acquisition in
medical devices is still based on a conservative paradigm that
requires regular sampling at the Nyquist rate of the target
signal. This requirement is usually excessive for sparse and highly
non-stationary signals, leading to data overload and a waste
of resources in the full processing pipeline. In this work, we
propose a new system to create event-based heart-rate analysis
devices, including a novel algorithm for QRS detection that is
able to process electrocardiogram signals acquired irregularly
and much below the theoretically-required Nyquist rate. This
technique allows us to drastically reduce the average sampling
frequency of the signal and, hence, the energy needed to process it
and extract the relevant information. We implemented both the
proposed event-based algorithm and a state-of-the-art version
based on regular Nyquist rate based sampling on an ultra-low
power hardware platform, and the experimental results show
that the event-based version reduces the energy consumption in
runtime up to 15.6 times, while the detection performance is
maintained at an average F1 score of 99.5%.

Index Terms—event-based sampling, IoT, low-power biosignal
processing, gQRS, ECG QRS detection.

I. INTRODUCTION

Continuous bio-signal monitoring through Wireless Body
Sensor Nodes (WBSN), in combination with signal processing
and machine learning techniques, are guiding a paradigm
change in health surveillance in different scenarios, like the
activity tracking of the general population or the follow-
up of patients with chronic diseases. But as the number of
users scales to hundreds of thousands or even to millions,
a number of problems arise, mainly related to the manage-
ment of the large amounts of generated data and the energy
efficiency. In the last years, the pursuit of smaller, more
efficient wearable devices and with higher battery life has led
to different optimizations in the signal acquisition, processing,
and communication stages. One of these optimizations is the
adoption of a non-uniform sampling scheme, which can reduce
the amount of data to be captured, processed, transmitted
and stored [1]. The sparse nature of many bio-signals, such
as, the electrocardiogram (ECG), makes it possible to go
beyond the classical Nyquist-Shannon sampling theorem and
greatly reduce the global sampling rate of the signal without

This work has been supported in part by the Human Brain Project (HBP)
SGA2 (GA No. 785907), in part by the DeepHealth Project (GA No. 825111),
and in part by the Swiss NSF ML-Edge Project (GA No. 182009).

losing significant information. For this, techniques such as
compressed sensing [2] or activity detection [3] can be used.
An example is shown in Fig. 1, where it is depicted a typical
ECG signal sampled uniformly, as well as the event-based
samples taken by focusing on the areas with relevant activity.
As this figure shows, the sampling frequency varies according
to the frequency of the signal.

7250 7500 7750 8000 8250 8500 8750 9000
Time

Uniformly sampled signal (frequeny = 360Hz)

7250 7500 7750 8000 8250 8500 8750 9000
Time

Event-based sampled signal with 6 bits (average frequeny = 37Hz)

7250 7500 7750 8000 8250 8500 8750
Time

Event-based sampled signal with 5 bits (average frequeny = 25Hz)

Fig. 1. Signal sampled with different event-based analog-to-digital converter
(ADC) resolutions. [Source: Record 100 of the MIT-BIH Arrhythmia DB,
lead MLII, between 00:20 and 00:25]

However, this sampling scheme prevents the use of most of
the existing biosignal processing algorithms, which assume a
uniform sampling frequency. Therefore, the objective of this
work is to start filling this gap by developing an algorithm
for heart-beat detection and, more specifically for the QRS
complex [4], in non-uniformly sampled ECG signals, and
implementing it in an actual low-power hardware set-up. This
task is of particular interest because it gives us the main tool
for heart rate analysis, which is the first and primary task
done in ECG processing. Such a tool can be used as the

https://orcid.org/0000-0002-0316-1657
https://orcid.org/0000-0002-2175-7382
https://orcid.org/0000-0001-9536-4947

fundamental building block to develop a variety of applications
like arrhythmia monitoring, QRS delineation, P and T wave
detection and classification, and many others [5].

The rest of the paper is structured as follows. In Section II
we discuss the adopted event-based sampling technique, the
adaptation of a state-of-the-art heart-beat detection algorithm
to this new environment, and the complete implementation
on a low-power microcontroller unit (MCU) for practical
implementation in real embedded wearable devices. Then, in
Section III, we assess the performance and energy efficiency
of our solution with respect to the state-of-the art. Finally, in
Section IV, we summarize the main conclusions of this work.

II. MATERIALS AND METHODS

Figure 2 shows a high-level architecture of the proposed
implementation, which is described in the following section.

Event-based ADC

{Tk,Vk}

QRS
not present

QRS
present

Time

C.L. Cores

C.L. Memory

DMA

Low-power
MCU
C.L

F.C. Memory
F.C.

F.C. Core
and coms.

μ-DMA

Fig. 2. Schematic representation of the whole system.

A. Event-based sampling

The central idea behind our approach is to improve the
energy consumption for QRS complex detection by drastically
reducing the amount of used data. In order to do so we
move from the classical fixed-rate sampling to an event-based
sampling where every data sample is acquired based on the
occurrence of an event [1], [6]. In this work, we focused on
the level-crossing event-based sampling technique: given an
input range ∆V and a target resolution of B bits, we obtain
L = 2B levels with a separation between them of δv = ∆V

L .
As soon as the input signal crosses one of these levels, a
new sample {v, t} is obtained. This is illustrated in Fig. 3.
In order to implement this this ADC stage, we selected the

0 50 100 150 200 250
Time

QRS complex

t

Sampling instants

Fig. 3. Level crossing event-based sampling: in this example, the horizontal
lines are the levels used, the thickest dotted line are the levels considered at
that time instant and the smaller dashed lines represent the hysteresis around
the levels considered. These hysteresis levels can be set by the user at any
percentage of the δv and represent the actual value that the signal needs to
cross to be sampled. [Source: Record 100 of the MIT-BIH Arrhythmia DB,
lead MLII, between 01:12 and 01:13]

circuit described in [7], which is ready to be deployed on
actual hardware. Even if it is not possible to define a uniform
frequency for this type of signals we can, anyway, define an
average frequency in order to have a rough idea on the data
reduction factor. As Fig. 1 shows, when the number of bits
used decreases the obtained signal gets more and more sparse,
making this event-based sampling a natural low-pass filter for
noise while still preserving the important features of the signal.

One important assumption that was made by observing the
results of the event-based sampling is that the integral distance
between the true signal and its piece-wise linear is bounded.
This is true once we fix a maximum ∆t between the sampled
points. Due to the discussed type of output of the ADC,
a counter is needed to compute t for each sample. Using
the overflow of this counter to signal that no level crossing
happened in that time, this gives us the needed maximum
time between samples and bounds the error between the linear
interpolation and the true signal. For a 10 bit counter, and
assuming the counter to have an update frequency of 360 Hz,
this overflow is reached after approximately 3 seconds, but in
practice we never found this situation.

B. QRS detection algorithm

The main contribution of this work is a novel algorithm
for the real-time detection of QRS complexes on event-based
sampled signals. Yet this algorithm has not been designed
from scratch, but it is based on one of the most robust
methods in the state of the art. The choice was based on two
main reasons: the possibility of being re-adapted to a non-
uniformly sampled signal, and the ability to design the full
stack, from prototyping to implementation (in an emulator).
This situation led to exclude all methods involving wavelet
or Fourier transformations: even if a theory of wavelet on

event-based sampled domain exists, the implementation would
require more energy than the adaptation of classic algorithms,
and a clear advantage in terms of detection performance has
not been proven.

The considered algorithm is the gQRS algorithm, published
in the WFDB software compilation from Physionet [8], and
that is recognized as one of the best-performing algorithms
on public ECG databases [9]. Other approaches exist for
the detection of QRS complexes on event-based sampled
signals [10], but they are fully coupled with the level-crossing
sampling strategy. The hereby proposed method can work with
any non-uniformly sampled signal that can be reconstructed
by linear interpolation, and keeps the linear complexity of
the original algorithm. In order to understand it better, we
can divide the gQRS algorithm into three phases: filtering,
integration and peak detection and thresholding.

1) Filtering: The first operation applied on the signal by the
original gQRS algorithm is double filtering, that is illustrated
in Fig. 4. All the used filters are digital and operate with a
delay time between their taps of δt = 1

4TQRS where TQRS is
the average duration of the QRS complex. This is a settable
parameter not learned during the execution, so we assume the
default value of TQRS = 0.07s. The first filter is a trapezoidal
low-pass filter, which is used to smooth the signal and remove
motion artifacts and electric noise. However, this filter was
not implemented for two main reasons. First, as discussed
above, the event-based sampling is already performing a low-
pass filtering on the noise. Second, this filter is originally
implemented with an infinite impulsive response (IIR) design.
In order to apply an IIR filter in this environment we would
have needed to re-sample its impulsive-response (IR) and
approximating it with a Finite Impulsive Response (FIR) filter
that would have added complexity (hence energy consumption)
to the algorithm. After this first filter, a second one is used to
enhance the QRS peak in the smoothed signal . This is done
using what the original algorithm calls an “adapted filter”,
whose IR shape is designed to resemble the shape of a typical
QRS complex. Being the IR of this filter an odd function
with respect to the central sample, this filter gives a strong
response to both positive and negative QRS complexes. This
filtering is obtained with a FIR digital filter that takes into
account 9 samples at a distance of δt, introducing a delay on
the filtered signal of TQRS(4δt). Hence, if implemented in an
”always-on” environment, where the algorithm react as soon
as a new point arrive, TQRS results to be the total delay of
the algorithm. In the original gQRS algorithm, the results of
this first stage get accumulated and then squared, performing
a first order numerical integration. However, in our approach
we exchanged these two steps, performing first the integration
and then the filtering (and finally the squaring). This can be
performed easily because the integral of the convolution is the
convolution of the integral. Since our implementation relies on
the idea that the error between the true signal and a piece-wise
linear interpolation of it never grows too big, this allows us to
easily compute the integral between each sub-sampled point
without the need of any re-sampling. Then, we apply the filter

25950 26000 26050 26100 26150 26200 26250
Time

Original signal

25950 26000 26050 26100 26150 26200 26250
Time

Smoothed signal

25950 26000 26050 26100 26150 26200 26250
Time

Signal after smoothing and matched filter

Fig. 4. Example of application of the double filtering. The first figure shows
the raw data fed to the original gQRS algorithm, in the second figure we
can see the effect of the smoothing filter on the raw data. Finally, in the
third image, the results of the adapted filter are shown. The circled points are
the peak detected by the algorithm. Only the highest peak is classified as a
QRS complex. [Source: Record 100 of the MIT-BIH Arrhythmia DB, lead
MLII,between 01:12 and 01:13]

to each sub-sampled and integrated point by re-sampling only
the strictly needed points on the integral signal.

2) Integration: By computing the integral of the linear
interpolation of the signal only for the obtained sub-sampled
points, we can greatly reduce the computation workload and
the memory needed to store the obtained values. Given two
consecutive events at times {t1, t2} and with values {v1, v2},
the following equation holds:

It1−t2 =

t2−1∑
i=t1

x̃n[i] =

t2−1∑
i=t1

(m · i+ q) (1)

where m = v2−v1
t2−t1

, q = v1 − m · t1 and x̃n[i] is the linear
interpolation between the points of the event-based sampled
signal. Substituting t2−1 with l and using the Gauss sum, we
can write:

It1−t2 =m ·
l∑

i=t1

m · i+ q · (t1 − l + 1) =

m

2
· (l + t1)(l − t1 + 1) + q · (l − t1 + 1) =

m

2
· (t2(t2 + 1)− t1(t1 + 1)) + q · (t2 − t1)

(2)

This gives us the solution in closed form of the numeric
integral using only the points present in the event-based signal.
Thus, writing m and q in function of {v1, v2} and {t1, t2},
even if possible, does not bring any advantage. Moreover, by
storing those values (m and q), we do the work needed for
re-sampling and filtering in a slightly more efficient way.

3) Peak detection and thresholding: Finally, the third step
of the algorithm checks the presence or absence of a peak and
determines whether it is from a QRS complex. This operation
can divided into four steps:

a) We first check if a peak structure is present, verifying if
x2
t−1 < x2

t > x2
t+1. If such structure is present, we compare

the middle value (cuspid of the peak) with a first threshold to
reject peaks caused by noisy signals. Peaks that pass this first
step are saved in a buffer of peaks.

b) We analyze all the peaks inside a certain time window de-
termined by physiological constraints, affecting the maximum
and minimum separation between actual QRS complexes. For
every peak in this window, we check if it is dominant (i.e. the
highest) in a direct neighbourhood of peaks.

c) For all the dominant peaks, we compare them with a
second adaptive threshold that fits the local properties of the
detected QRS complexes.

d) Finally, all the discarded dominant peaks are analyzed
backwards in order to recover any possible missed QRS peaks.

Further technical details about the thresholding technique
and the updating conditions can be found in the released open-
source code of this work [11].

C. Ultra-low power implementation

The targeted MCU used is the open-source PULP plat-
form [12]. In particular, we have used “Mr Wolf” [13], which
is an advanced microcontroller based on an ultra-low-power
32-bit RISC-V processor, as well as an embedded 8-core
cluster for parallel computing. Mr. Wolf enables to split the
execution in two main domains: the Fabric Controller (FC)
and the Cluster (CL). These domains are defined by zones
under the control of the main core or of the cluster, and by
separated power management controllers.

In order to parallelize the gQRS algorithm a re-design of its
central part was needed. While it was possible to parallelize
integration and filtering, due to data dependencies among
iterations, the thresholding step can not be parallelized and,
hence, it is executed sequentially. Not only the structure of
the parallelized code was changed, but we also needed an
efficient method for data transfer between the FC and the CL.
A flow diagram of the code is shown in Fig. 6. First, the MCU
acquires in sleep mode a predefined-length buffer of data. Then
the buffer is sent to the CL that will execute the integration
and filtering. Finally, the results are handled back to the FC
that will perform the detection of QRS complexes.

FC-CL Bridge: The data transfer between the FC and the
CL is illustrated in Fig. 5. In order to send data to the CL,
the FC acquires two data buffers (vectors) composed of head,
body and tail: time (~tk) and value (~vk) where k is the kth

buffer of data. The buffer length can be set-up by the user

in order to adapt to different scenarios: each buffer needs to
be filled for an average time of T = vlen

fs
where fs is the

average sampling frequency and vlen is the length of the body
of the buffer. Therefore, given a target T , we can adjust vlen
based on the resolution of the ADC (that determines fs). In
this work we used vlen = 460 for a fs = 23 Hz, reaching a
latency time between executions of 20 seconds. This window
size also gives us the dominant component of the memory
footprint of the algorithm: using the described vector size and
assuming each element to be one byte, the memory required
for the data buffers is 920 bytes. Hence, we can consider the
memory footprint for data handling to be 1 kByte. The tail

Values vector:

Values vector:

Integral vector:

Filtering

Filtered vector:

Body Tail

F.C. to C.L.

Head

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Filtered vector:

C.L. to F.C.

Integration...

......

Fig. 5. Example of the vector handling (values) for the Multi-Core (Wearable)
implementation. As figure shows, from the first element of the tail (black)
onwards, all the following values get ignored. Therefore, the body of the next
vector needs to start with the first element of the tail.

and the head are needed to apply the matched filter to the
first and last elements of the body without the need to add
padding and delete a certain amount of values later. Once the
two buffers are filled, the MCU wakes up and the CL performs
a Direct Memory Access (DMA) transfer in order to bring the
data from the FC to the CL memory and starts to elaborate
them. Once the CL has finished, it start a second DMA transfer
to copy the results vector ~rk back to the FC memory. Then,
the FC starts the peak detection and thresholding procedure.
Once ~rk has been completely analyzed, the FC copies the last
elements of ~tk and ~vk at the beginning of ~tk+1 and ~vk+1 in a
way that the next first element of the body will be the previous
first element of the tail (black square in Fig. 5).

Integration: As ~tk and ~vk arrive, we divide the body, the
tail and the head in eight contiguous parts (chunks) and send
them to the eight cores of the cluster. Each core applies the
integration in Eq. 2 to the chunk received and puts the results
in three vectors (~I , ~m and ~q) shared between the cores. Note
that ~I is not the total integral vector but is composed of the
integral of the chunks.

Filtering: Each integrated chunk is then filtered in parallel.
In order to implement the filtering around a central point,
we need other eight equally spaced points at a distance of
δt. To obtain them, we must use the re-sampling technique
already discussed but with some minor changes. The integral
vector used will be discontinuous from chunk to chunk. To

deal with this, whenever the adapted filter is applied to a point
that is in the ith chunk, we calculate the required timing of
each interpolated point. For every needed point we have three
conditions to check, namely:

1) The point is in the ith−1 chunk. In this case, we simply
implement the discussed re-sampling algorithm

2) The point is in the ith chunk or between the ith and the
ith − 1 chunks. In this case, we sum the last value of
the ith − 1 chunk to the two points that we will use for
the interpolation.

3) The point is in the ith + 1 chunk or between the ith + 1
and the ith chunks. In this case we sum the last value
of the ith− 1 chunk and the last value of the ith chunk
to the two points that we will use for the interpolation.

After this check, we apply the interpolation formula and
complete the filtering.

Start

Integral of
each chunk

Filter each
 chunk

Shut down all
 the cores

 (except N: 0)

DMA
write back
 (L1->L2)

Power off
 the cluster

Distribute the
 buffer to the

8 cores

DMA transfer
(L2->L1)Start CL

Set u-DMA
 and go to

 sleep

Copy end of
buffer to the

start

gQRS peak
 detection

Start FC

Yes

No

CL finished ?

Fabric Controller ClusterYes

No

μDMA finished?

Fig. 6. Block design for the multi-core version of the gQRS algorithm

III. EXPERIMENTAL RESULTS

The experimental evaluation of this work has focused on
two different aspects: the detection performance of the devel-
oped algorithm and its energy consumption. The data used for
this work comes from the MIT-BIH Arrhythmia Database [14].
A public database composed of 48 recordings of 30 minutes
duration and with all beats manually labeled. The recordings
were acquired at a sampling frequency of Fs = 360Hz per
channel with 11-bits resolution over a 10 mV range with
2+1(reference) leads placed on the chest with the exception of
one recording that was registered using only 1+1 leads. In this
work, we will use only the signal coming from the MLII lead,
since it is the most frequent one in the database. We discarded
the records where this lead is not present (record 102 and 104).

To obtain the event-based sampled data from this database,
we used a software emulator of the selected level-crossing
ADC [7]. Note that, in order to find the QRS complex, Fs is
higher than needed. However, we choose to keep the original
sampling frequency of the MIT-BIH Arrhythmia Database as
baseline.

A. QRS detection performance

The detection performance of the algorithm has been as-
sessed using the F1-Score metric, which is defined as the har-
monic mean between the Specificity and Positive-predictivity,
according to the following formulae:

Sp =
Correct QRS predicted

Total number of true QRS peaks
(3)

Pp =
Correct QRS predicted

Total number of QRS predicted
(4)

F1 =
2 ∗ Sp ∗ Pp

Sp + Pp
(5)

We compared the F1 score of the adapted gQRS (that works on
event-based sampled signals) with the original gQRS algorithm
(that works only with uniformly-sampled signals). We linearly
re-sampled the event-based signal to allow the application
of the original gQRS algorithm. As shown in Fig. 7, the
performance degradation between the adapted version of the
gQRS algorithm and its original implementation is marginal
for the highest resolutions. Moreover considering Fig. 7 and
the average sampling frequencies shown in Table I, we can
conclude that the optimal ADC resolution in this case is 5
bits. If we move to 6 bits, the average sampling frequency
increases 1.7 times, while the performance improvement is
minimal. On the other side, the high penalty in performance
when we move to 4 bits would make the algorithm unusable
in practice.

TABLE I
AVERAGE FREQUENCIES (ALONG ALL THE DATA-SET) FOR THE

EVENT-BASED SAMPLED SIGNALS USING DIFFERENT ADC RESOLUTIONS

4 Bits 5 Bits 6 Bits 7 Bits
Average sampling frequency [Hz] 11.8 26.2 45.8 75.0

4 5 6 7
Bits

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

F1

F-score

Adapted gQRS on event-based sampled signals
Original gQRS on linearly re-sampled signals
Original gQRS algorithm on the raw signals

Fig. 7. F1 score (calculated globally with all the records in the database)
comparison between the adapted gQRS algorithm and the original one using
different numbers of bits for the event-based sampling. The vertical bars
represent ±1σ (median absolute deviation).

B. Energy consumption

In order to evaluate the energy consumption of the adapted
gQRS version, we implemented both the original gQRS algo-
rithm and the proposed one on the selected MCU, as discussed
in Section II-C. The results can be divided into two sections,
which are shown in Table II: Execution energy and Energy
in Sleep mode. They were obtained by measuring the energy
consumption in a window of 20 seconds of data. This length
has been chosen based on the average duration of the window
explained in Section II-C. Given that the number of operations
per window is constant, we can generalize this result to any
other input segment. The original algorithm works with the
original signal sampled at 360 Hz, while the event-based
version used the signal sub-sampled with 5 bits, giving an
average frequency of 23 Hz.

1) Execution energy: The energy in run is the energy used
during the execution of the two algorithms with the MCU
in run state. In this case, that the developed version of the
gQRS algorithm results to be 15.6 times more energy-efficient
than the original one. From this energy measurements we can
compute the average power over the 20 seconds window for
the two implementations: P avg−20

original = 12.7µW , P avg−20
eventbased =

0.81µW .
2) Energy in Sleep mode: The energy consumption in sleep

mode is due to processor and memory leakage while the MCU
is acquiring data. As the original gQRS is already highly
efficient in terms of computation, the total time in sleep mode
remains almost constant among the two different implemen-
tations. In particular, the measurements obtained in Table II
come from the processing of 20 seconds of data and the sleep
time ranges from 19.935 seconds to 19.998 seconds. In this
context, the total energy consumption is dominated by the
leakage current needed for memory retention. It is important
to notice that the selected MCU is capable of heavy workload
and it is clearly be oversized for the described task. However,
the main idea behind this choice was to be able to show
the possible improvement in energy consumption for signal
processing and data handling when we move from a classic
environment to an event-based, multi-core one. Moreover, the
obtained results allow us to either increase the complexity
of the algorithm or to design a custom MCU, based on the
PULP platform, for this specific task. In this sense, we envision
two complementary strategies: 1) a tailored memory hierarchy
that shrinks the minimum block size from the current 64 KB
to 1 KB, reducing the leakage proportionally since only one
block would be required by gQRS; and 2) scaling the used
technology, moving from 40 nm to 22 nm, which gives a
quadratic leakage reduction in the best case. By combining
both strategies, the potential energy reduction factor in sleep
mode would be of 64

1 ·
40
22

2 ≈ 212.

IV. CONCLUSION

In this work we explored the possibility of using event-
based sampling to reduce the amount of used energy for data
processing in biosignal monitoring devices. In particular, we
focused on the task of QRS detection in ECG signals, adapting

TABLE II
ENERGY CONSUMPTION OF THE TWO DIFFERENT VERSIONS OF GQRS FOR

THE PROCESSING OF 20 SECONDS OF DATA IN THE ULTRA-LOW POWER
MCU.

Er : execution energy, Es: energy used during sleep mode, Tr : processing time,
Etot: total energy used for a 20-second window.

Er [mJ] Es [mJ] Tr [ms] Etot [mJ]
Original gQRS 0.2534 1.53 44.6 1.78
Event-based gQRS 0.0162 1.53 1.85 1.55

the gQRS algorithm in order to make it work in this environ-
ment. Then we implemented it on an ultra-low power, multi-
core MCU. When compared to the original gQRS algorithm
on a uniformly-sampled signal at 360Hz, our implementation
achieves an increase in energy efficiency up to fifteen times
without a noticeable performance degradation. The full source
code of the algorithms and the experiments has been published
under an open-source license for reproducibility [11].

REFERENCES

[1] M. Miskowicz, Event-Based Control and Signal Processing. Embedded
Systems, CRC Press, 2017.

[2] H. Mamaghanian, N. Khaled, D. Atienza, and P. Vandergheynst, “Design
and exploration of low-power analog to information conversion based on
compressed sensing,” IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, vol. 2, pp. 493–501, Sep. 2012.

[3] M. Zaare, H. Sepehrian, and M. Maymandi-Nejad, “A new non-uniform
adaptive-sampling successive approximation ADC for biomedical sparse
signals,” Analog Integrated Circuits and Signal Processing, vol. 74,
pp. 317–330, feb 2013.

[4] L. Sörnmo and P. Laguna, “Chapter 6 - The Electrocardiogram: A
Brief Background,” in Bioelectrical Signal Processing in Cardiac and
Neurological Applications, pp. 411–452, Academic Press, 2005.

[5] L. Sörnmo and P. Laguna, “Chapter 7 - ECG Signal Processing,” in Bio-
electrical Signal Processing in Cardiac and Neurological Applications
(L. Sörnmo and P. Laguna, eds.), pp. 453–566, Academic Press, 2005.

[6] Z. Tian, R. Ying, P. Liu, G. Wang, and Y. Lian, “Event-driven analog-
to-digital converter for ultra low power wearable wireless biomedical
sensors,” in 2015 IEEE 11th International Conference on ASIC (ASI-
CON), pp. 1–4, IEEE, nov 2015.

[7] G. Rovere, S. Fateh, and L. Benini, “A 2.2-µw cognitive always-on
wake-up circuit for event-driven duty-cycling of iot sensor nodes,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 8,
pp. 543–554, Sep. 2018.

[8] A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet:
Components of a New Research Resource for Complex Physiologic
Signals,” Circulation, vol. 101, pp. 215–220, June 2000.

[9] M. Llamedo and J. P. Martı́nez, “QRS detectors performance comparison
in public databases,” in Computing in Cardiology 2014, pp. 357–360,
Sep. 2014.

[10] S. A. H. Sabzevari, N. Ravanshad, and H. Rezaee-Dehsorkh, “An Ultra-
Low-Power QRS-Detection System Based on Level-Crossing Sampling,”
Iranian Conference on Electrical Engineering (ICEE), pp. 1456–1461,
2018.

[11] c4Science Repository - Swiss Universities, “Event based gQRS.” https:
//c4science.ch/source/Event based gQRS/, 2019.

[12] E. Zürich and U. of Bologna, “PULP-Platform.” https://www.
pulp-platform.org/, 2017. [Online; accessed 20/06/2019].

[13] A. Pullini, D. Rossi, I. Loi, A. Di Mauro, and L. Benini, “Mr. wolf:
A 1 gflop/s energy-proportional parallel ultra low power soc for iot
edge processing,” in ESSCIRC 2018 - IEEE 44th European Solid State
Circuits Conference (ESSCIRC), pp. 274–277, Sep. 2018.

[14] G. B. Moody and R. G. Mark, “The impact of the MIT-BIH arrhythmia
database,” IEEE EMBM, vol. 20, no. 3, pp. 45–50, 2001.

 https://c4science.ch/source/Event_based_gQRS/
 https://c4science.ch/source/Event_based_gQRS/
 https://www.pulp-platform.org/
 https://www.pulp-platform.org/

