
Shared FPGAs and the Holy Grail:
Protections against Side-Channel and Fault Attacks

Ognjen Glamočanin∗, Dina G. Mahmoud∗, Francesco Regazzoni†‡ and Mirjana Stojilović∗
∗EPFL, School of Computer and Communication Sciences, Lausanne, Switzerland

†University of Amsterdam, Amsterdam, The Netherlands ‡ALaRI, Università della Svizzera italiana, Lugano, Switzerland

Abstract—In this paper, we survey recently proposed methods
for protecting against side-channel and fault attacks in shared
FPGAs. These methods are quite versatile, targeting FPGA
compilation flow, real-time timing-fault detection, on-chip active
fences, automated bitstream verification, etc. Despite their ver-
satility, they are mostly designed to counteract a specific class of
attacks. To understand how to address the problem of security
in shared FPGAs in a comprehensive way, we discuss their
individual strengths and weaknesses, in an attempt to identify
research directions necessitating further investigation.

Index Terms—FPGA, Multitenancy, Security

I. INTRODUCTION

Given their ability to perform highly parallel compu-
tation with extremely flexible datapath and control, field-
programmable gate arrays (FPGAs) are an ideal platform
for accelerating many compute-intensive applications, e.g.,
artificial intelligence tasks, genomics, big data analytics, or
image and video processing. As such, FPGAs have attracted
commercial cloud service providers (CSPs), which now offer
the latest generation FPGAs as remotely-accessible hardware
acceleration platforms [1], [2].

To maximize the usage of FPGA resources, a number
of multi-tenant virtualized FPGAs have been recently pro-
posed [3]. Yet, they are not deployed, primarily due to the
recently raised security concerns, supported by the researchers
demonstrating denial-of-service, fault-injection, power side-
channel, and crosstalk side-channel attacks on shared FPGAs.

The research community has tried to mitigate the problem,
by making shared FPGAs and the cloud users less vulnerable
to these attacks. However, the literature in the field is still quite
fragmented and, consequently, the security issues of shared
FPGAs are not yet addressed in a comprehensive way. With
the goal of fostering future research in the field, in this work
we review the existing protections against side-channel and
fault attacks. We compare their main characteristics, we report
their strengths and weaknesses, and discuss open problems.

II. THREAT MODEL

A multi-tenant FPGA scenario assumes spatial sharing,
where an FPGA can host multiple tenants simultaneously.
Being intellectual property, the user code and data must be
protected from other users that share the same FPGA; for in-
stance, by enforcing logical separation between the tenants [4].

This work is partially supported by the Swiss National Science Foundation
(grant No. 182428) and the European Union Horizon 2020 research and
innovation program under CPSoSAware project (grant No. 871738).

However, logical separation is not sufficient. On one hand, the
tenants remain coupled through the device power distribution
network (PDN). On the other hand, some of the data, e.g.,
the encrypted data, is commonly transmitted over publicly
available communication channels, which can be observed by
malicious parties. These security risks are real and, as recently
demonstrated by researchers, exploitable by attackers.

Fig. 1 illustrates three types of electrical-level attacks in
shared FPGAs. Some attacks aim to undermine the confiden-
tiality of the system, by using the power side channel to obtain
secret information from other users [5], [6]. Other attacks
aim to break the integrity of the system by injecting faults
in other users’ computation [7], [8]. Finally, some attacks
aim to threaten the availability of the remote system, by
causing denial-of-service (DoS) [9]. In the following section,
we discuss these three attack types in detail.

III. ATTACKS ON ELECTRICAL LEVEL

The low-level programmability of FPGAs allows attackers
in multi-tenant scenarios to exploit low-level electrical phe-
nomena for their attacks [10]. Two main categories of exploits
exist: side-channel attacks (SCAs) and fault-injection attacks.
Side-channel analysis is based on observing unintended leak-
age of information from a victim design. The malicious party
can use a sensor to measure power variations on the chip
(power side channel) or to deduce the value carried by a
neighboring wire through the electromagnetic (EM) coupling
effects (crosstalk side channel). A similar class of attacks are
covert communication attacks; they use the same mechanisms,
but require both a sender to send a message and a receiver with
a sensor to read it. For fault-injection attacks, the adversary
leverages power viruses to affect the PDN shared among
tenants. Done aggressively enough, this can cause reset of the
board (i.e., a DoS attack), and if done more precisely, this can
cause a computational fault (i.e., a fault attack).

For a successful side-channel exploit, the most important
component is the sensor. For remote attacks, ring oscillators
(ROs), whose frequency of oscillation varies with voltage,
are used for power SCAs [11] and for crosstalk SCAs [12]–
[14]. They have also been leveraged for covert communication,
where the sender is a CPU, GPU, or FPGA, and the receiver is
an FPGA sharing the same power supply unit in a datacenter
setting [15]. For a faster reaction time than ROs, delay-line
sensors, similar to the one proposed by Zick et al. [16], are



Secret data processing
(encryption)

Attacker 2

Counter

Design with narrow
timing closure

AES round

AES round
Attacker 1

en

Voltage
Regulator

Logical separation

Attacker 3
Counter

TDC-based sensor

RO-based sensor

clk LUT
Latch

LUT
Latch

Secret data processing
(encryption)

Logical separation

Victim 3Victim 2Victim 1

RO-based sensor

decoupling
capacitors

Priviledged Shell FPGA

Fig. 1. Threat model for multi-tenant FPGAs. First, an attacker performing fault injection or denial-of-service attacks using various power hammering circuits.
Second, an attacker exploiting the crosstalk coupling to perform a side-channel attack. Third, an attacker using voltage sensors for a power side-channel attack.

employed to sense fast voltage fluctuations [5], [17]. Delay-
line sensors have even been used to demonstrate power SCAs
on Amazon AWS F1 instances [6] and to recover the inputs to
a neural network deployed on the same instances [18]. They
have also been used to mount attacks against other integrated
circuits on the same board [5] and against a CPU sharing the
same system-on-chip [19].

Combinational ROs are not only used for sensing on-chip
delay changes, but also as power viruses, which when used
in a large enough grid and with specific activation patterns
have been shown to cause board reset [9] and to inject
faults [7], [8], [20]. Therefore, CSPs such as Amazon [1]
have disallowed the use of combinational loops in designs
deployed on their FPGAs. However, recent work has shown
that other primitives, without the combinational loops, can be
used for the same purposes. These include: sequential ROs,
shift registers, dual-port RAM instances, glitch generators and
even benign-looking circuits such as AES rounds [21], [22].

IV. DEFENCE STRATEGIES

A number of protections against one or more of the pre-
viously described attacks have been proposed. They employ
very different approaches: from scanning the user bitstreams
for virus signatures to modifying the look-up table design
to render the FPGAs less sensitive to voltage variations. All
of the proposed countermeasures have their strengths and
weaknesses, which we will discuss in detail in Section V.
Here, we introduce them and categorize them based on their
underlying idea or the specific attacks that they target.

A. Bitstream Scanning

Similar to computer virus scanning, used to detect and
prevent malicious software from running, scanning FPGA
bitstream for malicious structures can help revealing structures
of high risk to become a threat. For example, Beckhoff et al.
have shown that the electrical short circuits can be detected
by examining the partial FPGA configuration files [23].

More recently, Krautter et al. [24] and La et al. [25],
followed this idea and developed bitstream scanners, which
look for signatures of circuits that are of high risk to be-
come security threats. La et al. [25] focus on circuits with
high power-hammering capacity: cycles (combinational and
sequential), high-fanout nets, glitch amplification designs, and

short circuits, while Krautter et al. [24] also include the check
for data-to-clock paths, present in delay-line voltage sensors.
Both approaches take as input a (partial) bitstream file, extract
the design netlist and build a corresponding graph, to search
for malicious patterns in it. These bitstream scanners target
only the Xilinx Ultrascale+ [25] and the Lattice iCE40 FPGA
families [24], as they are among the few devices to have their
bitstream reverse-engineering toolchains publicly available.

B. Voltage Transients Monitoring

Fast load transients, capable of causing significant voltage
droops, are by far the largest contributors to FPGA circuit
delay variation [9]. In processors, the techniques for handling
load transients typically involve detecting core voltage droop,
followed by the decrease in the working frequency [26]. FP-
GAs, however, rely on the PDN and its decoupling capacitors
to respond to load transients, which can be insufficient [9].

Shen et al. investigated how to detect and mitigate the delay
impact of load transients on FPGAs [27]. They designed a
voltage-droop detector for an Intel Cyclone IV FPGA, which
uses an adder as a delay-measurement unit (similar to carry-
chain delay-line sensors in Xilinx FPGAs). The detector con-
tinuously measures the number of bits propagated and raises
the droop signal if the number of bits propagated drops below a
certain threshold. Setting this threshold requires calibration; its
value may differ if the chip, the location of the droop detector,
or the design frequency is changed.

Provelengios et al. [28] and Mirzargar et al. [29] investigated
approaches suitable for cloud service providers: distributed
sensing of on-chip voltage variations, previously studied by
Zick et al. [16], for detecting and locating the highest voltage
droops. On an Intel DE1 SoC, Provelengios et al. instantiated
a network of evenly distributed RO-based voltage sensors and
demonstrated that, in the 500 µs time period that contains
the power-hammering attack, cubic interpolation algorithm can
be used to reconstruct the voltage contours from the samples
collected at the discrete sensor locations [28]. Mirzargar et
al. focused on minimizing the intrusion of sensors into the
user designs [29] and shortening the response time. They
fully automated their approach, by augmenting the standard
Xilinx FPGA design flow with an additional step—after the
placement of the user design—that implements the RO-based



sensors using the remaining free resources only. With one
sensor per clock region and the sensor readings in the period
of 10 µs around the attack, they located the source of power-
hammering activity on a Xilinx Virtex-7 FPGA.

C. Fault Detection

Increasing timing margins might be a solution against fault
attacks. However, adding arbitrary timing margins does not
ensure the absence of timing violations—it only reduces the
risk. Therefore, additional countermeasures are needed.

Stott et al. [30] followed the approach of Razor [31] to
build a timing-fault detector, consisting of a shadow register,
comparator, and a fault latch. They also demonstrated that
it is possible to automate the insertion of these detectors in
an arbitrary FPGA application, using the information in the
timing report and by modifying the design netlist.

Mahmoud et al. built a reconfigurable fault-detector circuit
targeting a very specific attack scenario, in which the victim
contains a satisfiability don’t care hardware Trojan [20]. This
Trojan, they showed, can be triggered in the presence of timing
faults. Their fault detector consists of a pair of registers and a
delay line, which is calibrated to a value close to the critical
path delay of the victim. The detector controls an output
multiplexer, which does not allow the victim to leak secret
information under the attack (i.e., invalidates its output).

Some of the techniques to detect voltage droops, if cali-
brated carefully, can be used to detect timing faults as well.
For example, Shen et al. leverage their voltage droop detector
to build a clock edge suppressor, which, when needed, delays
the next clock edge [27].

More advanced solutions have been proposed as well: Luo
et al. [32] built a framework that controls the frequency
of the target FPGA applications to avoid timing faults. The
frequency scaling is implemented using an on-chip clock
component (i.e., clock management tile of Xilinx Kintex-7
FPGAs), which can be configured statically or dynamically.
In the static working mode, the framework takes a user-
controlled frequency margin to compute and set the actual
working frequency to a conservative value. In the dynamic
working mode, an on-chip delay-line sensor is used to monitor
the voltage, read the recommended operating frequency from
a precomputed delay-frequency table stored in the on-chip
memory, and reconfigure the clock management tile.

D. Power Side-Channel Leakage Reduction

Countermeasures against power SCAs have been extensively
studied, but primarily in the context of the attackers having
physical access to the device, and thus the possibility to
connect the measuring equipment and observe current, voltage,
or EM-field variations during the device’s operation. These
countermeasures fall into two main categories: hiding and
masking [33]. In hiding, the focus is on reducing the signal-to-
noise ratio captured by the measurements, e.g., by equalizing
the data-related power consumption [34] or by increasing the
noise component of the signal in the side channel. Masking
requires processing algorithmically-randomized data, while

maintaining the correctness of the circuit operation [35].
However, both suffer from considerable area overhead and
vulnerability to higher-order attacks [33].

In the context of power SCAs on shared FPGAs, the works
of Le Masle et al. [36] and Krautter et al. [37] are probably the
most relevant. Both use a closed-loop control system to make
the power consumption of the FPGA implementation less vari-
able. Le Masle et al. use an on-chip RO-network to monitor the
voltage [36]. Their control circuit is a proportional-integrative-
derivative (PID) controller, whose PID constants are set so that
the voltage measured by the sensors is kept approximately
constant. As actuators, they use long routing interconnects,
which consume power when their capacitance is charged and
discharged. Krautter et al. create a side-channel protection by
placing a fence composed of ROs between two neighboring
FPGA tenants [37]. This active fence is controlled by a delay-
line sensor. The authors chose the width of the fence to cover
the victim circuit and its size to be equal to the size of the
victim (an AES-128 module on a Lattice ECP5 FPGA).

E. Crosstalk Side-Channel Attack Mitigation

Two strategies for mitigating crosstalk SCAs have been
suggested so far: first, by constraining the placement of the
user logic and, second, by enhancing the FPGA routing
algorithms to enforce free space around the important signals.

Huffmire et al. suggested using a spatial isolation mecha-
nism called a moat and a controlled core-to-core communica-
tion mechanism called a drawbridge [38]. They first partition
the design in nonoverlapping regions; the unused spaces
between them become moats. Inside them, routing is disabled,
except for the signals that use drawbridges to cross them.
More recently, Yazdanshenas and Betz suggested wrapping the
FPGA user applications (roles) with soft shells [39], in which
the data that has to leave the role is encrypted. The cost of
this, they show, is up to 80% higher latency compared to the
unencrypted traffic and 20% less area available for the roles.

Luo et al. developed a hardware isolation framework named
HILL [40], which ensures that the security-critical nets do not
use long routing wires and isolates them from the remaining
nets (by placing them in the center of the design and routing
them before anything else). For the long wires that cannot
fit within the design boundaries, the authors suggest adding a
couple of unused adjacent long wires, to keep the potentially
malicious nets away.

Seifoori et al. [41] worked on enhancing the PathFinder,
a well-known FPGA routing algorithm used by the FPGA
design tools [42], to ensure crosstalk-attack free designs by
construction. Their approach requires the designers to label
security-critical nets and to select one of the supported routing
options, which differ in the number of neighboring long wires
to leave unoccupied or in the choice of allowing or not the
trusted nets to get near the security-critical ones.

F. Hardening FPGA Architecture and Implementation

Ahmed et al. suggested optimizing the look-up table (LUT)
design, to render its input-to-output delays less variable with



the change of supply voltage [43]. They tried gate boosting the
LUT, decoding the slowest two inputs of the LUT, and using
separate voltage islands for the LUTs and routing. Although
their work is not motivated by voltage attacks but dynamic
voltage scaling, the idea of enhancing the FPGA architecture
is certainly promising and worth exploring in the power side-
channel attack context.

V. EVALUATION AND DISCUSSION

To identify the advantages and drawbacks of the existing
countermeasures, we look at how well they satisfy a number
of relevant criteria. We summarize our findings in Table I and
discuss them in the following subsections.

A. Generality and Interoperability

Two important characteristics of the countermeasures are
generality (whether they are effective against more than a sin-
gle class of attacks) and interoperability (whether, in principle,
they can be combined with most of the other protections).

We find that no countermeasure is perfect. For example,
the bitstream scanners considerably reduce the risk of the
DoS and the fault attacks, but they fail to fully eliminate
it—the proof of it being the increasing number of legitimate
designs capable of power hammering [21], [44]. The crosstalk
SCA countermeasures based on the separation between the
tenants [38], [39] provide only partial protection, as crosstalk
adversaries may be hidden, like Trojans, inside the designs
themselves. The power SCA countermeasures help reducing
the leakage, but do not eliminate it. The distributed voltage
monitors help detecting voltage droops [28], [29], but may
not be able to react sufficiently quickly during a DoS attack.

It is thus beneficial, when possible, to combine the pro-
tections. Combining countermeasures and the effects that a
countermeasure against one type of attack can have on the
resistance of a device against another type of attack is an
open research topic [45]. However, even without performing a
detailed analysis of the combinations of countermeasures, it is
often possible to immediately state whether some countermea-
sures are mutually incompatible. For example, the bitstream
scanners are incompatible with almost all the countermeasures
that require RO sensors, delay-line sensors, or noise gener-
ators [20], [27], [28], [30], [32], [36], [37], because those
circuits—unless hardened into the FPGA logic or placed by
the CSPs—would match typical virus signatures and would
thus be flagged as malicious. On the other hand, protections
against the crosstalk attacks [40], [41], the FPGA architecture
enhancements [43], and the distributed voltage monitoring by
the CSPs [29] are the examples of those that do not have any
immediate contraindication against combining them. Hence,
we classify these countermeasures as, in principle, interopera-
ble. It is, however, important to underline that further analysis
is required to completely ensure that their combination does
not alter the overall security of the device. In future work,
we find it important to approach the countermeasure design
in a holistic way and have them offer a high degree of
interoperability with existing solutions.

B. Use of FPGA Resources

Not surprisingly, most countermeasures come at a cost (re-
ducing the available area, the design frequency, or throughput).
Exceptions are bitstream scanners, for obvious reasons. There
are some reasonably inexpensive solutions: those detecting
large changes in signal delays [20], [30] or those where the
CSP uses the resources unoccupied by the tenants for voltage
sensing [29], but they are a minority. In comparison, other
approaches tend to be area- or energy-consuming, in particular
when they require on-chip clocking and memory resources,
large amount of logic for creating noise [36], [37], or the
encryption and decryption of the incoming and outgoing data
of every tenant [39]. Even though the datacenter FPGAs are
rich in resources, we believe that lightweight and energy-
efficient countermeasures should be prioritized in the future.

C. Passive and Active Protections

A natural way to classify the protections is to split them
between active or passive, where active are those requiring
real-time measurement of voltage or delay while the user
design is operating. Interestingly, both types have attracted
equal amount of research interest.

Active countermeasures may consume very few on-chip
resources (i.e., timing-fault detectors) but also quite a lot of
them (i.e., noise generators). Their main advantage, however,
is the ability to monitor and thus react to the changing voltage
and circuit delay. But, to do that correctly, they depend on a
careful and long calibration process before the deployment.
The calibration of this sort may not always be possible on a
multi-tenant FPGA, as it is not guaranteed that the design will
always be assigned the same cloud FPGA instance, nor it is
guaranteed that the instance is free of other tenants while the
calibration is taking place. The first issue could be addressed
by fingerprinting the FPGAs [46]. For the second, adding an
automated recalibration capability, potentially aided from the
software side, to adjust to the changing conditions on the fly,
could be interesting for future research. However, this would
further increase the use of resources and require fast dynamic
partial reconfiguration.

Since the characteristics of PDNs vary with the FPGA
size, technology node, vendor, board design, etc., it should
be important for the active countermeasures to show detailed
experimental verification and result characterization, using
datacenter FPGAs and datacenter workloads, for their efficacy
and the applicability for the cloud to be thoroughly assessed.
Unfortunately, almost none of the related publications pro-
vided such thorough experimentation. This type of evaluation
is perhaps even more important for the active protections that
involve noise generation, as increased noise may affect the
correct operation of the FPGA co-tenants.

D. Who Should Deploy Them?

Many of the proposed protections are under full control of
the FPGA users, because they are design-dependent and often
require careful tuning for their successful operation. But there
are alternative solutions, allowing the FPGA compilation tools



TABLE I
COMPARISON OF THE PROTECTION MEASURES.

Generality Use of Who should Design
Protections and interoperability FPGA resources Type deploy them disclosure Portable

crs pwr dos flt iop log wire clk usr vnd csp

Krautter et al. [24] 3 3 w w w 7 7 7 Passive 7 7 3 7∗ N/A
La et al. [25] 3 w w w w 7 7 7 Passive 7 7 3 7∗ N/A

Huffmire et al. [38] w 7 7 7 3 3 3 7 Passive 3 7 7 7 7
Yazdanshenas and Betz [39] w 7 7 7 3 3 3 3 Passive 7 w 3 3 3

Luo et al. [40] 3 7 7 7 3 7 3 7 Passive 7 3 7 7 3
Seifoori et al. [41] 3 7 7 7 3 7 3 7 Passive 7 3 7 7 3

Regazzoni et al. [35] 7 w 7 7 3 3 3 7 Passive 3 7 7 7 3
Tiri et al. [34] 7 w 7 7 3 3 3 7 Passive 3 7 7 7 3

Le Masle et al. [36] 7 w 7 7 w 3 3 3 Active 3 7 7 7 7
Krautter et al. [37] 7 w 7 7 w 3 3 3 Active 3 7 w 7 7

Shen et al. [27] 7 7 7 3 3 3 3 3 Active 3 7 7 7 7
Provelengios et al. [28] 7 7 w 3 3 3 3 3 Active 3 7 3 3 7

Mirzargar et al. [29] 7 7 w 3 3 3 3 3 Active 7 7 3 3 3∗

Stott et al. [30] 7 7 7 3 3 3 3 3 Active 3 7 7 7 7
Mahmoud et al. [20] 7 7 7 3 3 3 3 7 Active 3 7 7 7 7

Luo and Xu [32] 7 7 7 3 w 3 3 3 Active 3 7 7 7 7

Ahmed et al. [43] 7 w w w 3 7 7 7 Passive 7 3 7 7 N/A

Legend:
crs) Crosstalk side-channel attack; pwr) Power side-channel attack; dos) Denial-of-service attack; flt) Fault attack; iop) Interoperability.
log) FPGA logic; wire) FPGA routing; clk) Clocking resources; usr) Users; vnd) FPGA vendors; csp) Cloud service providers.
3 Yes; w Partially; 7 No; ∗ Conditionally; N/A Not applicable.

or CSPs to contribute to design security. On one side, some
crosstalk-attack defences rely on the FPGA design tools to pro-
duce protected designs. On the other side, bitstream scanners,
tenant isolation, and distributed voltage monitoring require the
support of the CSPs for their implementation. At first glance,
having the protection put in place and maintained by the FPGA
vendors or the CSPs could be the most convenient solution,
which is why such protections should continue to receive
research attention. Nonetheless, the lightweight and easy to
implement strategies, to be deployed by the users themselves,
will always remain valuable, especially when a high degree of
user control is required by the target application.

E. Is Design Disclosure Required?

To reduce the risks of security issues, no CSP accepts the
partial bitstreams from the users yet: the design rule checks
and bitstream generation must be done on the servers of the
cloud providers themselves [1], [2] so that at least some
security verification can be performed (e.g., combinational
loop detection). The inability to upload the bitstreams to the
cloud, however, means that the design itself, at least to some
extent, needs to be disclosed to the CSP. Bitstream scanners
play an important role here, as they could be deployed together
with an attestation system. For instance, if the bitstream is
verified and attested by a third party, trusted by both the
design owners and the CSPs, the design would not need to
be disclosed (hence the conditional No in Table I).

In general, protections deployed by the users or FPGA
vendors do not require design disclosure. Among those to

be deployed by the CSPs, some would require access to the
design files or, at least, the post-placement netlist for placing
voltage sensors into the user regions [28], [29]. A solution
could be to have a network of voltage sensors available as
a hardened FPGA resource—something FPGA vendors could
perhaps consider adding to future FPGA generations.

F. Portability

Another relevant characteristic of countermeasures is porta-
bility. If a protection does not require code rewriting or
parameter tuning (calibration) with relatively minor design
changes (e.g., the placement constraints or clock frequency)
or when switching to an FPGA of a newer family, then
such a technique has more chances to become a preferred
choice. Protections such as masking or hiding, as well as those
targeting vendor tools, satisfy our definition of portability.
Additionally, the protections to be deployed by the CSPs could
also be considered portable, at least from the user’s point of
view, as the CSPs still need to invest additional effort for
providing the necessary infrastructure (hence the conditional
Yes in Table I.)

VI. CONCLUSION AND FUTURE WORK

In this paper, we surveyed existing research on prevent-
ing or protecting against the power-side channel, crosstalk
side-channel, and fault attacks in multi-tenant FPGAs. We
categorized the attack countermeasures as passive or active
(those requiring real-time voltage or delay measurements). We
compared them using a number of criteria, such as generality



(the number of attack types they could be effective against),
interoperability (the possibility of combining them with other
protections, in principle at least), use of FPGA hardware
resources, or the time and effort required to port them to other
designs or devices.

We found that the majority of the countermeasures would
not require the users to disclose their designs. We also found
a number of relatively inexpensive countermeasures, at least
in terms of use of FPGA resources, as well as a number of
techniques that, at first glance, seem interoperable with other
protections. Nevertheless, we have uncovered a number of
issues that future research should try to address: low generality,
in-depth exploration of interoperability and its implications,
low number of fully automated solutions, and the general
absence of the experiments in a real cloud setting.

Finding the right countermeasure—or a combination of
them—remains an open problem. The best approach to solving
it, we think, is through collaboration between and contribution
from all the involved parties: researchers (by uncovering
new attacks and developing new protection strategies), FPGA
vendors (with enhanced FPGA architecture and tools), and the
CSPs (by preventing or locating the attackers, while allowing
everyone else to deploy their own protections, if they wish).
We believe this paper to be an important step in this direction.

REFERENCES

[1] Amazon EC2 F1, Amazon AWS, 2019. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/f1/

[2] Alibaba, “Compute optimized instance families with FPGAs,” Alibaba,
alibabacloud.com/help/doc-detail/108504.htm.

[3] A. Vaishnav, K. D. Pham, and D. Koch, “A survey on FPGA virtualiza-
tion,” in FPL, 2018.

[4] S. Trimberger and S. McNeil, “Security of FPGAs in data centers,” in
IVSW, 2017.

[5] F. Schellenberg, D. R. E. Gnad, A. Moradi, and M. B. Tahoori, “Remote
inter-chip power analysis side-channel attacks at board-level,” in ICCAD,
2018.

[6] O. Glamočanin, L. Coulon, F. Regazzoni, and M. Stojilović, “Are cloud
FPGAs really vulnerable to power analysis attacks?” in DATE, 2020.

[7] D. Mahmoud and M. Stojilović, “Timing violation induced faults in
multi-tenant FPGAs,” in DATE, 2019.

[8] J. Krautter, D. R. E. Gnad, and M. B. Tahoori, “FPGAhammer: Remote
voltage fault attacks on shared FPGAs, suitable for DFA on AES,” IACR
TCHES, 2018.

[9] D. R. Gnad, F. Oboril, and M. B. Tahoori, “Voltage drop-based fault
attacks on FPGAs using valid bitstreams,” in FPL, 2017.

[10] S. S. Mirzargar and M. Stojilović, “Physical side-channel attacks and
covert communication on FPGAs: A survey,” in FPL, 2019.

[11] M. Zhao and G. E. Suh, “FPGA-based remote power side-channel
attacks,” in S & P, 2018.

[12] C. Ramesh, S. B. Patil, S. N. Dhanuskodi, G. Provelengios, S. Pillement,
D. Holcomb, and R. Tessier, “FPGA side channel attacks without
physical access,” in FCCM, 2018.

[13] I. Giechaskiel, K. B. Rasmussen, and K. Eguro, “Leaky wires: Informa-
tion leakage and covert communication between FPGA long wires,” in
ASIACCS, 2018.

[14] I. Giechaskiel and J. Szefer, “Information leakage from FPGA routing
and logic elements,” in ICCAD, 2020.

[15] I. Giechaskiel, K. B. Rasmussen, and J. Szefer, “C3APSULe: Cross-
FPGA covert-channel attacks through power supply unit leakage,” in
S & P, 2020.

[16] K. M. Zick, M. Srivastav, W. Zhang, and M. French, “Sensing
nanosecond-scale voltage attacks and natural transients in FPGAs,” in
FPGA, 2013.

[17] F. Schellenberg, D. R. Gnad, A. Moradi, and M. B. Tahoori, “An inside
job: Remote power analysis attacks on FPGAs,” in DATE, 2018.

[18] S. Moini, S. Tian, J. Szefer, D. Holcomb, and R. Tessier, “Remote power
side-channel attacks on CNN accelerators in FPGAs,” 2020, arXiv:
2011.07603.

[19] J. Gravellier, J.-M. Dutertre, Y. Teglia, P. Loubet-Moundi, and F. Olivier,
“Remote side-channel attacks on heterogeneous SoC,” in CARDIS, 2019.

[20] D. G. Mahmoud, W. Hu, and M. Stojilović, “X-Attack: Remote activa-
tion of satisfiability don’t-care hardware Trojans on shared FPGAs,” in
FPL, 2020.

[21] G. Provelengios, D. Holcomb, and R. Tessier, “Power wasting circuits
for cloud FPGA attacks,” in FPL, 2020.

[22] M. M. Alam, S. Tajik, F. Ganji, M. Tehranipoor, and D. Forte, “RAM-
Jam: Remote temperature and voltage fault attack on FPGAs using
memory collisions,” in FDTC, 2019.

[23] C. Beckhoff, D. Koch, and J. Torresen, “Short-circuits on FPGAs caused
by partial runtime reconfiguration,” in FPL, 2010.

[24] J. Krautter, D. R. E. Gnad, and M. B. Tahoori, “Mitigating electrical-
level attacks towards secure multi-tenant FPGAs in the cloud,” ACM
TRETS, 2019.

[25] T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch, “FP-
GADefender: Malicious self-oscillator scanning for Xilinx UltraScale +
FPGAs,” ACM TRETS, 2020.

[26] M. S. Floyd, P. J. Restle, M. A. Sperling, P. Owczarczyk, E. J. Fluhr,
J. Friedrich, P. Muench, T. Diemoz, P. Chuang, and C. Vezyrtzis,
“Adaptive clocking in the POWER9™ processor for voltage droop
protection,” in ISSCC, 2017.

[27] L. L. Shen, I. Ahmed, and V. Betz, “Fast voltage transients on FPGAs:
Impact and mitigation strategies,” in FCCM, 2019.

[28] G. Provelengios, D. Holcomb, and R. Tessier, “Characterizing power
distribution attacks in multi-user FPGA environments,” in FPL, 2019.

[29] S. S. Mirzargar, G. Renault, A. Guerrieri, and M. Stojilović, “Nonintru-
sive and adaptive monitoring for locating voltage attacks in virtualized
FPGAs,” in FPT, 2020.

[30] E. Stott, J. M. Levine, P. Y. K. Cheung, and N. Kapre, “Timing fault
detection in FPGA-based circuits,” in FCCM, 2014.

[31] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: a low-power
pipeline based on circuit-level timing speculation,” in MICRO-36, 2003.

[32] Y. Luo and X. Xu, “A quantitative defense framework against power
attacks on multi-tenant FPGA,” in ICCAD, 2020.

[33] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks - Revealing
the Secrets of Smart Cards. Springer, 2007.

[34] K. Tiri and I. Verbauwhede, “A logic level design methodology for a
secure DPA resistant ASIC or FPGA implementation,” in DATE, 2004.

[35] F. Regazzoni, W. Yi, and F.-X. Standaert, “FPGA Implementations of
the AES Masked Against Power Analysis Attacks,” in COSADE, 2011.

[36] A. L. Masle, G. C. T. Chow, and W. Luk, “Constant power reconfigurable
computing,” in FPT, 2011.

[37] J. Krautter, D. R. E. Gnad, F. Schellenberg, A. Moradi, and M. B.
Tahoori, “Active fences against voltage-based side channels in multi-
tenant FPGAs,” in ICCAD, 2019.

[38] T. Huffmire, B. Brotherton, N. Callegari, J. Valamehr, J. W. R. Kastner,
and T. Sherwood, “Designing secure systems on reconfigurable hard-
ware,” ACM TODAES, 2008.

[39] S. Yazdanshenas and V. Betz, “The costs of confidentiality in virtualized
FPGAs,” IEEE TVLSI, 2019.

[40] Y. Luo and X. Xu, “HILL: A hardware isolation framework against
information leakage on multi-tenant fpga long-wires,” in FPT, 2019.

[41] Z. Seifoori, S. S. Mirzargar, and M. Stojilović, “Closing leaks: Routing
against crosstalk side-channel attacks,” in FPGA, 2020.

[42] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B.
Kent, P. Jamieson, and J. Anderson, “The VTR project: Architecture and
CAD for FPGAs from Verilog to routing,” in FPGA, 2012.

[43] I. Ahmed, L. L. Shen, and V. Betz, “Optimizing FPGA logic circuitry
for variable voltage supplies,” IEEE TVLSI, 2020.

[44] A. Boutros, M. Hall, N. Papernot, and V. Betz, “Neighbors from
hell: Voltage attacks against deep learning accelerators on multi-tenant
FPGAs,” in FPT, 2020.

[45] F. Regazzoni, T. Eisenbarth, L. Breveglieri, P. Ienne, and I. Koren,
“Can knowledge regarding the presence of countermeasures against fault
attacks simplify power attacks on cryptographic devices?” in DFT, 2008.

[46] S. Tian, W. Xiong, I. Giechaskiel, K. B. Rasmussen, and J. Szefer,
“Fingerprinting cloud FPGA infrastructures,” in FPGA, 2020.


