
SRAM Arrays with Built-in Parity Computation for

Real-Time Error Detection in Cache Tag Arrays

Ramon Canal

Universitat Politècnica de Catalunya

Barcelona, Spain

rcanal@ac.upc.edu

Yiannakis Sazeides

University of Cyprus

Nicosia, Cyprus

yanos@cs.ucy.ac.cy

Arkady Bramnik

Intel Corp.

Haifa, Israel

arkady.bramnik@intel.com

Abstract— This work proposes an SRAM array with built-in

real-time error detection (RTD) capabilities. Each cell in the

new RTD-SRAM array computes its part of the real-time parity

of an SRAM array column on-the-fly. RTD based arrays detect

a fault right away after it occurs, rather than when it is read.

RTD, therefore, breaks the serialization between data access

and error detection and, thus, it can speed-up the access-time of

arrays that use on-the-fly error detection and correction. The

paper presents an analysis and optimization of an RTD-SRAM

and its application to a tag array. Compared to a state-of-the-

art tag array protection, the evaluated scheme has comparable

error detection and correction strength and, depending on the

array dimensions, the access time is reduced by 5% to 18%,

energy by 20% to 40% and area up to 30%.

Keywords—reliability, SRAM array, tag array, error

detection and correction, real-time error detection (RTD).

I. INTRODUCTION

Memory arrays used in modern processors are vulnerable
to various errors in the field (e.g., soft-errors [1]). Designers
of processors for high-availability and mission-critical
systems virtually always employ error detection and
correction codes [2], such as SECDED, to protect from errors
the data in memory arrays. In general, a code adds one or more
parity bits to each word in an array to encode redundant
information about the stored data. When a codeword (data
plus parity) is read from the array, an error is detected if the
codeword is illegal. The coding algorithm and the number of
parity bits used, determine the strength of the code: how many
corrupted bits it can detect and how many, if any, it can
correct.

Until recently, all memory protection coding schemes
require reading an array entry first to detect if it has been
corrupted. Real-time Error Detection (RTD) [3] is a newly
proposed error detection approach that can detect a fault in an
array instantaneously after it occurs. RTD, consequently,
breaks the dependence between data access and error
detection and, thus, it can reduce the access time of arrays that
use on-the-fly error detection and correction. RTD’s key
requirement is a built-in logic to track in real-time the parity
of the cells in each array column.

The previous RTD work, proposed real-time error
detection for flip-flop-based arrays by adding dedicated
separate columns, in a bit-sliced array design, for parity
computation. Also, it showed how to use RTD to build a 2D
ECC code that provides error detection and correction for an
array. The benefits of RTD were demonstrated with the help
of a gate level analytical model.

In this paper, for the first time, we present how to integrate
the real-time column parity computation in an SRAM array
with a modified SRAM cell design that inserts the parity

computation into the cell. This reduces the area footprint of
the solution and at the same time the compact design
minimizes the computation delay and power. We perform a
detailed timing analysis and optimization of RTD-SRAM
using SPICE simulation (instead of an analytical approach).
Furthermore, we show how to use RTD-SRAM to protect a
Tag Array [4] (the previous RTD work focused on arrays
containing data). Tag arrays are different from data arrays in
that what is needed during an address lookup is a correct
hit/miss definition not the correct tag [5][6][7][8]. This opens
up an opportunity for a different RTD design optimized for
tag arrays. We compare the RTD-SRAM based Tag array
against the state of the art Fast-Tag Hit ECC design [8] and
show that the RTD design provides superior delay and energy
across the board and area reduction for small arrays.

RTD-SRAM can also be used to track the real-time parity
of cells in a row (horizontal) and, in addition to reliability, it
can be used for post-silicon validation [9]. In particular, RTD
can be very effective in reducing the time needed to root-cause
bugs that manifest as SRAM array-content corruptions for
both test and production chips. We do not discuss these other
uses of RTD-SRAM due to space limitations.

In the remaining of the paper, we provide background on
RTD (Section II), the RTD SRAM array proposal (Section
III), an evaluation of the RTD SRAM array (Section IV), a
review of cache-tag array protection schemes (Section V), the
implementation of RTD-SRAM cache-tag array and its
evaluation (Section VI), and conclusions (Section VII).

II. RTD BACKGROUND

The high level RTD 2D ECC design proposed in [3] is
shown in Fig. 1. An array with RTD needs to include
combinational logic that determines in real-time the parity of

Fig. 1: 2D ECC RTD Architecture [3]

ECP

DUE
CED

output data (OUT)

DATA RP

C1

……

……

RTCP
Checker for data@raddress
Checker for data@waddress

G

input data (IN)

check bits
raddress

READ-enable

waddress

Write-enable

REV for data[raddress]

……

WEV for data[waddress]

C
2

C1

C2

read data (RD)

PD RP

C2

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.23919/DATE51398.2021.9473986

mailto:rcanal@ac.upc.edu
mailto:yanos@cs.ucy.ac.cy
mailto:arkady.bramnik@intel.com

the cells in each array column (real-time column parity or
RTCP). Additionally, it is required to maintain the expected
parity for each column (expected column parity or ECP) and
on initialization to set the ECP according to the array contents.
The RTCP is calculated all the time whereas the ECP is
updated each time the array is written. Specifically, ECP is
updated with the bitwise-xor of the current ECP value, the new
value (IN) about to be written in a location, the previous value
(PD) in the location about to be overwritten and the write
error-vector (WEV). The WEV is zero when the PD does not
contain an error, otherwise, when the PD contains an error, it
is equal to the bitwise-xor of the ECP and the RTCP. We
detect errors in the PD by adding a traditional row parity (RP)
per entry and using a parity checker (C2) on reads. The
traditional RP is also used during a read cycle to determine
whether the data read (RD) from the array contains an error or
not with the help of another checker (C1). The array output
(OUT) is produced by performing a bitwise-xor of the RD
with a read error-vector (REV). If there is no error, the REV
is set to zero, otherwise, it is set to the bitwise-xor of the ECP
and RTCP.

The above is a 2D ECC scheme since it uses both row and
column parity to detect and correct errors. RTD 2D ECC does
not require a very expensive (in terms of cycle count)
correction procedure to determine the columns with errors (as
previous 2D ECC works did [10]). RTD circumvents costly
correction by employing a dedicated array port to track the
RTCP.
 To keep background brief, we note that the discussion
considers the case of one error at any given time in the array
and we do not discuss how the decoder works (D) and how the
PD is obtained. We discuss multi-bit errors, decoding and
reading the PD in Section VI.

III. RTD-SRAM ARRAY

The conventional SRAM cell is depicted in Fig. 2.a. The
6T SRAM is connected to the Wordline (WL) and the Bitlines
(BL and BL!). The 1-bit RTD SRAM array (Fig. 2.b) is

composed of a conventional 6T SRAM cell plus an XOR built
with transmission gates that are connected to the SRAM
internal nodes (i.e., a static port). Both PMOS and NMOS
transistors are used in the transmission gates for better output
signal quality. This XOR will propagate the parity
computation across the column. This gate XORs the value of
Parity In to the cell value. The output is the Parity Out.

A. Fast Real-Time Column Parity (RTCP) Computation

We can connect all the parity XORs in a column to
compute the RTCP. The simplest and more compact way is to
connect one row to the next. Thus, all the XORs are connected
in series. A first approximation for the delay of this solution is
the number of XOR gates traversed to compute the column
parity. The delay of such approach is O(n) where n is the
number of rows. Alternatively, we can add inverters/buffers
(a.k.a. repeaters/drivers) to avoid significant RC delay and
parity signal quality degradation (i.e., slope growth). The third
option is a tree-like structure as we do not need intermediate
results. In the tree structure, the delay will be O(log2n).
Evidently, for arrays with a large number of rows, the tree
structure will result in better delays as compared to the linear.

Fig. 2.c shows a 2-bit RTD SRAM array. The leftmost
SRAM cell computes the XOR of the two cells. The rightmost
XOR has 2 “programmable” inputs: Parity In1 and Parity In2.
These inputs will be used to make the appropriate connections
for the tree structure. In Fig. 2.c, it computes the parity
resulting from the previous cell parity and an external input
(Parity In2), which could be, for instance, the next set of 2
RTD SRAM cells (as shown in the first 2 cells in the tree
structure in Fig. 3). The XORs in Fig. 2.c make use of one
extra inverter (shaded inverter in Fig. 2.c). This inverter is
needed to isolate the inputs of the XOR from the output. By
isolating the inputs, we ensure that, in the worst case, an
inverter’s load is the next XOR’s inverter plus one pass gate

Fig. 2: a) Baseline SRAM cell, b) SRAM cell with RTD. c) Tree-based 2-bit RTD SRAM array macro

Fig. 3: Schematic of the linear and tree connections

BL BL!

WL WL

BL BL!

WL WL

Parity In
Parity Out

a) b)

XOR

BL BL!

WL WL

Parity In1

c)

BL1 BL1!

WL WL

Parity Out

Parity In2

(i.e., Parity In2) after traversing one pass gate. Otherwise, one
inverter could be driving the signal through all the levels of
pass gates in the tree.

Fig. 3 shows a schematic of the linear, linear with buffers
and the tree connections. The linear design uses Fig. 2.b cells
and the tree design uses Fig. 2.c cells. For ease of
understanding, the green XOR box in Fig. 3 refers to the green
boxed XOR in Fig. 2.c. For illustration ease, Fig. 3 depicts a
row (8-data bits). Nevertheless, this organization can be
performed at the column level as well, which is what is used
for the remaining paper.

IV. EVALUATION

A. Simulation Environment

We implemented the RTD-SRAM arrays in NGSPICE using

the 28nm bulk planar model (BSIMv4.0 MOSFET). Vdd is

1V. Wire capacitance is included by scaling down to 28nm

(matching ITRS trends) the nominal values available in the

FreePDK45 for metal 1,2 (same value) and 3. Intracell

connections are assumed to be metal 1 and 2 whereas intercell

connections are metal 3. The 6T cell size is 0.127um2 [11]

and the cell aspect ratio 1.5 (pull-up transistors are 3λx3λ,

pull-down transistors are 2λx8λ, tgates are 2λx4λ). The XOR

size is 50% of the 6T size (for the linear designs) and 100%

for the tree design (due to the extra inverters). To

accommodate the bitlines and wordlines, we assume an

equivalent cell spacing of 10% of the cell size (vertically and

horizontally). Cells’ size and spacing is used to compute wire

length for wordlines, bitlines, and RTCP. All configurations

have one conventional R/W port.

B. Evaluation of Cell Access Time

In this section, we measure the impact on read and write
SRAM array access time when RTD is implemented and
compare it to a conventional SRAM array without RTD. This
analysis does not consider any detection/correction logic
outside the array. It solely analyzes the array access impact of
the RTD proposal. The analysis with detection/correction
logic is performed in Section VI.B.

Adding more connections to the storage node of the
SRAM cell – a static port for RTCP computation - increases
the cell capacitance and, thus, it may slow down read and write
operations. Fig. 4 shows the impact on the array access time
for read and write operations. The extra cell port affects the
array access delay. Read timing includes address decoding,
WL activation and BL development. The read delay increases
up to 4.5% for 128 rows. The impact is small as the new cell
port only affects the cell access time (i.e. WL activation to BL
development).

Fig. 4 also shows a 4% increase in write access time
(decoding + cell write) for the tree configuration. The increase
reduces to 1.5% for the linear configuration. The higher
increase in the tree configuration is caused by the extra
inverter connected to the cell node. Larger arrays show a
smaller impact. This is caused by the bigger decoder delay and
the constant cell write delay. In our design, address decoding
and BL setup work in parallel during writes (being address
decoding the slowest of the two).

Fig. 4: Read (decoder + WL activation + BL development) and Write (decoder + cell write) cell access time increase for different row counts.

Fig. 5: Column parity computation delays for linear, linear+buffer and tree for different row numbers and different buffer positions. Blue columns

indicate pass gates with NMOS and PMOS. Orange columns indicate NMOS-only pass gates.

C. Evaluation of RTD SRAM Array Organization

Fig. 5 shows the parity computation delay for different row
counts. These numbers include both the wire delay and the
individual XOR delays for RTCP computation after a write.
We have evaluated both NMOS+PMOS pass gates; as well as,
NMOS only pass gates. NMOS+PMOS design is
comparatively better than NMOS only, despite the extra
transistor needs. It generates a high-quality signal that is able
to propagate faster.

The linear design is comparatively very slow for large
number of rows and it cannot produce a result in 20ns for 64
and 128 row designs. Even organizations with a buffer every
64 rows or every 32 rows do not produce the RTCP even after
20ns. Only a buffer every 4 or 8 bits guarantees a delay below
20ns for both NMOS-only and PMOS and NMOS pass gates
for large rows.

On the other hand, tree designs are able to complete the
RTCP computation below 1.2ns for all cases. Clearly, the
reduction of XORs to traverse (e.g., for 128 rows: 8 (tree) vs
128 (linear)) has a much bigger impact on delay than the larger
wiring in the tree structure. We will use the tree structure from
here on.

V. CACHE TAG ARRAY, TAG ERRORS, TAG PROTECTION

A. Cache Tag Array

Caches are a key performance feature for the modern
processor. In general, a cache is organized as a set associative
multi-way memory structure that is implemented with tag and
data arrays. The tag array contains entries with memory
addresses and the data array contains entries with lines of
memory data. The tag and data arrays of a cache have the same
organization and each tag entry holds the line address of the
corresponding entry in the data array.

A cache is searched by splitting a lookup address into the
tag, set and offset fields. The offset specifies the index within
a line, the set corresponds to the index of a cache set and the
tag is the field stored in the tag array.

During a cache read or write cycle, all the valid tags in the
cache set of the lookup address are compared with the Tag of
the lookup address and a hit/miss signal is generated per way.
On a read cycle, when a way hit signal is activated, the data in
its corresponding way are transferred to the cache output. On
a write cycle, a way hit signal controls in which way the input
data are written. Consequently, the timing of hit/miss signal is
performance critical since it influences the cache access
latency.

Besides the read and write flow, the third major cache flow
is a replacement after a cache miss. Replacement writes a new
cache line into a way selected by a replacement algorithm. In
the case of a writeback cache, if the selected way contains
modified data then the data line needs to be evicted before
filling in the new line.

Figs. 6.a-b show how the 4-bit tags of a selected set in a
tag array are used to produce per way hit/miss signals by
comparing the lookup tag against the stored tags in a two-way
set. In the first example (6.a), the lookup tag is not in the set
(both ways return a miss), whereas in Fig. 6.b there is a hit in
way-1.

B. Errors in the Tag Array and Tag Array Protection

In the presence of errors in the tag array, the following
problematic behaviors can occur during lookup: false-hit and
false-miss. The false-hit and false miss are illustrated in Figs.
6.c-d that show for the corresponding examples in Figs. 6.a-b

how a corruption in the tag of way-1 can lead to false-hit and
false-miss. Both errors can have grave consequences since
with a false-hit wrong data is forwarded for use whereas with
a false-miss, if the faulty-way is modified, a stale copy of the
line will be fetched and used.

A tag array can be protected against corruption with a
conventional ECC coding scheme such as those used to
protect a cache data array (e.g., a SECDED code).
Specifically, a tag entry can be augmented with check bits that
are used during lookup to detect an error in the tag and, if
possible, correct it before it is used for hit/miss definition.
Unfortunately, a conventional ECC scheme functionality lies
in the read critical path for hit/miss definition and may
increase cache access latency. However, previous work
[5][6][7][8] observed that a stored tag protected with an ECC
code, can determine if it is a hit or a miss by only checking its
Hamming Distance (HD) [2] from the lookup tag codeword.
For instance, when using a SECDED code per tag, the hit
signal is activated as long as the HD between the lookup
codeword and a stored tag is one or less. When the distance is
two, a DUE is signaled since SECDED, with minimum HD 4,
cannot resolve whether the faulty tag corresponds to a miss or
a hit. If the distance is three or more then there is a miss. This
fast-tag hit approach eliminates the need for costly and slow
hardware to correct the cache tags before checking for a hit or

Fig. 6: Tag Array Miss and Hit Behavior; without Error and No Protection
(a,b); with Error: No Protection (c,d), Fast-Tag Hit ECC (e,f), Fast-Tag Hit

Parity(g,h), Fast-Tag Hit RTD (i,j)

a miss. Figs. 6.e-f illustrate the use of fast-tag hit approach
(SECDED code is from [13]) and how it eliminates false-hit
and false-miss. Figs. 6.g-h show that a fast-tag hit with parity
(minimum HD 2) approach is sufficient to avoid false-hits but
it cannot avoid false-misses.

VI. AN RTD USE CASE: CACHE TAG ARRAY ECC USING

FAST-TAG HIT RTD

Although fast-tag hit ECC is an improvement over a
conventional ECC it still introduces the ECC logic (see the 1’s
count in Figs. 6.e-f) in the critical path of the hit/miss
definition. In this section, we propose to use the SRAM-RTD
design (Section III), to protect effectively a tag array against
errors while speeding up its access time as compared to the
fast-tag hit ECC. We refer to this new design as fast-tag hit
RTD.

Fig. 7 illustrates how to use an RTD-SRAM to provide a
tag array with a novel single-bit error correction capability.
The figure shows the flow during a cache lookup. To keep the
explanation brief, we assume at most a single bit error in a
column at any given time (we discuss subsequently the case
with multiple column errors).

The proposed scheme does a bitwise comparison of
codewords (as in the fast-tag hit ECC Figs. 6.e-f) but it only
uses a single parity bit to protect each tag instead of several
bits needed by a conventional ECC code to provide single bit
correction (e.g., SECDED requires 7 check bits for a 31-bit
tag). Single bit correction is realized by leveraging the SRAM-
RTD built-in RTCP. Specifically, on a read cycle we use the
bitwise-XOR of the RTCP and the array ECP (the result of
this operation is referred to as read-error-vector (REV)). The
REV indicates which columns contain an error and it is
bitwised-OR with the result of the bitwise-comparison. More
specifically:

 If no column contains an error (all REV bits are zero) then
the comparison result is used as is for hit/miss definition.

 If there is a single column with error, that column’s
comparison result is excluded (by forcing it to indicate
match) and the hit/miss definition is determined by the
remaining comparison bits. This is correct, because a 1-bit
parity is a minimum HD 2 and when excluding (erasing) a
bit from the comparison, two different codewords, with no
errors in their remaining bits, are guaranteed to have at
least HD 1 and, thus, cannot match.

 When the number of columns with errors are more than
one a DUE is signaled by the decoder (denoted as D in Fig.
7, a table defines its behavior) because there is a chance
for a false-hit. Erasing two or more bits in a codeword with
minimum HD two allows two different tags to match.

A subtle but important difference of the tag RTD design in
Fig. 7 versus the RTD design for data in Fig. 1, is that for tags
we do not need to check whether the accessed Tag has an error
but only whether any column in the array has an error. This
helps simplify the RTD tag design and remove one of the
checkers (C1) found in Fig. 1. This, also, reduces both the
delay and area as well as the decoder energy which becomes
independent of the lookup set.
 In the case of a cache replacement, the ECP needs to be
updated (as in Fig. 1). This update requires the previous tag
(PD) of the line that gets replaced. This tag can be stored
during the lookup, that turned out to be a miss, by using the
replacement policy at that time to determine which way will
get replaced. Therefore, no extra read is needed by Fast-Tag
Hit RTD to obtain the PD.

The decoder circuitry (not shown due to space limitations)
uses a 1’s count function [8] to determine whether there are
0,1, or >1 columns with errors (number of bits set in REV).
This circuitry’s output is not in the critical path of the hit/miss
definition because it only matters in the case of a DUE
(Detected Unrecoverable Error). That is to say, it is acceptable
to have speculative hit/miss definition that may turn out to be
a DUE [8]. This does not compromise functionality as long as
the >1 error signal is resolved before forwarding a wrong but
valid line. In general, such time windows exist in caches
because additional time after the hit definition is needed either
to multiplex the data of a selected way or to access the selected
way. We illustrate how Fast-Tag Hit RTD provides correct
hit/miss definition in the presence of errors in Figs. 6.i-j.

A. Multiple Errors

The Fast-Tag Hit RTD can be augmented to handle cases
with multiple columns with error and multiple errors in a
column using horizontal and vertical logical interleaving [12]
[10][3]. For example, two-way horizontal interleaving uses
two parity bits per tag to protect with separate parity the even
and odd bit positions. This way a horizontal burst of two
horizontal will belong to different codewords and can be
corrected. We do not discuss interleaving issues further due to
space limitations.

B. Performance comparison fast-tag hit RTD vs ECC

Fig. 8 compares the tag-array access time of Fast-Tag Hit
SECDED [8] vs Fast-Tag Hit RTD (this proposal). In
particular, we analyzed four configurations of the tag array
described as (#tag bits, #ECC bits): 4-4, 11-5, 26-6 and 31-7.
Note that in RTD, just one parity bit is needed for ECC;
whereas SECDED needs the number listed. Unless indicated
otherwise all configurations are 1-way associative.

The measured delay includes the address decoder, the
SRAM array access plus the error detection and correction
mechanisms particular to each proposal. As previously
described in the beginning of Section VI, both mechanisms

Fig. 7: Fast-Tag Hit RTD

Lookup Tag

Generate
Parity

Tag Parity

Hit/Miss

Bitwise Compare

Way0

……

RTCP

ECP

……

EV

NE DUE

D

#of 1s in EV 0 1 >1

Decoder(D) NE CE DUE

CE
Fig. 8: RTD vs SECDED Fast-Tag Hit access time reduction.

have comparable detection and correction capabilities. In
other words, both mechanisms can correct single-bit errors
and detect two-bit error when the errors are in a single tag.

RTD clearly reduces the access time over ECC. Delay
reduction is between 5% and 18%. Despite RTDs initial
increase of the read access time (see Fig. 4), when we consider
the error detection and correction circuitry, RTD is much
faster than the SECDED version of Fast-Tag Hit. RTD’s
advantage reduces as the number of rows increases. This is
caused by the higher SRAM array access time over the
baseline (without RTD, the one used by the SECDED version)
as seen in Fig. 4.

Finally, the different configurations offer similar savings
for a given number of rows (within 4%). The minor
differences are caused by the different gate types and number
(depth) used for SECDED and RTD detection and correction.

Fig. 9 shows the read energy reduction of Fast-Tag RTD
when compared to the SECDED version. Energy reduction is
between 18 and 40% depending on the number of rows and
the protection level. Energy and area wise, SECDED
computation requires a large amount of power and gates. By
replacing it with parity, we remove a lot of gates; and hence
reduce energy. On top of that, parity needs just one extra bit
stored, whereas SECDED ranges between 4 and 7 in the
configurations analyzed. Write operations achieve almost
identical savings as they also benefit from the smaller number
of gates and storage.

Fig. 10 shows the area comparison for the arrays analyzed
following the methodology in [3]. While RTD can save a
significant amount of area (~30%) for small highly protected
arrays (i.e., an 8-row 31-7configuration), the benefits
disappear as arrays become bigger. The area cost of the extra
(pass-gate based) XOR for each SRAM cell dominates the
reduction in the SECDED computation and Tag hit-miss
logic.

When considering caches with multiple ways, access and
energy benefits stay similar (as the detection and correction
logic is replicated) but area benefits are reduced heavily. For
instance, for a 128 row 4-4 configuration, 4-way provides a
7% area reduction but 8-way provides none and 16-way
suffers a 4% area increase (data not shown in a figure due to
space limitations).

VII. CONCLUSIONS

This work shows how to provide a built-in RTD
functionality in an SRAM array that enables to track in real
time the parity of the cells in each array column. An analysis
of an optimized RTD-SRAM design shows that the use of a
tree reduction for the RTCP calculation results in minimal
impact on read and write access delay. The proposed RTD-
SRAM is then applied to a tag array for error protection by
using the RTCP to perform error erasure. The proposed Fast-

Tag Hit RTD is compared against a state of the art Fast-Tag
Hit ECC and shown to provide faster latency, lower energy
and lower or similar area while having a comparable error
protection.

REFERENCES

[1] R. C. Baumann, "Radiation-induced soft errors in advanced
semiconductor technologies," in IEEE Transactions on Device and
Materials Reliability, vol. 5, no. 3, pp. 305-316, Sept. 2005, doi:
10.1109/TDMR.2005.853449.

[2] R. W. Hamming, "Error detecting and error correcting codes," in The
Bell System Technical Journal, vol. 29, no. 2, pp. 147-160, April 1950,
doi: 10.1002/j.1538-7305.1950.tb00463.x.

[3] Y. Sazeides et al., "2D Error Correction for F/F based Arrays using In-
Situ Real-Time Error Detection (RTD)," in the 2020 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), Frascati, Italy, 2020, pp. 1-4, doi:
10.1109/DFT50435.2020.9250878.

[4] Luong Dinh Hun et al., "Mitigating soft errors in highly associative
cache with CAM-based tag," IEEE International Conference on
Computer Design, 2005, doi: 10.1109/ICCD.2005.76.

[5] W. Wu, D. Somasekhar and S. Lu, "Direct Compare of Information
Coded With Error-Correcting Codes," in IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 20, no. 11, pp. 2147-2151,
Nov. 2012, doi: 10.1109/TVLSI.2011.2169094.

[6] P. Reviriego, S. Pontarelli, M. Ottavi and J. A. Maestro, "FastTag: A
Technique to Protect Cache Tags Against Soft Errors," in IEEE
Transactions on Device and Materials Reliability, vol. 14, no. 3, pp.
935-937, Sept. 2014, doi: 10.1109/TDMR.2014.2332616.

[7] Byeong Yong Kong et al., "Low-Complexity Low-Latency
Architecture for Matching of Data Encoded With Hard Systematic
Error-Correcting Codes." IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 22, no. 7 (2014): 1648-1652 doi:
10.1109/TVLSI.2013.2276076.

[8] A. Gendler, A. Bramnik, A. Szapiro and Y. Sazeides, "Don’t Correct
the Tags in a Cache, Just Check Their Hamming Distance from the
Lookup Tag," in the 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), Vienna, 2018, pp. 571-
582, doi: 10.1109/HPCA.2018.00055.

[9] S. Mitra, S. A. Seshia and N. Nicolici, "Post-silicon validation
opportunities, challenges and recent advances," in Design Automation
Conference (DATE), Anaheim, CA, 2010, pp. 12-17, doi:
10.1145/1837274.1837280.

[10] J. Kim, N. Hardavellas, K. Mai, B. Falsafi and J. Hoe, "Multi-bit Error
Tolerant Caches Using Two-Dimensional Error Coding," in the 40th
Annual IEEE/ACM International Symposium on Microarchitecture,
Chicago, IL, 2007, pp. 197-209, doi: 10.1109/MICRO.2007.19.

[11] Shien-Yang Wu et al., "A highly manufacturable 28nm CMOS low
power platform technology with fully functional 64Mb SRAM using
dual/tripe gate oxide process," in 2009 Symposium on VLSI
Technology, Honolulu, HI, 2009, pp. 210-211.

[12] J. Maiz, S. Hareland, K. Zhang and P. Armstrong, "Characterization of
multi-bit soft error events in advanced SRAMs," in IEEE International
Electron Devices Meeting 2003, Washington, DC, USA, 2003, pp.
21.4.1-21.4.4, doi: 10.1109/IEDM.2003.1269335.

[13] M. Y. Hsiao, "A Class of Optimal Minimum Odd-weight-column SEC-
DED Codes," in IBM Journal of Research and Development, vol. 14,
no. 4, pp. 395-401, July 1970, doi: 10.1147/rd.144.0395.

Fig. 9 RTD vs SECDED Fast-Tag Hit array average read energy reduction.

Fig. 10: RTD vs SECDED Fast-Tag Hit array area reduction (negative

numbers mean area increase).

