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Abstract— This work proposes an SRAM array with built-in 

real-time error detection (RTD) capabilities. Each cell in the 

new RTD-SRAM array computes its part of the real-time parity 

of an SRAM array column on-the-fly. RTD based arrays detect 

a fault right away after it occurs, rather than when it is read. 

RTD, therefore, breaks the serialization between data access 

and error detection and, thus, it can speed-up the access-time of 

arrays that use on-the-fly error detection and correction. The 

paper presents an analysis and optimization of an RTD-SRAM 

and its application to a tag array. Compared to a state-of-the-

art tag array protection, the evaluated scheme has comparable 

error detection and correction strength and, depending on the 

array dimensions, the access time is reduced by 5% to 18%, 

energy by 20% to 40% and area up to 30%.  

Keywords—reliability, SRAM array, tag array, error 

detection and correction, real-time error detection (RTD). 

I. INTRODUCTION

Memory arrays used in modern processors are vulnerable 
to various errors in the field (e.g., soft-errors [1]). Designers 
of processors for high-availability and mission-critical 
systems virtually always employ error detection and 
correction codes [2], such as SECDED, to protect from errors 
the data in memory arrays. In general, a code adds one or more 
parity bits to each word in an array to encode redundant 
information about the stored data. When a codeword (data 
plus parity) is read from the array, an error is detected if the 
codeword is illegal. The coding algorithm and the number of 
parity bits used, determine the strength of the code: how many 
corrupted bits it can detect and how many, if any, it can 
correct. 

Until recently, all memory protection coding schemes 
require reading an array entry first to detect if it has been 
corrupted.  Real-time Error Detection (RTD) [3] is a newly 
proposed error detection approach that can detect a fault in an 
array instantaneously after it occurs. RTD, consequently, 
breaks the dependence between data access and error 
detection and, thus, it can reduce the access time of arrays that 
use on-the-fly error detection and correction. RTD’s key 
requirement is a built-in logic to track in real-time the parity 
of the cells in each array column. 

The previous RTD work, proposed real-time error 
detection for flip-flop-based arrays by adding dedicated 
separate columns, in a bit-sliced array design, for parity 
computation. Also, it showed how to use RTD to build a 2D 
ECC code that provides error detection and correction for an 
array. The benefits of RTD were demonstrated with the help 
of a gate level analytical model. 

In this paper, for the first time, we present how to integrate 
the real-time column parity computation in an SRAM array 
with a modified SRAM cell design that inserts the parity 

computation into the cell. This reduces the area footprint of 
the solution and at the same time the compact design 
minimizes the computation delay and power. We perform a 
detailed timing analysis and optimization of RTD-SRAM 
using SPICE simulation (instead of an analytical approach). 
Furthermore, we show how to use RTD-SRAM to protect a 
Tag Array [4] (the previous RTD work focused on arrays 
containing data). Tag arrays are different from data arrays in 
that what is needed during an address lookup is a correct 
hit/miss definition not the correct tag [5][6][7][8]. This opens 
up an opportunity for a different RTD design optimized for 
tag arrays. We compare the RTD-SRAM based Tag array 
against the state of the art Fast-Tag Hit ECC design [8] and 
show that the RTD design provides superior delay and energy 
across the board and area reduction for small arrays. 

RTD-SRAM can also be used to track the real-time parity 
of cells in a row (horizontal) and, in addition to reliability, it 
can be used for post-silicon validation [9]. In particular, RTD 
can be very effective in reducing the time needed to root-cause 
bugs that manifest as SRAM array-content corruptions for 
both test and production chips. We do not discuss these other 
uses of RTD-SRAM due to space limitations. 

In the remaining of the paper, we provide background on 
RTD (Section II), the RTD SRAM array proposal (Section 
III), an evaluation of the RTD SRAM array (Section IV), a 
review of cache-tag array protection schemes (Section V), the 
implementation of RTD-SRAM cache-tag array and its 
evaluation (Section VI), and conclusions (Section VII). 

II. RTD BACKGROUND 

The high level RTD 2D ECC design proposed in [3] is 
shown in Fig. 1. An array with RTD needs to include 
combinational logic that determines in real-time the parity of 

Fig. 1: 2D ECC RTD Architecture [3] 
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the cells in each array column (real-time column parity or 
RTCP). Additionally, it is required to maintain the expected 
parity for each column (expected column parity or ECP) and 
on initialization to set the ECP according to the array contents. 
The RTCP is calculated all the time whereas the ECP is 
updated each time the array is written. Specifically, ECP is 
updated with the bitwise-xor of the current ECP value, the new 
value (IN) about to be written in a location, the previous value 
(PD) in the location about to be overwritten and the write 
error-vector (WEV). The WEV is zero when the PD does not 
contain an error, otherwise, when the PD contains an error, it 
is equal to the bitwise-xor of the ECP and the RTCP. We 
detect errors in the PD by adding a traditional row parity (RP) 
per entry and using a parity checker (C2) on reads.  The 
traditional RP is also used during a read cycle to determine 
whether the data read (RD) from the array contains an error or 
not with the help of another checker (C1). The array output 
(OUT) is produced by performing a bitwise-xor of the RD 
with a read error-vector (REV). If there is no error, the REV 
is set to zero, otherwise, it is set to the bitwise-xor of the ECP 
and RTCP. 

The above is a 2D ECC scheme since it uses both row and 
column parity to detect and correct errors. RTD 2D ECC does 
not require a very expensive (in terms of cycle count) 
correction procedure to determine the columns with errors (as 
previous 2D ECC works did [10]). RTD circumvents costly 
correction by employing a dedicated array port to track the 
RTCP.   
 To keep background brief, we note that the discussion 
considers the case of one error at any given time in the array 
and we do not discuss how the decoder works (D) and how the 
PD is obtained. We discuss multi-bit errors, decoding and 
reading the PD in Section VI.  

III. RTD-SRAM ARRAY 

The conventional SRAM cell is depicted in Fig. 2.a. The 
6T SRAM is connected to the Wordline (WL) and the Bitlines 
(BL and BL!). The 1-bit RTD SRAM array (Fig. 2.b) is 

composed of a conventional 6T SRAM cell plus an XOR built 
with transmission gates that are connected to the SRAM 
internal nodes (i.e., a static port). Both PMOS and NMOS 
transistors are used in the transmission gates for better output 
signal quality. This XOR will propagate the parity 
computation across the column. This gate XORs the value of 
Parity In to the cell value. The output is the Parity Out.  

A. Fast Real-Time Column Parity (RTCP) Computation 

We can connect all the parity XORs in a column to 
compute the RTCP. The simplest and more compact way is to 
connect one row to the next. Thus, all the XORs are connected 
in series. A first approximation for the delay of this solution is 
the number of XOR gates traversed to compute the column 
parity. The delay of such approach is O(n) where n is the 
number of rows. Alternatively, we can add inverters/buffers 
(a.k.a. repeaters/drivers) to avoid significant RC delay and 
parity signal quality degradation (i.e., slope growth). The third 
option is a tree-like structure as we do not need intermediate 
results. In the tree structure, the delay will be O(log2n). 
Evidently, for arrays with a large number of rows, the tree 
structure will result in better delays as compared to the linear. 

Fig. 2.c shows a 2-bit RTD SRAM array. The leftmost 
SRAM cell computes the XOR of the two cells. The rightmost 
XOR has 2 “programmable” inputs: Parity In1 and Parity In2. 
These inputs will be used to make the appropriate connections 
for the tree structure. In Fig. 2.c, it computes the parity 
resulting from the previous cell parity and an external input 
(Parity In2), which could be, for instance, the next set of 2 
RTD SRAM cells (as shown in the first 2 cells in the tree 
structure in Fig. 3). The XORs in Fig. 2.c make use of one 
extra inverter (shaded inverter in Fig. 2.c). This inverter is 
needed to isolate the inputs of the XOR from the output. By 
isolating the inputs, we ensure that, in the worst case, an 
inverter’s load is the next XOR’s inverter plus one pass gate 

        
Fig. 2: a) Baseline SRAM cell, b) SRAM cell with RTD. c) Tree-based 2-bit RTD SRAM array macro 

 

 
Fig. 3: Schematic of the linear and tree connections 
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(i.e., Parity In2) after traversing one pass gate. Otherwise, one 
inverter could be driving the signal through all the levels of 
pass gates in the tree. 

Fig. 3 shows a schematic of the linear, linear with buffers 
and the tree connections. The linear design uses Fig. 2.b cells 
and the tree design uses Fig. 2.c cells. For ease of 
understanding, the green XOR box in Fig. 3 refers to the green 
boxed XOR in Fig. 2.c. For illustration ease, Fig. 3 depicts a 
row (8-data bits). Nevertheless, this organization can be 
performed at the column level as well, which is what is used 
for the remaining paper. 

IV. EVALUATION 

A. Simulation Environment 

We implemented the RTD-SRAM arrays in NGSPICE using 

the 28nm bulk planar model (BSIMv4.0 MOSFET). Vdd is 

1V. Wire capacitance is included by scaling down to 28nm 

(matching ITRS trends) the nominal values available in the 

FreePDK45 for metal 1,2 (same value) and 3. Intracell 

connections are assumed to be metal 1 and 2 whereas intercell 

connections are metal 3. The 6T cell size is 0.127um2 [11] 

and the cell aspect ratio 1.5 (pull-up transistors are 3λx3λ, 

pull-down transistors are 2λx8λ, tgates are 2λx4λ). The XOR 

size is 50% of the 6T size (for the linear designs) and 100% 

for the tree design (due to the extra inverters). To 

accommodate the bitlines and wordlines, we assume an 

equivalent cell spacing of 10% of the cell size (vertically and 

horizontally). Cells’ size and spacing is used to compute wire 

length for wordlines, bitlines, and RTCP. All configurations 

have one conventional R/W port.  

B. Evaluation of Cell Access Time 

In this section, we measure the impact on read and write 
SRAM array access time when RTD is implemented and 
compare it to a conventional SRAM array without RTD. This 
analysis does not consider any detection/correction logic 
outside the array. It solely analyzes the array access impact of 
the RTD proposal. The analysis with detection/correction 
logic is performed in Section VI.B. 

Adding more connections to the storage node of the 
SRAM cell – a static port for RTCP computation - increases 
the cell capacitance and, thus, it may slow down read and write 
operations. Fig. 4 shows the impact on the array access time 
for read and write operations. The extra cell port affects the 
array access delay. Read timing includes address decoding, 
WL activation and BL development. The read delay increases 
up to 4.5% for 128 rows. The impact is small as the new cell 
port only affects the cell access time (i.e. WL activation to BL 
development).  

Fig. 4 also shows a 4% increase in write access time 
(decoding + cell write) for the tree configuration. The increase 
reduces to 1.5% for the linear configuration. The higher 
increase in the tree configuration is caused by the extra 
inverter connected to the cell node. Larger arrays show a 
smaller impact. This is caused by the bigger decoder delay and 
the constant cell write delay. In our design, address decoding 
and BL setup work in parallel during writes (being address 
decoding the slowest of the two).  

   
Fig. 4: Read (decoder + WL activation + BL development) and Write (decoder + cell write) cell access time increase for different row counts. 

 

       
Fig. 5: Column parity computation delays for linear, linear+buffer and tree for different row numbers and different buffer positions. Blue columns 

indicate pass gates with NMOS and PMOS. Orange columns indicate NMOS-only pass gates. 

 



 

 

C. Evaluation of RTD SRAM Array Organization 

Fig. 5 shows the parity computation delay for different row 
counts. These numbers include both the wire delay and the 
individual XOR delays for RTCP computation after a write. 
We have evaluated both NMOS+PMOS pass gates; as well as, 
NMOS only pass gates. NMOS+PMOS design is 
comparatively better than NMOS only, despite the extra 
transistor needs. It generates a high-quality signal that is able 
to propagate faster. 

The linear design is comparatively very slow for large 
number of rows and it cannot produce a result in 20ns for 64 
and 128 row designs. Even organizations with a buffer every 
64 rows or every 32 rows do not produce the RTCP even after 
20ns. Only a buffer every 4 or 8 bits guarantees a delay below 
20ns for both NMOS-only and PMOS and NMOS pass gates 
for large rows. 

On the other hand, tree designs are able to complete the 
RTCP computation below 1.2ns for all cases. Clearly, the 
reduction of XORs to traverse (e.g., for 128 rows: 8 (tree) vs 
128 (linear)) has a much bigger impact on delay than the larger 
wiring in the tree structure. We will use the tree structure from 
here on. 

V. CACHE TAG ARRAY, TAG ERRORS, TAG PROTECTION 

A. Cache Tag Array 

Caches are a key performance feature for the modern 
processor. In general, a cache is organized as a set associative 
multi-way memory structure that is implemented with tag and 
data arrays. The tag array contains entries with memory 
addresses and the data array contains entries with lines of 
memory data. The tag and data arrays of a cache have the same 
organization and each tag entry holds the line address of the 
corresponding entry in the data array.  

A cache is searched by splitting a lookup address into the 
tag, set and offset fields. The offset specifies the index within 
a line, the set corresponds to the index of a cache set and the 
tag is the field stored in the tag array.  

During a cache read or write cycle, all the valid tags in the 
cache set of the lookup address are compared with the Tag of 
the lookup address and a hit/miss signal is generated per way. 
On a read cycle, when a way hit signal is activated, the data in 
its corresponding way are transferred to the cache output. On 
a write cycle, a way hit signal controls in which way the input 
data are written. Consequently, the timing of hit/miss signal is 
performance critical since it influences the cache access 
latency. 

Besides the read and write flow, the third major cache flow 
is a replacement after a cache miss. Replacement writes a new 
cache line into a way selected by a replacement algorithm. In 
the case of a writeback cache, if the selected way contains 
modified data then the data line needs to be evicted before 
filling in the new line. 

Figs. 6.a-b show how the 4-bit tags of a selected set in a 
tag array are used to produce per way hit/miss signals by 
comparing the lookup tag against the stored tags in a two-way 
set. In the first example (6.a), the lookup tag is not in the set 
(both ways return a miss), whereas in Fig. 6.b there is a hit in 
way-1. 

B. Errors in the Tag Array and Tag Array Protection 

In the presence of errors in the tag array, the following 
problematic behaviors can occur during lookup: false-hit and 
false-miss. The false-hit and false miss are illustrated in Figs. 
6.c-d that show for the corresponding examples in Figs. 6.a-b 

how a corruption in the tag of way-1 can lead to false-hit and 
false-miss. Both errors can have grave consequences since 
with a false-hit wrong data is forwarded for use whereas with 
a false-miss, if the faulty-way is modified, a stale copy of the 
line will be fetched and used. 

A tag array can be protected against corruption with a 
conventional ECC coding scheme such as those used to 
protect a cache data array (e.g., a SECDED code). 
Specifically, a tag entry can be augmented with check bits that 
are used during lookup to detect an error in the tag and, if 
possible, correct it before it is used for hit/miss definition. 
Unfortunately, a conventional ECC scheme functionality lies 
in the read critical path for hit/miss definition and may 
increase cache access latency. However, previous work 
[5][6][7][8] observed that a stored tag protected with an ECC 
code, can determine if it is a hit or a miss by only checking its 
Hamming Distance (HD) [2] from the lookup tag codeword. 
For instance, when using a SECDED code per tag, the hit 
signal is activated as long as the HD between the lookup 
codeword and a stored tag is one or less. When the distance is 
two, a DUE is signaled since SECDED, with minimum HD 4, 
cannot resolve whether the faulty tag corresponds to a miss or 
a hit. If the distance is three or more then there is a miss. This 
fast-tag hit approach eliminates the need for costly and slow 
hardware to correct the cache tags before checking for a hit or 

    
Fig. 6: Tag Array Miss and Hit Behavior; without Error and No Protection 
(a,b); with Error: No Protection (c,d), Fast-Tag Hit ECC (e,f), Fast-Tag Hit 

Parity(g,h), Fast-Tag Hit RTD (i,j) 



 

 

a miss. Figs. 6.e-f illustrate the use of fast-tag hit approach 
(SECDED code is from [13]) and how it eliminates false-hit 
and false-miss. Figs. 6.g-h show that a fast-tag hit with parity 
(minimum HD 2) approach is sufficient to avoid false-hits but 
it cannot avoid false-misses. 

VI. AN RTD USE CASE: CACHE TAG ARRAY ECC USING 

FAST-TAG HIT RTD  

Although fast-tag hit ECC is an improvement over a 
conventional ECC it still introduces the ECC logic (see the 1’s 
count in Figs. 6.e-f) in the critical path of the hit/miss 
definition. In this section, we propose to use the SRAM-RTD 
design (Section III), to protect effectively a tag array against 
errors while speeding up its access time as compared to the 
fast-tag hit ECC. We refer to this new design as fast-tag hit 
RTD. 

Fig. 7 illustrates how to use an RTD-SRAM to provide a 
tag array with a novel single-bit error correction capability. 
The figure shows the flow during a cache lookup. To keep the 
explanation brief, we assume at most a single bit error in a 
column at any given time (we discuss subsequently the case 
with multiple column errors).  

The proposed scheme does a bitwise comparison of 
codewords (as in the fast-tag hit ECC Figs. 6.e-f) but it only 
uses a single parity bit to protect each tag instead of several 
bits needed by a conventional ECC code to provide single bit 
correction (e.g., SECDED requires 7 check bits for a 31-bit 
tag). Single bit correction is realized by leveraging the SRAM-
RTD built-in RTCP. Specifically, on a read cycle we use the 
bitwise-XOR of the RTCP and the array ECP (the result of 
this operation is referred to as read-error-vector (REV)). The 
REV indicates which columns contain an error and it is 
bitwised-OR with the result of the bitwise-comparison. More 
specifically: 

 If no column contains an error (all REV bits are zero) then 
the comparison result is used as is for hit/miss definition.  

 If there is a single column with error, that column’s 
comparison result is excluded (by forcing it to indicate 
match) and the hit/miss definition is determined by the 
remaining comparison bits. This is correct, because a 1-bit 
parity is a minimum HD 2 and when excluding (erasing) a 
bit from the comparison, two different codewords, with no 
errors in their remaining bits, are guaranteed to have at 
least HD 1 and, thus, cannot match.  

 When the number of columns with errors are more than 
one a DUE is signaled by the decoder (denoted as D in Fig. 
7, a table defines its behavior) because there is a chance 
for a false-hit. Erasing two or more bits in a codeword with 
minimum HD two allows two different tags to match. 

A subtle but important difference of the tag RTD design in 
Fig. 7 versus the RTD design for data in Fig. 1, is that for tags 
we do not need to check whether the accessed Tag has an error 
but only whether any column in the array has an error. This 
helps simplify the RTD tag design and remove one of the 
checkers (C1) found in Fig. 1. This, also, reduces both the 
delay and area as well as the decoder energy which becomes 
independent of the lookup set.   
      In the case of a cache replacement, the ECP needs to be 
updated (as in Fig. 1). This update requires the previous tag 
(PD) of the line that gets replaced. This tag can be stored 
during the lookup, that turned out to be a miss, by using the 
replacement policy at that time to determine which way will 
get replaced. Therefore, no extra read is needed by Fast-Tag 
Hit RTD to obtain the PD. 

The decoder circuitry (not shown due to space limitations) 
uses a 1’s count function [8] to determine whether there are 
0,1, or >1 columns with errors (number of bits set in REV). 
This circuitry’s output is not in the critical path of the hit/miss 
definition because it only matters in the case of a DUE 
(Detected Unrecoverable Error). That is to say, it is acceptable 
to have speculative hit/miss definition that may turn out to be 
a DUE [8]. This does not compromise functionality as long as 
the >1 error signal is resolved before forwarding a wrong but 
valid line. In general, such time windows exist in caches 
because additional time after the hit definition is needed either 
to multiplex the data of a selected way or to access the selected 
way. We illustrate how Fast-Tag Hit RTD provides correct 
hit/miss definition in the presence of errors in Figs. 6.i-j. 

A. Multiple Errors   

The Fast-Tag Hit RTD can be augmented to handle cases 
with multiple columns with error and multiple errors in a 
column using horizontal and vertical logical interleaving [12] 
[10][3]. For example, two-way horizontal interleaving uses 
two parity bits per tag to protect with separate parity the even 
and odd bit positions. This way a horizontal burst of two 
horizontal will belong to different codewords and can be 
corrected. We do not discuss interleaving issues further due to 
space limitations. 

B. Performance comparison fast-tag hit RTD vs ECC  

Fig. 8 compares the tag-array access time of Fast-Tag Hit 
SECDED [8] vs Fast-Tag Hit RTD (this proposal). In 
particular, we analyzed four configurations of the tag array 
described as (#tag bits, #ECC bits): 4-4, 11-5, 26-6 and 31-7. 
Note that in RTD, just one parity bit is needed for ECC; 
whereas SECDED needs the number listed. Unless indicated 
otherwise all configurations are 1-way associative. 

The measured delay includes the address decoder, the 
SRAM array access plus the error detection and correction 
mechanisms particular to each proposal. As previously 
described in the beginning of Section VI, both mechanisms 

  

       
Fig. 7: Fast-Tag Hit RTD 
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have comparable detection and correction capabilities. In 
other words, both mechanisms can correct single-bit errors 
and detect two-bit error when the errors are in a single tag. 

RTD clearly reduces the access time over ECC. Delay 
reduction is between 5% and 18%. Despite RTDs initial 
increase of the read access time (see Fig. 4), when we consider 
the error detection and correction circuitry, RTD is much 
faster than the SECDED version of Fast-Tag Hit. RTD’s 
advantage reduces as the number of rows increases. This is 
caused by the higher SRAM array access time over the 
baseline (without RTD, the one used by the SECDED version) 
as seen in Fig. 4. 

Finally, the different configurations offer similar savings 
for a given number of rows (within 4%). The minor 
differences are caused by the different gate types and number 
(depth) used for SECDED and RTD detection and correction. 

Fig. 9 shows the read energy reduction of Fast-Tag RTD 
when compared to the SECDED version. Energy reduction is 
between 18 and 40% depending on the number of rows and 
the protection level. Energy and area wise, SECDED 
computation requires a large amount of power and gates. By 
replacing it with parity, we remove a lot of gates; and hence 
reduce energy. On top of that, parity needs just one extra bit 
stored, whereas SECDED ranges between 4 and 7 in the 
configurations analyzed. Write operations achieve almost 
identical savings as they also benefit from the smaller number 
of gates and storage.  

Fig. 10 shows the area comparison for the arrays analyzed 
following the methodology in [3]. While RTD can save a 
significant amount of area (~30%) for small highly protected 
arrays (i.e., an 8-row 31-7configuration), the benefits 
disappear as arrays become bigger. The area cost of the extra 
(pass-gate based) XOR for each SRAM cell dominates the 
reduction in the SECDED computation and Tag hit-miss 
logic. 

When considering caches with multiple ways, access and 
energy benefits stay similar (as the detection and correction 
logic is replicated) but area benefits are reduced heavily. For 
instance, for a 128 row 4-4 configuration, 4-way provides a 
7% area reduction but 8-way provides none and 16-way 
suffers a 4% area increase (data not shown in a figure due to 
space limitations). 

VII. CONCLUSIONS 

This work shows how to provide a built-in RTD 
functionality in an SRAM array that enables to track in real 
time the parity of the cells in each array column. An analysis 
of an optimized RTD-SRAM design shows that the use of a 
tree reduction for the RTCP calculation results in minimal 
impact on read and write access delay. The proposed RTD-
SRAM is then applied to a tag array for error protection by 
using the RTCP to perform error erasure. The proposed Fast-

Tag Hit RTD is compared against a state of the art Fast-Tag 
Hit ECC and shown to provide faster latency, lower energy 
and lower or similar area while having a comparable error 
protection. 
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Fig. 9 RTD vs SECDED Fast-Tag Hit array average read energy reduction. 

 

       
Fig. 10: RTD vs SECDED Fast-Tag Hit array area reduction (negative 

numbers mean area increase). 
 


