
Understanding Power Consumption and Reliability
of High-Bandwidth Memory with Voltage Underscaling

Seyed Saber Nabavi Larimi1,2 Behzad Salami1,5 Osman S. Unsal1

Adrián Cristal Kestelman1,2,3 Hamid Sarbazi-Azad4 Onur Mutlu5

1BSC 2UPC 3CSIC-IIIA 4SUT and IPM 5ETH Zürich

Abstract—Modern computing devices employ High-Bandwidth
Memory (HBM) to meet their memory bandwidth requirements. An
HBM-enabled device consists of multiple DRAM layers stacked on top
of one another next to a compute chip (e.g. CPU, GPU, and FPGA)
in the same package. Although such HBM structures provide high
bandwidth at a small form factor, the stacked memory layers consume
a substantial portion of the package’s power budget. Therefore,
power-saving techniques that preserve the performance of HBM are
desirable. Undervolting is one such technique: it reduces the supply
voltage to decrease power consumption without reducing the device’s
operating frequency to avoid performance loss. Undervolting takes
advantage of voltage guardbands put in place by manufacturers to
ensure correct operation under all environmental conditions. However,
reducing voltage without changing frequency can lead to reliability
issues manifested as unwanted bit flips.

In this paper, we provide the first experimental study of real HBM
chips under reduced-voltage conditions. We show that the guardband
regions for our HBM chips constitute 19% of the nominal voltage.
Pushing the supply voltage down within the guardband region reduces
power consumption by a factor of 1.5X for all bandwidth utilization
rates. Pushing the voltage down further by 11% leads to a total of
2.3X power savings at the cost of unwanted bit flips. We explore
and characterize the rate and types of these reduced-voltage-induced
bit flips and present a fault map that enables the possibility of a
three-factor trade-off among power, memory capacity, and fault rate.

Index Terms—High-Bandwidth Memory, Power Consumption,
Voltage Scaling, Fault Characterization, Reliability.

I. INTRODUCTION

Dynamic Random Access Memory (DRAM) is the predominant
main memory technology used in traditional computing systems.
With the significant growth in the computational capacity of
modern systems, DRAM has become a power/performance/energy
bottleneck, especially for data-intensive applications [12, 15, 37, 38,
39]. There are two approaches to alleviate this issue: (i) replacing
DRAM with emerging technologies (e.g., Magnetic Memory
(MRAM) [24, 40] and Phase-Change Memory (PCM) [25, 46, 47])
and (ii) improving DRAM design (e.g., Reduced Latency DRAM
(RLDRAM) [52], Graphics DDR (GDDR) [18], and Low-Power
DDR (LPDDR) [33]). To the latter end, High-Bandwidth Memory
(HBM) [26, 27] has been developed to bridge the bandwidth gap
of computing devices and DRAM-based main memory.

An HBM-enabled device consists of multiple DRAM layers
stacked and placed next to computing elements, all integrated in
the same package. Higher bandwidth, lower power consumption,
and smaller form factor are the advantages of such integration.
Therefore, despite being a relatively new technology, HBM has
found its way into high-end devices such as NVIDIA A100 [41],
Xilinx Virtex Ultrascale+ HBM family [66], and AMD Radeon
Pro family [48], and into some of the world’s fastest computing
systems such as the Summit supercomputer [21]. However, being

placed inside the same package with computing devices means that
HBM consumes a portion of the package’s overall power budget,
limiting the power available for computing devices. Since HBM
targets high-performance applications, any power saving technique
with bandwidth overhead is undesirable. Therefore, there is a need
for methods that save power without reducing the bandwidth.

Undervolting, also called voltage underscaling, lowers supply
voltage without decreasing operating frequency, thereby saving
power without affecting performance. In real devices, undervolting
is effective because manufacturers conservatively specify a higher
supply voltage for the operation of a device than the minimum
necessary supply voltage for correct operation. The difference
between the default supply voltage and this minimum supply voltage
is called “guardband”. Guardbands are put in place to ensure correct
and consistent operation under all possible (including worst-case)
operating conditions. Pushing the supply voltage down in the
guardband region reduces power consumption.

We obtain 1.5X power savings in real HBM chips under all
bandwidth utilization rates by reducing the supply voltage from
the nominal 1.2V down to 0.98V, safely without any faults under
common operating conditions. Pushing the supply voltage further
down to 0.85V, results in an overall 2.3X power savings. However,
at voltages below the guardband region, device components start
experiencing timing violations, causing unwanted bit flips. In our
experiments, first bit flips occur at 0.97V. From 0.97V to 0.84V, the
number of faults increases exponentially until almost all bits are faulty.
Between 0.84V and 0.81V, all bits become faulty, while using volt-
ages lower than 0.81V result in the failure of entire HBM chips. To
save power with undervolting, we need to understand the occurrence
rate of faults at each voltage level, if and how faults are clustered and
how far we can lower the supply voltage below the guardband region.

Undervolting has been experimentally studied on CPUs [2, 43,
51, 71], GPUs [28, 29, 30, 70] and FPGAs [54, 56, 60], as well as
DRAMs [12, 13, 14, 19], SRAMs [67, 68], and NAND flash memo-
ries [4, 5, 6, 7, 8, 9, 10, 36]. Our work is the first experimental study
of undervolting HBM chips. Our main contributions are as follows:

• We empirically measure a 19% voltage guardband in HBM
chips. We show that undervolting within the guardband region
reduces HBM power consumption by a factor of 1.5X.

• We empirically examine undervolting below the guardband
region in HBM chips and demonstrate a total of 2.3X power
savings at the cost of some unwanted bit flips.

• We provide the first experimental fault characterization study
of HBM undervolting below the guardband region. We find
that (i) HBM channels behave differently from each other with
voltage underscaling due to process variation, and (ii) most

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution 
to servers or lists, or reuse of any copyrighted component of this work in other works. https://doi.org/10.23919/DATE51398.2021.9474024



faults are clustered together in small regions of HBM layers.
• We provide a fault map that enables the user to perform a

three-factor trade-off among power, fault-rate, and usable
memory space. For instance, 2.3X power savings is possible by
sacrificing some memory space while the remaining memory
space can work with 0% to 50% fault rate.

II. EXPERIMENTAL METHODOLOGY

A. Background on HBM

Fig. 1(a) shows the general organization of an HBM-enabled
device where several DRAM chips (and an optional IO/controller
chip) are piled and interconnected by Through Silicon Vias (TSVs)
[27]. An efficient way to utilize an HBM stack is to place it on a
silicon interposer next to computing chips (e.g., FPGA, GPU, or
CPU) inside the same package [20]. Signals between HBM stack
and computing chips go through the underlying silicon interposer.
As a result, there can be far more data lanes in an HBM channel
(1024 per HBM stack) than a regular 64-bit DRAM channel, while
each HBM channel is more efficient. Therefore, HBM provides at
least an order of magnitude higher bandwidth than DDRx DRAM
[15] at a lower power consumption (nearly 7pJ/bit as opposed to
25pJ/bit for a DDRx DRAM) with a smaller form factor [65].

B. Testing Platform

The hardware platform we use in our experiments consists of a
Xilinx VCU128 board [62] mounted with an XCVU37P FPGA. This
FPGA includes two HBM stacks of 4GB each (HBM0 and HBM1).
Each stack has four DRAM chips of 1GB capacity each. Fig. 1(b)
shows a general overview of the underlying HBM memory. The
FPGA fabric is divided into three Super Logic Regions (SLRs). Each
SLR is a separately fabricated chip with configurable circuitry. SLRs
are interconnected by the same interposer technology connecting
them to the HBM stacks. Both HBM stacks of our setup are
connected to SLR0, as shown in Fig.1(b).

Address space of each HBM stack is divided among 8
independent Memory Channels (MC). Each MC is 128b wide and
works independently on a 512MB memory assigned to it. Address
space of each channel is divided between two 64b Pseudo-Channels
(PCs). These two PCs share clock and command signals but have
separate data buses. Each PC independently interprets commands
and works with its own non-overlapping 256MB memory array
portion. Therefore, at memory side, there are a total of 32 PCs, 64b
wide each. At user side, Xilinx’s HBM IP core provides 32 AXI
ports (16 per HBM stack). Each AXI port corresponds to one PC.
However, if the switching network is enabled, any packet from an

Fig. 1. (a) General structure of an HBM-enabled device. (b) HBM interface and
internal organization of XCVU37P, adapted from [62].

AXI port can be routed to any PC at the cost of extra delay and
lower bandwidth. An AXI port is 256b wide, which provides a 4:1
data width ratio over a PC (with 64b width). As a result, an AXI
port can operate at a clock frequency that is a quarter of the memory
data transfer rate (1:4 ratio) and yet take advantage of the maximum
HBM bandwidth provided by PCs [65]. The maximum clock
frequency allowed for memory arrays in our device is 900MHz, and
being a double data rate memory, it translates to a maximum data
transfer rate of 1800 Mega-Transfers per second (MT/s).

In this work, we tune the supply voltage of our HBM stacks by ac-
cessing voltage regulators on the VCU128 board. One of these regula-
tors, ISL68301, is a Power Management Bus (PMBus) [45] compliant
driver from Intersil Corporation in charge of supplying power to our
HBM stacks. We implemented a customized interface on the host to
control this regulator and measure power, voltage and current during
our experiments. We also implement controllers for the two HBM
stacks. Each controller includes 16 AXI Traffic Generators (TG),
one for each AXI port in that stack. The controller is in charge of
configuring each TG, sending macro commands, receiving responses,
checking status, and reporting statistics back to the host. Each TG is
capable of running customized macro commands that we later use to
implement our test routines. We collect power measurements from
a Texas Instruments INA226 chip placed on VCU128 board.

C. Experiments

We conduct experiments to measure (i) the power we can save
with undervolting and (ii) the fault rate of our HBM devices when
we reduce the voltage below the nominal value. The methodology
we used for our experiments, considers the following points:

• Since we focus on HBM stacks and not FPGA fabric, we
disable the switching network. This removes any impact the
switching network might have on the results.

• We follow a statistical method to determine the number of
runs based on error and confidence margin [31]. We run each
test 130 times, which gives us a 7% error margin with 90%
confidence interval.

• HBM bandwidth is much larger than the communication speed
between the FPGA and host CPU. As a result, we focus on
measuring simple statistics on the FPGA itself and then report
those raw numbers back to the host for further analysis.

• The operating temperature of HBM stacks was 35 ±1°C during
our experiments.

We conduct the following power and reliability experiments:
1) Power Measurement Tests: We measure the power

consumption of HBM stacks at different bandwidth utilization rates
while underscaling their supply voltage. We reach nearly 310GB/sec
when accessing the memory by enabling all 32 AXI ports at the
same time and running them at maximum frequency.1 We then
progressively disable AXI ports to reduce bandwidth. We do this
since some AXI ports (and their corresponding PCs) that map to the
more vulnerable HBM memory blocks are more sensitive to faults
induced by undervolting than others. Therefore, disabling those

1The combined peak theoretical bandwidth of HBM stacks in VCU128 is
429GB/sec [62]. For the experiments discussed in this paper, we reach the throughput
of 310GB/sec. However, we believe that with more engineering effort, the peak
performance is also achievable. The power savings obtained via undervolting is
achievable for any bandwidth utilization rate, as discussed in Section III.



ports is an effective technique to decrease the impact of undervolting
faults and further reduce the supply voltage. Section III-B discusses
variability across different ports in more details.

2) Reliability Assessment: The fault characterization test we
conduct writes data into the undervolted HBM sequentially and
then reads it back to check for any faults. Algorithm 1 shows the
pseudo-code of the reliability tester to extract faultCount. We
change the HBM’s supply voltage (i.e., VCC HBM) from 1.2V
(the nominal voltage level, i.e., Vnom) to 0.81V (minimum voltage
possible for memory operation, i.e., Vcritical), with 10mV step size.
We experimentally set the batchSize, the number of times we repeat
each test to ensure consistent results, to 130. memSize is the size of
the memory divided by 256b (i.e., width of an AXI port). By setting
dataPattern to all 1’s or all 0’s, we can check for 1-to-0 or 0-to-1
bit flips, respectively. dataWidth is 256b since each AXI port is 256b
wide. Depending on the type of the test, memSize takes different
values, i.e., 256M or 8M for testing the entire HBM or a single
Pseudo Channel (PC), respectively.

Algorithm 1: Reliability assessment via sequential access
Input: batchSize: 130
dataPattern: all 1’s & all 0’s
dataWidth: 256 (b)
memSize: 256M (testing entire HBM) & 8M (testing one PC)
Output: faultCount (at each voltage level)
for voltage := Vnom downto Vcritical in 10mV steps do

VCC HBM := voltage;
for b := 0 to batchSize-1 do

reset axi ports();
for address := 0 to memSize-1 do

writeHBM(address, dataPattern);

faultCount := 0;
for address := 0 to memSize-1 do

data := readHBM(address);
for i := 0 to dataWidth-1 do

if (data[i] != dataPattern[i]) then
faultCount += 1;

return faultCount;

III. RESULTS

A. Power Analysis
We divide the total power consumption of an HBM chip into

active and idle portions.
1) Active Power: Active power consumption of a DRAM chip

is proportional to the square of supply voltage (Vdd), as shown in
Equation (1) [11]. In this equation, CL is the active load capacitance,
f is operating frequency, andα is the activity factor which determines
the average charge/discharge rate of the capacitor. Thus, with under-
volting, we expect a quadratic reduction in active power consumption.

P=α×CL×f×V 2
dd (1)

Our empirical results shown in Fig. 2 comply with expectations.
Fig. 2 shows the power consumption of HBM chips at representative
bandwidth utilization rates (in 25% increments).

Working within the guardband region (1.20V-0.98V), provides
1.5X power savings while pushing the supply voltage further down to
0.85V results in a total of 2.3X savings compared to default voltage
1.2V. In both cases (within or below the guardband region), the
amount of power savings is independent of the bandwidth utilization
because undervolting does not affect the memory bandwidth.
Therefore, we can save the memory power by undervolting no matter
what the memory bandwidth demand is.

Fig. 2. HBM power saving by undervolting. We normalize all power measurements to
the power consumption at 1.2V with maximum bandwidth utilization (i.e., 310GB/s).
Voltage step size is 10mV in our experiments, but the figure displays only the 50mV
steps for better visibility.

On the other hand, looking at Equation (1), if we divide our power
measurement results by V 2

dd, we are left with raw values forα×CL×
f . The unit for these values is farads per second, which indicates how
much capacitance is being actively charged/discharged every second.
f is constant since the clock frequency of HBM memory, and the
sequence that we run these tests are always fixed. α×CL, on the
other hand, depends on the memory bandwidth utilization rate, which
we expect to remain fixed when working at a fixed bandwidth (i.e.,
same number of PCs). As a result, we expect values for α×CL×f
to remain the same throughout our experiments. However, through
undervolting, we observe that HBM chips’ fidelity starts to degrade.
This is because at voltages lower than 0.98V (i.e., below the guard-
band region), some bits remain always stuck at 0 or 1. Since memory
operations cannot charge or discharge these faulty bits anymore, such
bits do not contribute to the overall active capacitance, resulting in a
drop in α. We show this behavior in Fig. 3: for supply voltages above
0.98V, α×CL×f remains within 3% of what we expect. However,
below 0.98V, it starts dropping and at 0.85V it reaches 14% lower
than the maximum active capacitance (at nominal voltage). In other
words, undervolting below the guardband region leads to a lower
active capacitance, as shown in Fig. 3. This is due to the exponential
increase of fault rate in HBM memory, as discussed in Section III-B.

2) Idle Power: To evaluate idle power savings, we measure the
power consumption of HBM when bandwidth utilization is zero. We
find that even when HBM is idle, it consumes nearly one-third of
the power it consumes at full load with 100% bandwidth utilization,
limiting the maximum amount of power we can save. As seen in
Fig. 2, idle power gradually reduces with undervolting.

B. Reliability Analysis

1) Overall Analysis: Fig. 4 shows the behavior of each HBM
stack with undervolting. We observe the followings:



Fig. 3. Normalized α×CL×f . For each bandwidth, we normalize all values to
α×CL×f of that bandwidth at 1.2V to rule out the effect of bandwidth on load
capacitance. Below the guardband region, the active capacitance is lower than our
expectation due to some bits remained stuck at 0 or 1, resulting in additional power
gain. Voltage step size is 10mV in our experiments, but the figure displays only the
50mV steps for better visibility.

• Guardband Region: Starting from the nominal voltage
(Vnom=1.2V) down to the minimum safe voltage
(Vmin=0.98V), we observe no memory faults. This guardband
region is safe for all operations and workloads. An application
that cannot tolerate any fault in memory has to work in this
region.

• Unsafe Region: Faults occur in voltages below Vmin. Any
application that uses HBM with supply voltages in the unsafe
region needs to take the impact of such faults into account
to ensure correct operation. Reducing the voltage introduces
new faults with an exponentially growing trend until about
0.84V, where all memory bits experience 0-to-1 or 1-to-0 bit
flips. Other works have reported similar exponential growth
of faults with undervolting on regular DDRx DRAM chips
[12]. Below 0.84V down to the minimum working voltage
(Vcritical=0.81V), the entire HBM parts become faulty.

• In our tests, HBM crashes (i.e., stops responding) at voltages
below Vcritical. Even restoring the supply voltage does not
re-enable operation, and a power-down and restart is required.

2) Detailed Analysis of Fault Rate Variation: Fig. 5 shows the
fault rate for each HBM chip, each AXI port (and its corresponding
PC), and each data pattern at supply voltage levels below Vmin.
Due to process variation and noise in memory, we observe three
categories of fault rate/type variation:

Fig. 4. Fraction of faulty portion in each HBM stack at different supply voltages.

• Variation Across HBM Chips: In the unsafe voltage range
(i.e., between Vmin and Vcritical), HBM0 has lower fault rate
than HBM1 (13% on average). However, both stacks have the
same Vmin and Vcritical.

• Variation Across PCs: Some PCs are more sensitive to
undervolting than others (e.g., PC4 and PC5 of HBM0 and
PC18, PC19, and PC20 of HBM1). These PCs experience a
higher rate of bit flips when we reduce the voltage below Vmin.

• Data Pattern Variation: The first 1-to-0 and 0-to-1 bit flips
start at 0.97V and 0.96V, respectively. The average rate of
0-to-1 bit flips is 21% higher than that of 1-to-0 bit flips.

C. User- and Application-Level Implications

Applications that are intrinsically resilient to faults can save more
power than others by taking advantage of aggressive undervolting
even below the guardband region. To effectively achieve this benefit,
application developers need practical information about the effects
of undervolting. To this end, we present a three-factor trade-off
among power, fault rate, and available memory capacity that
helps application developers determine how much power can be
saved and what the associated costs are.

An HBM chip has multiple independently-controllable PCs (32 in
our case). We utilize this inherent independence to provide practical
information about how many PCs an application can use based on
its tolerable fault rate, as shown in Fig. 6. For example:

• Those applications that cannot tolerate any faults (e.g., [35, 55,
59]) and need the entire 8GB of HBM are restricted to work
only in the guardband region, which starts at Vnom=1.2V and
ends at Vmin=0.98V. This region offers a fixed 1.5X power
savings without any trade-off option.

• Below Vmin, a triple-factor trade-off is at the user’s disposal.
For example, up to 1.6X power savings is achievable for an
application that cannot tolerate any faults but can work with
smaller memory capacity, by using only 7 fault-free PCs
operating at 0.95V.

• Applications that can tolerate a non-zero fault rate (e.g., [22,
23, 34, 54]) allow more room for trade-offs. For example, an
application that can tolerate a 0.0001% fault rate and requires
only half of the total memory capacity can push the voltage
down to 0.90V and save power by a factor of about 1.8X.

IV. RELATED WORK

To our best knowledge, this paper presents the first experimental
study of undervolting in real High-Bandwidth Memory (HBM) chips.
Below, we briefly cover closely-related work on reduced-voltage
operation in other computing and memory devices.

• General-Purpose Processors: Papadimitriou et al. explore
undervolting for multi-core ARM processors [42, 43]. They
show up to 38.8% power reduction at the cost of up to 25%
performance loss. Similar undervolting studies are conducted
for other types of processors [2, 3, 50, 51, 71].

• Hardware Accelerators: Undervolting in FPGAs has recently
been studied [17, 53, 54, 56, 57, 58, 60]. These studies focus
on undervolting multiple components of FPGAs (e.g., Block
RAMs (BRAMs) and internal components). Undervolting in



Fig. 5. Percentage (%) of memory cells that are faulty for each AXI port (and its corresponding PC) at different supply voltages. The left and right halves refer to HBM0
and HBM1 chips. (Values less than 1% are rounded to 0%. “NF” means that “No Fault” is observed.)

GPUs is also studied with detailed analysis of power saving,
voltage guardbands, and reliability costs [28, 29, 30, 70].

• Memory Chips: Koppula et al. [23] propose a DRAM
undervolting and latency reduction framework for neural
networks that improves energy efficiency and performance of
such networks by 37% and 8%, respectively. Chang et al. [12]
study the impact of undervolting on the reliability and energy
consumption of DRAM by characterizing faults in real DRAM
chips and provide techniques to mitigate undervolting-induced
faults. Earlier works study undervolting in main memory
systems [13, 14], but do not analyze faults due to undervolting.

Fig. 6. Number of PCs (out of 32) that can be used under different tolerable fault
rates with respect to the supply voltage level of the HBM memory. Higher numbers
mean higher memory capacity and bandwidth available for applications.

Ghose et al. [16] study power consumption in modern DRAM
chips. Luo et al. [34] show that unreliable DRAM chips can be
used in real applications to enhance the cost of scaling the main
memory system. Undervolting is also studied for other memory
types like SRAM [67, 68] and flash [4, 5, 6, 7, 8, 9, 10, 36].

In addition to real chips, undervolting is studied at the simulation-
level, e.g., for CPUs [44, 61], FPGAs [32], ASICs [49, 69], and
SRAMs [1, 63, 64].

V. CONCLUSION

We reported the first undervolting study of real High-Bandwidth
Memory (HBM) chips. We demonstrated 1.5X to 2.3X power
savings for such chips via voltage underscaling below the nominal
level. We measured a voltage guardband of 19% of the nominal
voltage, and showed that eliminating it results in 1.5X power savings.
We discussed that further undervolting below the guardband region
provides more power savings, at the cost of unwanted bit flips in
HBM cells. We explored and characterized the behavior of these
bit flips (e.g., rate, type, and variation across memory channels) and
presented a fault map that enables the possibility of a three-factor
trade-off between power, memory capacity, and fault rate. We
conclude that undervolting for High-Bandwidth Memory chips is
very promising for future systems.

ACKNOWLEDGMENTS

The research leading to these results has received funding from
the European Union’s Horizon 2020 Programme under the LEGaTO
Project (www.legato-project.eu), grant agreement No. 780681. This
work has received financial support, in part, from Tetramax for the
LV-EmbeDL project. This work is supported in part by funding from
SRC and gifts from Intel, Microsoft and VMware to Onur Mutlu.



REFERENCES
[1] A. Alameldeen et al. “Energy-Efficient Cache Design Using Variable-

Strength Error-Correcting Codes”. In ISCA. 2011.
[2] A. Bacha et al. “Dynamic Reduction of Voltage Margins by Leveraging

On-Chip ECC in Itanium II Processors”. In ISCA. 2013.
[3] R. Bertran et al. “Voltage Noise in Multi-Core Processors: Empirical

Characterization and Optimization Opportunities”. In MICRO. 2014.
[4] Y. Cai et al. “Error Analysis and Retention-Aware Error Management

for NAND Flash Memory”. In Intel Technology Journal (ITJ). 2013.
[5] Y. Cai et al. “Error Characterization, Mitigation, and Recovery in Flash-

Memory-based Solid-State Drives”. In Proc. IEEE. 2017.
[6] Y. Cai et al. “Error Patterns in MLC NAND Flash Memory: Measure-

ment, Characterization, and Analysis”. In DATE. 2012.
[7] Y. Cai et al. “Read Disturb Errors in MLC NAND Flash Memory:

Characterization, Mitigation, and Recovery”. In DSN. 2015.
[8] Y. Cai et al. “Reliability Issues in Flash-Memory-Based Solid-

State Drives: Experimental Analysis, Mitigation, Recovery”. In Proc.
Springer, Inside Solid State Drives (SSDs). 2018.

[9] Y. Cai et al. “Threshold Voltage Distribution in MLC NAND Flash
Memory: Characterization, Analysis, and Modeling”. In DATE. 2013.

[10] Y. Cai et al. “Vulnerabilities in MLC NAND Flash Memory Program-
ming: Experimental Analysis, Exploits, and Mitigation Techniques”. In
HPCA. 2017.

[11] “Calculating Memory Power for DDR4 SDRAM”. In Technical Report,
Micron Technology, Inc. 2017.

[12] K. Chang et al. “Understanding Reduced-voltage Operation in Modern
DRAM Devices: Experimental Characterization, Analysis, and Mecha-
nisms”. In POMACS. 2017.

[13] H. David et al. “Memory Power Management via Dynamic Volt-
age/Frequency Scaling”. In ICAC. 2011.

[14] Q. Deng et al. “MemScale: Active Low-power Modes for Main Mem-
ory”. In ASPLOS. 2011.

[15] S. Ghose et al. “Demystifying Complex Workload-DRAM Interactions:
An Experimental Study”. In SIGMETRICS. 2019.

[16] S. Ghose et al. “What Your DRAM Power Models Are Not Telling You:
Lessons from a Detailed Experimental Study”. In SIGMETRICS. 2018.

[17] D. Gizopoulos. “Modern Hardware Margins: CPUs, GPUs, FPGAs
Recent System-Level Studies”. In IOLTS. 2019.

[18] Graphics Double Data Rate 6 (GDDR6) SGDRAM Standard. JEDEC
Solid State Technology Association. 2018.

[19] J. Haj-Yahya et al. “SysScale: Exploiting Multi-Domain Dynamic Volt-
age and Frequency Scaling for Energy-Efficient Mobile Processors”. In
ISCA. 2020.

[20] High-Bandwidth Memory (HBM) DRAM. JEDEC Solid State Technol-
ogy Association. 2020.

[21] J. Hines. “Stepping up to Summit”. In CISE. 2018.
[22] K. Hsieh et al. “Focus: Querying Large Video Datasets with Low

Latency and Low Cost.” In OSDI. 2018.
[23] S. Koppula et al. “EDEN: Enabling Energy-Efficient, High-

Performance Deep Neural Network Inference using Approximate
DRAM”. In MICRO. 2019.

[24] E. Kultursay et al. “Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative”. In ISPASS. 2013.

[25] B. Lee et al. “Architecting Phase-Change Memory as a Scalable DRAM
Alternative”. In ISCA. 2009.

[26] D. Lee et al. “HBM: Memory Solution for Bandwidth-Hungry Proces-
sors”. In HCS. 2014.

[27] D. Lee et al. “Simultaneous Multi-Layer Access: Improving 3D-
Stacked Memory Bandwidth at Low Cost”. In TACO. 2016.

[28] J. Leng et al. “GPU Voltage Noise: Characterization and Hierarchical
Smoothing of Spatial and Temporal Voltage Noise Interference in GPU
Architectures”. In HPCA. 2015.

[29] J. Leng et al. “GPUWattch: Enabling Energy Optimizations in GPG-
PUs”. In ISCA. 2013.

[30] J. Leng et al. “Safe Limits on Voltage Reduction Efficiency in GPUs:
A Direct Measurement Approach”. In MICRO. 2015.

[31] R. Leveugle et al. “Statistical Fault Injection: Quantified Error and
Confidence”. In DATE. 2009.

[32] S. Linda et al. “Fast Voltage Transients on FPGAs: Impact and Mitiga-
tion Strategies”. In FCCM. 2019.

[33] Low-Power Double Data Rate 4 (LPDDR4). JEDEC Solid State Tech-
nology Association. 2020.

[34] Y. Luo et al. “Characterizing Application Memory Error Vulnerability
to Optimize Datacenter Cost via Heterogeneous-Reliability Memory”.
In DSN. 2014.

[35] O. Melikoglu et al. “A Novel FPGA-Based High Throughput Acceler-
ator For Binary Search Trees”. In HPCS. 2019.

[36] R. Micheloni. “Inside Solid State Drives (SSDs)”. In Proc. Springer.

2013.
[37] O. Mutlu et al. “A Modern Primer on Processing in Memory”. In Proc.

Springer. 2021.
[38] O. Mutlu. “Memory Scaling: A Systems Architecture Perspective”. In

IMW. 2013.
[39] O. Mutlu et al. “Research Problems and Opportunities in Memory

Systems”. In SUPERFRI. 2015.
[40] S. Nabavi et al. “Power and Energy Reduction of Racetrack-based

Caches by Exploiting Shared Shift Operations”. In VLSI-SoC. 2016.
[41] NVIDIA A100 Tensor Core GPU: Unprecedented Acceleration at

Every Scale. Nvidia Corporation. 2020.
[42] G. Papadimitriou et al. “Adaptive Voltage/Frequency Scaling and Core

Allocation for Balanced Energy and Performance on Multicore CPUs”.
In HPCA. 2019.

[43] G. Papadimitriou et al. “Harnessing Voltage Margins for Energy-
Efficiency in Multicore CPUs”. In MICRO. 2017.

[44] K. Parasyris et al. “A Framework for Evaluating Software on Reduced
Margins Hardware”. In DSN. 2018.

[45] Power Management Bus (PMBus). URL: https://pmbus.org.
[46] M. Qureshi et al. “Phase-Change Memory: from Devices to Systems”.

In Proc. Morgan & Claypool Publishers. 2011.
[47] M. Qureshi et al. “Scalable High Performance Main Memory System

using Phase-Change Memory Technology”. In ISCA. 2009.
[48] Radeon™ Pro Vega II Graphics — AMD. URL: https://www.amd.com/

en/graphics/workstations-radeon-pro-vega-ii.
[49] B. Reagen et al. “Minerva: Enabling low-power, highly-accurate deep

neural network accelerators”. In ISCA. 2016.
[50] V. Reddi et al. “Voltage Emergency Prediction: Using Signatures to

Reduce Operating Margins”. In HPCA. 2009.
[51] V. Reddi et al. “Voltage Smoothing: Characterizing and Mitigating

Voltage Noise in Production Processors via Software-Guided Thread
Scheduling”. In MICRO. 2010.

[52] RLDRAM Memory. Micron Technology, Inc. 2020. URL: https://www.
micron.com/products/dram/rldram-memory.

[53] B. Salami. “Aggressive Undervolting of FPGAs: Power & Reliability
Trade-offs”. In Ph.D. Dissertation at UPC. 2018.

[54] B. Salami et al. “An Experimental Study of Reduced-Voltage Operation
in Modern FPGAs for Neural Network Acceleration”. In DSN. 2020.

[55] B. Salami et al. “AxleDB: A Novel Programmable Query Processing
Platform on FPGA”. In MICPRO. 2017.

[56] B. Salami et al. “Comprehensive Evaluation of Supply Voltage Under-
scaling in FPGA On-Chip Memories”. In MICRO. 2018.

[57] B. Salami et al. “Evaluating Built-in ECC of FPGA On-Chip Memories
for the Mitigation of Undervolting Faults”. In PDP. 2019.

[58] B. Salami et al. “Fault Characterization through FPGA Undervolting:
Fault Characterization and Mitigation”. In FPL. 2018.

[59] B. Salami et al. “HATCH: Hash Table Caching in Hardware for
Efficient Relational Join on FPGA”. In FCCM. 2015.

[60] B. Salami et al. “On the Resilience of RTL NN Accelerators: Fault
Characterization and Mitigation”. In SBAC-PAD. 2018.

[61] K. Swaminathan et al. “BRAVO: Balanced Reliability-Aware Voltage
Optimization”. In HPCA. 2017.

[62] Virtex UltraScale+ HBM VCU128-ES1 FPGA evaluation kit. Xilinx,
Inc. 2020. URL: https://www.xilinx.com/products/boards-and-kits/
vcu128-es1.html.

[63] C. Wilkerson et al. “Reducing Cache Power with Low-Cost, Multi-Bit
Error-Correcting Codes”. In ISCA. 2010.

[64] C. Wilkerson et al. “Trading off Cache Capacity for Reliability to
Enable Low-Voltage Operation”. In ISCA. 2008.

[65] M. Wissolik et al. “Virtex Ultrascale+ HBM FPGA: a Revolutionary
Increase in Memory Performance (WP485)”. In Technical Report,
Xilinx Inc. 2019.

[66] Xilinx Virtex UltraScale+ HBM. URL: https : / / www . xilinx . com /
products/silicon-devices/fpga/virtex-ultrascale-plus-hbm.html.

[67] L. Yang et al. “Approximate SRAM for Energy-Efficient, Privacy-
Preserving Convolutional Neural Networks”. In ISVLSI. 2017.

[68] L. Yang et al. “SRAM Voltage Scaling for Energy-Efficient Convolu-
tional Neural Networks”. In ISQED. 2017.

[69] J. Zhang et al. “Thundervolt: Enabling Aggressive Voltage Underscal-
ing and Timing Error Resilience for Energy-Efficient Deep Learning
Accelerators”. In DAC. 2018.

[70] A. Zou et al. “Voltage-Stacked GPUs: A Control Theory Driven Cross-
Layer Solution for Practical Voltage Stacking in GPUs”. In MICRO.
2018.

[71] Y. Zu et al. “Adaptive Guardband Scheduling to Improve System-Level
Efficiency of the POWER7+”. In MICRO. 2015.

https://pmbus.org
https://www.amd.com/en/graphics/workstations-radeon-pro-vega-ii
https://www.amd.com/en/graphics/workstations-radeon-pro-vega-ii
https://www.micron.com/products/dram/rldram-memory
https://www.micron.com/products/dram/rldram-memory
https://www.xilinx.com/products/boards-and-kits/vcu128-es1.html
https://www.xilinx.com/products/boards-and-kits/vcu128-es1.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus-hbm.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus-hbm.html

	I Introduction
	II Experimental Methodology
	II-A Background on HBM
	II-B Testing Platform
	II-C Experiments
	II-C1 Power Measurement Tests
	II-C2 Reliability Assessment


	III Results
	III-A Power Analysis
	III-A1 Active Power
	III-A2 Idle Power

	III-B Reliability Analysis
	III-B1 Overall Analysis
	III-B2 Detailed Analysis of Fault Rate Variation

	III-C User- and Application-Level Implications

	IV Related Work
	V Conclusion

