MemPool: A Shared-LL1 Memory Many-Core Cluster
with a Low-Latency Interconnect

Samuel Riedel
ETH Ziirich
Ziirich, Switzerland
sriedel at iis.ee.ethz.ch

Matheus Cavalcante
ETH Ziirich
Ziirich, Switzerland
matheusd ar iis.ee.ethz.ch

Abstract—A key challenge in scaling shared-L.1 multi-core
clusters towards many-core (more than 16 cores) configurations
is to ensure low-latency and efficient access to the L1 memory.

) In this work we demonstrate that it is possible to scale up the
N shared-L.1 architecture: We present MemPool, a 32bit many-
o core system with 256 fast RV32IMA “Snitch” cores featuring
N application-tunable execution units, running at 700 MHz in typical
8 conditions (TT/0.80 V/25°C). MemPool is easy to program, with
all the cores sharing a global view of a large L1 scratchpad
memory pool, accessible within at most 5 cycles. In MemPool’s
physical-aware design, we emphasized the exploration, design, and
optimization of the low-latency processor-to-L1-memory intercon-
nect. We compare three candidate topologies, analyzing them
~'in terms of latency, throughput, and back-end feasibility. The
D: chosen topology keeps the average latency at fewer than 6 cycles,
even for a heavy injected load of 0.33 request/core/cycle. We also
= propose a lightweight addressing scheme that maps each core
8 private data to a memory bank accessible within one cycle, which
L~ Jleads to performance gains of up to 20 % in real-world signal
processing benchmarks. The addressing scheme is also highly
<] efficient in terms of energy consumption since requests to local
banks consume only half of the energy required to access remote
banks. Our design achieves competitive performance with respect
[~ to an ideal, non-implementable full-crossbar baseline.
Index Terms—Many-core; MIMD; Networks-on-Chips.

I. INTRODUCTION

12.029

The failure of Dennard scaling [1] has implied a power wall
(O for computing, limiting processor frequencies [2]. To achieve
(\J high performance under a limited power budget, core count

" scaling has been used instead. Multi-core architectures are
-=— the norm today, allowing for high performance and efficient

computing on a wide range of applications.

B There are many flavors of multi-core architectures. Some
consist of a few general-purpose high-performance cores sharing
a large cache, such as Arm’s Cortex-A77 [3] and Intel’s Core-i9
processors [4]]. Others are highly specialized processor arrays,
usually with a specialized interconnection network adapted to
the intended application domain [5]], such as Google’s Pixel
Visual Core [6], an Image Processing Unit (IPU) with a 2D
mesh network of 256 computing units that communicate with
near-neighbor fixed-size messages.

We focus on a common architectural pattern for building multi-
core architectures, namely a cluster of simple cores sharing L1
memory through a low-latency interconnect [7]. We can find
instances of this architectural pattern across many different

Luca Benini
ETH Ziirich
Ziirich, Switzerland
Universita di Bologna
Bologna, Italy
Ibenini at iis.ee.ethz.ch

Antonio Pullini
GreenWaves Technologies
Grenoble, France
pullinia at iis.ee.ethz.ch

domains, from the streaming processors of Graphics Processing
Units (GPUs) [8]], to the ultra-low-power domain with Green-
Waves’ GAPS8 processor [9]], to high-performance embedded
signal processing with the Kalray processor clusters [10], to
aerospace applications with the Ramon Chips’ RC64 system [11].
However, as we will detail in Section [II} these clusters only
scale to low tens of cores and suffer from long memory access
latency due to the topology of their interconnects.

In this paper, we set out to design and optimize the first scaled-
up many-core system with shared low-latency L1 memory. To
this end, we propose MemPool, a 32 bit RISC-V-based system,
with 256 small cores sharing a large pool of Scratchpad Memory
(SPM). In the absence of contention, all the SPM banks are
accessible within 5 cycles. The contributions of this paper are:

o The physical-aware design of MemPool’s architecture,
with particular emphasis on the exploration, design, and
optimization of a low-latency processor-to-L1-memory
interconnection network (Section [I1I));

o The creation of a lightweight and transparent memory
addressing scheme that keeps the memory region most
often accessed by a core—e.g., the stack—in a memory
bank close by, with minimal access latency (Section [[V);

o The complete physical implementation and performance,
power, and area analysis of a large cluster in an advanced
GLOBALFOUNDRIES 22FDX Fully Depleted Silicon on
Insulator (FD-SOI) technology node (Sections [V] and [VT).

MemPool runs at 700 MHz in typical conditions (480 MHz
in worst-case conditions). The critical path of the design is
dominated by wire delay (37 %), with 27 out of its 36 gates being
either buffers or inverter pairs. Its processor-to-L1 interconnect
has an average latency of fewer than 6 cycles, even for a heavy
injected load of 0.33 request/core/cycle. Our addressing scheme
helps to keep the memory requests in local banks accessible
within one cycle, which leads to performance gains up to 20 %
in real-world benchmarks. This scheme is also highly effective
in terms of energy consumption since local memory requests
consume only half of the energy required for remote memory
accesses. In a nutshell, we demonstrate in this paper that we
can scale the core count of an L1-shared cluster to ten times
more cores than what was previously considered achievable,
with cycle counts on various benchmarks that are comparable
with an ideal, non-implementable full-crossbar baseline.

II. RELATED WORK

In this work, we focus on architectures that feature a cluster
of simple cores sharing low-latency L1 memory [7], which is a
very common architectural pattern. The latest Nvidia Ampere
GPUs, for example, have “streaming multiprocessors” with 32
double-precision floating-point cores each, sharing 192 KiB of
L1 memory [12]]. Similar architectural patterns can also be found
in the embedded and ultra-low-power domain. GreenWaves’
GAPS8 [9] is an Internet-of-Things (IoT) application-class
processor with eight cores sharing 128 KiB of L1 memory. The
Snitch cluster [[13] features a cluster of eight RV32IMA cores
sharing 128 KiB of private SPM accessible within 2 cycles.

It is commonly believed that the number of cores in a single
L1-shared cluster is bound to the low-tens limit. To scale the
core count of many-core systems into the hundreds, memory

sharing is usually done at some high-latency hierarchy level.

Moving to multiple clusters creates challenges in terms of
programmability [|10]: tile-based systems are usually connected
by meshes that have long access latency and usually require

non-uniform memory access (NUMA) models of computation.
An example of multi-cluster design is Kalray’s MPPA-256.

It integrates 256 user cores into 16 clusters. Each MPPA-256
cluster has its own private address space [10], with the clusters
connected by specialized Network-on-Chips (NoCs). Memory
sharing is done at the level of main memory. This design
achieves high efficiency by compromising on memory sharing
between clusters, thus circumventing the need for low-level
cache coherence protocols. Tilera’s TILE-Gx series, on the
other hand, equips each tile processor with an L2 cache, and
inter-tile and main memory communication are provided by five
2D mesh networks [[14]]. Ramon Chips’ RC64 system brings
this design pattern to the harsh aerospace conditions [11]. Its 64
cores have private SPMs, and share access to 4 MiB of on-chip
memory, accessible through a logarithmic network.

Clearly, there is a push toward high core-count many-core
architectures to tackle embarrassingly parallel problems, such
as image processing and machine learning. Google’s Pixel
Visual Core [6], for example, is an IPU with specialized stencil
processors interconnected with a ring network. Within each
stencil processor, an array of 256 lanes communicate through a
rigid read-neighbor network. This design is highly specialized
for systolic algorithms, which can take advantage of data sharing
between neighbors. The rigidity of memory allocation and
the long access latency reduce the applicability of this highly
efficient design to other non-systolic algorithms.

The main novelty of our work is to demonstrate we can
scale up the shared-L1 processor cluster in a region that was
considered to be completely infeasible by all previous related
works, namely hundreds of cores, with extremely competitive
performance and efficiency.

III. ARCHITECTURE

MemPool has a large multi-banked pool of L1 memory, shared
among all the cores. A fully connected non-blocking logarithmic
interconnect between the 256 cores would be infeasible due to
routing congestion and area scaling [15]. In this work, we show

this can be overcome through a hierarchical approach at the
topological and physical level, placing the cores and memory
banks in a regular array connected by low-diameter networks.
The following sections go bottom-up over the main hierarchical
modules that compose MemPool.

A. Interconnect architecture

MemPool has two parallel interconnects, one routing the cores’
requests to the SPM banks, and one routing read responses back.
The basic element of both interconnects is a single-stage m x n
crossbar switch, connecting m masters to n slaves. An optional
elastic buffer can be inserted at each output of the switch,
after address decoding and round-robin arbitration, to break any
combinational paths crossing the switch [|16].

With the access latency constraint in mind, the interconnect
building blocks are kept as streamlined as possible. They do
not provide transaction ordering, with this task offloaded to
the cores. Moreover, since they are used to transmit single-
word-requests from the cores, the network does not use virtual
channels. We use oblivious routing since there is a single
path for each master/slave pair. In terms of network topology,
two-dimensional mesh networks were discarded due to their
bad latency scaling. We also avoided Ogras and Marculescu’s
approach [17]], which optimizes the latency of a mesh network by
iteratively adding long-ranging links to the topology, but requires
an advanced routing algorithm. MemPool uses a combination
of fully-connected crossbars and minimal radix-4 butterfly
networks, whose topology can be seen in Figure

222222 2R R AR RRRE

Layer0 0,0 0,1 0,2 03

Layer 1 1,0 11 1,2 13

VYV YNYVY VYV Y vy

Fig. 1. Topology of a 16 x 16 radix-4 butterfly. The boxes represent the base
routing element, a 4 X 4 logarithmic crossbar switch.

B. Tile

At the base of MemPool’s hierarchy, we have tiles, whose ar-
chitecture can be seen in Figure [2| The tiles are based on Snitch,
a 21 kGE single-issue single-stage RISC-V-based RV32IMA
core [13]], whose small area allows for massive replication.
Snitch supports a configurable number of outstanding load
instructions, which is useful to hide the SPM access latency.

The tile contains 16 memory banks, and each core has a
dedicated port to access them with one cycle latency. The cores
share K master ports to access remote tiles. An address decoder
at the output of the cores statically decides where to send the
cores’ requests. Each tile has K slave request ports, receiving
memory requests from remote tiles. There is a register boundary
at the master request and response ports. Both request and
response interconnects are realized as fully-connected crossbars.
Requests hold metadata to route them back to the correct core
and ensure their proper ordering by the Reorder Buffer (ROB).

Inside each tile, we have a 4-way L1 instruction cache. The
cache has a 32bit Advanced eXtensible Interface (AXI) refill

Memory

Remote Request [Master Request I
Interconnect [KPorts

Request Interconnect

rﬂiﬂ@@iﬂ T

Response Interconnect

¢ Slave Request |
K Ports

[Master Response
K Ports >

Remote Response| o Slave Response
Interconnect |~ KPorts

Memory Response

Fig. 2. Architecture of MemPool tiles, with K request ports and K response
ports to remote tiles.

port. These ports can be connected to a low-overhead refill-
network (e.g., a ring), which is noncritical, and hence it is not
further discussed in this work.

C. MemPool cluster

We evaluated three network topologies for the global inter-
connection network between tiles.

1) Top; — single 64 x 64 radix-4 butterfly: In this configura-
tion, each tile has a single remote port for communication
with remote tiles, i.e., K = 1. A single 64 x 64 radix-4
butterfly network, with a single pipeline stage midway through
its log,(64) = 3 layers, connects the tiles. Therefore, data in any
remote memory bank can be accessed within 5 cycles. Inside
the tile, two 4 x 1 crossbars arbitrate the core requests and the
memory responses. This design creates a bottleneck at the tile
boundary, since the traffic of 4 cores is concentrated through a
single port.

2) Topy — four parallel 64 x 64 radix-4 butterflies: To reduce
the traffic bottleneck at the tile boundary, we evaluated a system
that replicates the global 64 x 64 butterfly interconnect four
times. That is, each tile has four master request and response
ports, each associated with their own 64 x 64 interconnect. Each
master request port is dedicated to a core, i.e., the remote request
interconnect is effectively a point-to-point connection.

3) Topy — hierarchical approach: Both Top; and Tops have
a uniform access pattern, with a 5 cycle access latency between
any two tiles. Hence, requests between two tiles need to cross
the whole interconnect, regardless of how physically close they
are. This leads to decreased efficiency and increased routing
congestion due to longer paths towards the center of the design.
We introduce a new level of hierarchy to maintain the bandwidth
of Top,, while avoiding long detours between neighboring tiles.
Figure [3a] shows a local group of 16 tiles. Cores access remote
memory banks in the same local group within 3 cycles thanks
to the local interconnect, a 16 x 16 fully-connected crossbar.

The MemPool cluster is composed of four local groups, as
shown in Figure Bb] Inside each local group, the north (N),
northeast (NE), and east (E) 16 x 16 radix-4 butterfly networks
are responsible for communication between local groups. Each
tile has corresponding N, NE, and E ports, and a local (L) port
to access tiles within the same local group. A 4 x 4 crossbar
inside each tile routes the requests to the correct port. There

TTiIeSI T Tile33 - TTiIeU '/Tile48

North | [Northeast _
¥ [Tile 62
Hiyg
Tile 63
Hig
__Iﬂe 31
[Taers Group 2 Group 3
- I" '; ! |{[Tile17 Tiles 32-47 !. Tiles 48-63
e Tile16
s L K L

] Group 1
Tile1

i] Group 0 !
Tile5 T

Tile4

Tiles 0-15 Tiles 16-31

(a) Local group. (b) Cluster.

Fig. 3. MemPool’s Topy architecture. Dashed lines indicate a register boundary.

is a register boundary at the local groups’ master interfaces,
increasing the zero-load access latency of a memory bank in a
remote local group to 5 cycles.

IV. HYBRID ADDRESSING SCHEME

MemPool has a sequentially interleaved memory mapping
across all memory banks in order to minimize banking conflicts.
However, this also implies that most memory requests target
remote tiles. Optimally, all cores’ requests would remain in the
local tile, which would lower the latency and power consumption.
With the scrambling logic, visualized in Figure i we transform
an interleaved memory map into a hybrid one, by adding
sequential regions in which contiguous addresses target a single
tile. The top half shows the classical fully interleaved memory
scheme. The address and memory map at the bottom is a hybrid
memory map created by swapping the address bits.

Memory yout: [ifocgs T B

Addressing scheme be_fg{e scrambling Io_g_ic

Address: : :

== mmwmwww RowOffset Tile Offset Bank Offset gf)f,::t
Address: [T —b——2
) Addressing scheme after scrambling logic
oy o GO T B]

Fig. 4. Hybrid addressing scheme via the scrambling logic. The upper and
lower parts show the fully interleaved and the hybrid memory map, respectively.
The outer bars visualize the memory map, with the shades representing different
tiles to which the addresses are mapped. The inner bars are the addresses, with
the scrambling in between leading from one scheme to the other.

With an interleaved memory addressing scheme, the addresses
are interpreted as follows. The first two bits are the byte offset,
after which b bits identify one of the 2° banks of each tile.
The next ¢ bits distinguish between the 2¢ tiles. The remaining
address bits are interpreted as the row offset within each bank.

Consider each tile with a sequential memory region of 2°
bytes, or 2° rows in the tile’s banks. Since the banks inside the
same tile are still accessed interleaved, we leave the byte and
bank offsets untouched. The next s bits represent part of the tile
offset, but we need them to represent the banks’ next row within
the same tile. Therefore, we shift them ¢ bits to the left—where

the row offset starts—and fill them with the ¢ bits we replaced.
This creates 2¢ sequential regions, one for each tile. In total,
we dedicate the first 297 bytes to sequential regions. We leave
the subsequent bytes interleaved by conditionally applying the
scrambling to addresses inside the sequential memory region.
The hybrid addressing scheme’s key benefit is giving the
programmer the additional capability to store private data, such
as a core’s stack, in the same tile. It reduces the number of
transactions between tiles,making better use of the tiles’ fully-
connected, high-throughput crossbar. Sequential memory regions
are prone to banking conflicts. However, by only mapping
private data to the sequential region, the cores’ accesses remain
distributed across all banks. In contrast to aliasing or completely
private memories, we do not complicate programmability but,
by applying the same address transformation for all cores, give
all cores the same memory view and keep the L1 memory
region contiguous and shared. The beneficiary of the sequential
region are programs that make heavy use of the stack or work
mainly on local data. The scrambling logic can be efficiently
implemented in hardware with a wire crossing and a multiplexer.

V. PERFORMANCE ANALYSIS
A. Interconnect architecture

In this section, we analyze the three proposed network
topologies in terms of average latency and throughput, as a
function of the injected load A (measured in requests per core
per cycle). The results were extracted using an extensive cycle-
accurate Register Transfer Level (RTL) simulation. Each core is
replaced by a synthetic traffic generator, which generates new
requests following a Poisson process of rate A. The requests
have a random uniformly distributed destination memory bank.

Figure [5a] shows the different topologies’ throughput, with
an increasing load. At a load of 0.10request/core/cycle, Top;
becomes congested, while Tops and Topy support almost four
times that load, about 0.38 request/core/cycle. Topy’s throughput
is slightly higher than Topy’s, due to its smaller diameter.

0.5 — 20
Top,

0.4 H T()p4 - 16
T

0.3 o | . 12

0.2

0.1

Average latency (cycle)

Throughput (request/core/cycle)

0

0

I S I
0 0.1 020304 0.5

Injected load (request/core/cycle)

I S
0 0.10.20.3 0.4 0.5

Injected load (request/core/cycle)

(a) Throughput. (b) Average latency.

Fig. 5. Network analysis of the three proposed network topologies, in terms of
throughput and average round-trip latency, as a function of the injected load.

As a counterpart to Figure [5a] Figure [5b| shows the average
round-trip latency of the requests for an increasing load. It
elevates the point where the topologies become congested by
showing the explosion of the average latency. The average
latency of Topy only reaches 6 cycles at a network load of

0.33 request/core/cycle. Due to Topy’s three-cycle latency to a
local group, it achieves a smaller average latency than Tops.
Both results imply that the Top,’s traffic concentration at the
tiles’ ports leads to unacceptable performance degradation.

B. Hybrid addressing scheme

To evaluate the performance impact of the hybrid addressing
scheme, we analyze Topy taking the hybrid addressing scheme
into account. The traffic generator creates uniformly-distributed
requests to the local tile’s sequential region with probability
Dlocal, and outside of this region with probability 1 — pjocar-

Figure @] shows the throughput of Topy for different piocar.
It shows a clear trend of an increased throughput for a larger
Plocal- The scrambling logic, or using local memory in general,
can vastly improve the system’s throughput by preventing
the congestion in the global interconnect, besides lowering
the overall average access latency as seen in Figure [6b] An
application making 25 % of its accesses to the stack, mapped
at the sequential region, can gain up to 50 % in performance
by using the scrambling logic, without changing the code.

5 1 20
S ~

3] Q

3 08| . S 16 .
Z 061 1 5 12 |
! 5

g 5

£ 04t - < 8 .
g 2

5 02 - S 4F -
2 z

ﬁ 0 | | |

0 \ \ \ |
0 02040608 1
Injected load (request/core/cycle)

\
0 02040608 1

Injected load (request/core/cycle)

(a) Throughput. (b) Average latency.

Fig. 6. Network analysis of Topy with our hybrid addressing scheme, as a
function of the injected load, for different probabilities of requesting data in
the local tile’s sequential region pjocq)-

C. Benchmarks

In this section, we benchmark MemPool with three real-world
highly-parallelizable signal processing benchmarks’ runtime:

matmul: a matrix multiplication of two 64 x 64 matrices, for
which accesses are predominantly remote;

2dconv: a 2D discrete convolution with a 3 x 3 kernel, for

which all accesses are local, except for cores working on

windows that require data from two tiles;

a 2D discrete cosine transform (DCT) operating on 8 x 8

blocks residing in local memory. It uses the stack to store

intermediate results, i.e., all accesses are local, given the

stack is mapped to local banks.

dct:

We derive our baseline systems from a Snitch cluster [13]],
which we ideally scale up to a cluster of 256 cores connected
to 1024 banks through a fully-connected crossbar. The systems
assume an idealized interconnect with no routing conflicts that
allows all banks to be accessed within one cycle. This idealized
network is physically infeasible due to high routing congestion
with reasonable clock rates. We use two baseline systems, with

(]

Q

:

&

B

a,

o

2

5

I

[a'7

matmul 2dconv dct

B Top, [ETops METopy M Topx
B Top,s M Top,s M Topys M Topxs

Fig. 7. Performance of the three benchmarks on all topologies, relative to the
baselines. Topgs represents the Topg with scrambling logic.

(Topxs) and without (Topyx) scrambling logic, to compare to
the respective Topes and Topy MemPool systems (where Topg
stands for any of the topologies defined in Section [[II-C)).
Figure [7| shows the benchmarks’ performance, normalized by
the performance achieved on the baseline architectures. Topy
generally beats Top,, and they both outperform Top; by a factor
of three in the extreme cases. A big performance difference is
visible in matmul, which has many remote accesses. For dct,
the three topologies with the scrambling logic perform equally
well, as they all operate on data mapped to local banks. Without
the scrambling logic, the stacks become spread over all tiles,
leading to a significant performance penalty, especially for Top;.
Topy performs very close to the baseline for all benchmarks,
with a performance penalty of at most 20 % for matmul due to
its non-local access pattern. The hybrid memory map increases
the locality of the data accesses, improving overall performance.
With dct, we match the baseline since we only do local accesses.

VI. PHYSICAL IMPLEMENTATION

In this section, we analyze the feasibility of MemPool using
the Top;, Top4, and Topy topologies. We also analyze them in
terms of power, performance, and area results.

A. Methodology

MemPool was synthesized for GLOBALFOUNDRIES 22FDX
FD-SOI technology using Synopsys Design Compiler Graphical
2019.12. We used floorplanning information during synthesis
to improve timing correlation with the back-end design. Each
tile has 2 KiB of instruction cache, and 16 KiB of SPM—i.e.,
the MemPool cluster has 1MiB of L1 SPM. The back-end
flow was carried out with Synopsys IC Compiler II 2019.12,
targeting 500 MHz at worst-case conditions (SS/0.72 V/125 °C).
MemPool’s power results were extracted with switching ac-
tivities obtained by simulating the benchmarks on a netlist
back-annotated with post-place-and-route delay information. We
used Synopsys PrimeTime 2019.12 to carry out the sign-off
timing extraction at worst-case conditions and power analysis
at typical conditions (TT/0.80 V/25 °C).

B. Tile implementation

Due to the size and the regularity of MemPool’s design,
we used a hierarchical implementation flow. The tile was

implemented as a square 425 um x 425 um macro (908 kGE).
The most complex tile—i.e., Topy’s tile—is shown in Figure

Fig. 8. Placed and routed Topy tile, as a 425 um X 425 ym macro.

The tile’s critical path (53 gates long) starts at a register after
the instruction cache, passing through the 2nd Snitch core and
the request interconnect, before arriving at a SPM bank. The
tile achieves a utilization of 72.8 %, the area is dominated by
the instruction cache (23.6 %) and by the L1 SPM (40.2 %).

C. MemPool cluster implementation

The MemPool cluster is implemented as a 4.6 mm x 4.6 mm
macro, i.e., 55 % of the design area is covered by the tiles. The
area overhead was driven by congestion, which is the main
constraint of the design, particularly at the center of the design.

Figure Da] shows the placed-and-routed Top; macro. With its
64 x 64 radix-4 butterfly topology, the connection between any
two remote tiles needs to cross the whole network, regardless of
the physical distance between the tiles. Therefore, all wiring and
cells are drawn towards the center of the design, which is heavily
congested. Topy is four times more congested than Top;, which
is enough to make it physically infeasible with reasonable clock
rates. The placed-and-routed Topy macro can be see in Figure [0b}
Similarly to Top;, there is a high cell and wiring density at the
center of the design, due to the connection between the two
diagonally placed groups (Figure [3b). However, unlike Topys,
Topy distributes the cells and the wiring throughout the cluster,
through the use of the directional local group interconnects.

(b) Topy.

Fig. 9. Placed and routed Top; and Topy MemPool clusters, implemented as
4.6 mm X 4.6 mm macros. The dark blue regions are devoid of standard cells.

(a) Top;.

Top4 and Topy achieve much better performance results (in
terms of latency and throughput) than Top;. However, out of
these two high-performance topologies, only Topy is physically

feasible. The Topy MemPool cluster runs at 700 MHz at typical
conditions (480 MHz at worst-case conditions). The critical path
of this design starts at the boundary of one local group, passes
through the center of the cluster and another local group until
reaching the ROB of a Snitch core. Wire propagation delay
accounts for 37 % of the timing of the critical path, and 27 out
of the 36 gates in this path are either buffers or inverter pairs.

D. Power analysis

In this section, we analyze the power and energy consumption
of the Topy MemPool cluster, while running the matmul kernel
at 500 MHz, in typical operating conditions (TT/0.80 V/25 °C).
Each tile consumes, on average, 20.9 mW. The main culprits
are the instruction cache, at 8.3 mW (39.5 % of the tile’s total
power consumption), the Snitch cores, at 5.6 mW (26.6 %), and
the SPM banks, at 2.6 mW (12.6 %). The request and response
interconnects only consume 1.7 mW, less than 10 % of the tile’s
total power consumption. At the top level, MemPool consumes
1.55W, 86 % of which being consumed within the tiles.

Figure [I0] summarizes the energy consumption per instruction
of the Topy tile, for different instructions. Each local load uses
8.4 pJ. About half of this energy consumption, 4.5 pJ, is spent at
the local interconnect. Remote loads use the global interconnect,
which raises their energy consumption to 16.9 pJ. In this case,
the interconnects consume 13.0 pJ, or 2.9 the energy consumed
at the interconnects for a local load.

add @ Core
mul | 7.0p) | [l Interconnect
O Memory banks
local load [20pJ] 45p] [1.8p]]
remote load [2.1pJ] 13.0pJ [1.8pJ]

Fig. 10. Breakdown of Topy’s energy consumption per instruction.

As a comparison with arithmetic instructions, a local load
uses about as much energy as a complex instruction such as mul,
or 2.3x the energy consumed by a simple add. Remote loads
have the highest energy requirements, but even then that is only
4.5x the energy of an add. This result confirms that MemPool
is a balanced design that is not severely interconnect-dominated.

VII. CONCLUSION

In this paper, we presented MemPool, a 32 bit system with
256 ultra-small RV32IMA Snitch cores sharing 1 MiB of L1
SPM. MemPool was implemented in GLOBALFOUNDRIES
22FDX FD-SOI technology, achieving 700 MHz in typical
conditions. MemPool’s architecture was driven by a physical-
aware analysis of three different low-latency processor-to-L1-
memory interconnect topologies. We chose the one that leads to
the best performance results in terms of throughput and average
latency, while also being physically feasible. In the absence of
contention, all SPM banks are accessible within 5 cycles.

We compared MemPool’s performance with a baseline system
that has an idealized crossbar switch. Our system achieves at
least 80 % of the baseline’s performance on real-world signal
processing benchmarks. Our hybrid addressing scheme helps

keep the memory requests in local banks accessible in one cycle,
leading to performance gains up to 20 % in such benchmarks.

Similarly to tile-based systems (which use 2D mesh NoCs),
this scheme provides low-latency access to a memory range.
However, our scheme has two advantages: (a) no aliasing, so that
we can use this local range with more flexibility, and (b) much
lower latency and higher bandwidth for all the global accesses,
which enables us to run “non-systolic” algorithms effectively.
The addressing scheme is also highly efficient in terms of energy
consumption since local memory requests consume only half
of the energy required for remote accesses.

REFERENCES

[1] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.
LeBlanc, “Design of ion-implanted MOSFET’s with very small physical
dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp.
256-268, Oct. 1974.

H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,

“Dark silicon and the end of multicore scaling,” in 2011 38th Annual

International Symposium on Computer Architecture (ISCA), Sep. 2011,

pp. 365-376.

Arm Corp., Arm Cortex-A77 Core, Cambridge, UK, Oct. 2019, revision

ripl.

[4] Intel Corp., “Intel Core i9-10900X X-Series processor,” Oct. 2019.
[Online]. Available: https://www.intel.com/content/www/us/en/products/
processors/core/x-series/i9- 10900x.html

[5S1 G. Blake, R. G. Dreslinski, and T. Mudge, “A survey of multicore

processors,” IEEE Signal Processing Magazine, vol. 26, no. 6, 2009.

J. Redgrave, A. Meixner, N. Goulding-Hotta, A. Vasilyev, and O. Shacham,

“Pixel Visual Core: Google’s fully programmable image, vision and Al

processor for mobile devices,” in 2018 IEEE Hot Chips 30 Symposium

(HC30). Cupertino, US: IEEE Technical Committee on Microprocessors

and Microcomputers, Aug. 2018.

[7]1 H. Ayed, J. Ermont, J.-L. Scharbarg, and C. Fraboul, “Towards a unified

approach for worst-case analysis of Tilera-like and KalRay-like NoC

architectures,” in 2016 IEEE World Conference on Factory Communication

Systems (WFCS), May 2016.

E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla:

A unified graphics and computing architecture,” IEEE Micro, vol. 28,

no. 2, pp. 39-55, Mar. 2008.

[9] GreenWaves Technologies Corp., GAPS Hardware Reference Manual,

Grenoble, FR, Jan. 2019, version 1.5.5. [Online]. Available: https:

/[gwt-website-files.s3.amazonaws.com/gap8_datasheet.pdf

B. D. de Dinechin, P. G. de Massas, G. Lager, C. Léger, B. Orgogozo,

J. Reybert, and T. Strudel, “A distributed run-time environment for the

Kalray MPPA-256 integrated manycore processor,” Procedia Computer

Science, vol. 18, pp. 1654 — 1663, 2013, 2013 International Conference

on Computational Science.

R. Ginosar, P. Aviely, T. Israeli, and H. Meirov, “RC64: High performance

rad-hard manycore,” in 2016 IEEE Aerospace Conference, Mar. 2016.

Nvidia Corp., Nvidia A100 Tensor Core GPU Architecture, 1st ed., 2020.

[Online]. Available: https://www.nvidia.com/content/dam/en-zz/Solutions/

Data-Center/nvidia-ampere- architecture- whitepaper.pdf

F. Zaruba, F. Schuiki, T. Hoefler, and L. Benini. (2020, Feb.) Snitch: A 10

kGE pseudo dual-issue processor for area and energy efficient execution

of floating-point intensive workloads. arXiv:2002.10143v1 [cs.AR].

D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,

M. Mattina, C. Miao, J. F. Brown III, and A. Agarwal, “On-chip

interconnection architecture of the Tile processor,” IEEE Micro, vol. 27,

no. 5, pp. 15-31, Nov. 2007.

G. Michelogiannakis, J. Balfour, and W. J. Dally, “Elastic-buffer flow

control for on-chip networks,” in 2009 IEEE 15th International Symposium

on High Performance Computer Architecture, Feb. 2009, pp. 151-162.

G. Dimitrakopoulos, A. Psarras, and 1. Seitanidis, Microarchitecture of

Network-on-Chip Routers: A Designer’s Perspective. Springer Publishing

Company, 2014.

U. Y. Ogras and R. Marculescu, “‘It’s a small world after all’: NoC perfor-

mance optimization via long-range link insertion,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 14, no. 7, pp. 693-706,

Jul. 2006.

[2

—

3

—

[6

[t}

[8

=

[10]

[11]
[12]

[13]

[14]

[15]

[16]

(171

https://www.intel.com/content/www/us/en/products/processors/core/x-series/i9-10900x.html
https://www.intel.com/content/www/us/en/products/processors/core/x-series/i9-10900x.html
https://gwt-website-files.s3.amazonaws.com/gap8_datasheet.pdf
https://gwt-website-files.s3.amazonaws.com/gap8_datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

	I Introduction
	II Related Work
	III Architecture
	III-A Interconnect architecture
	III-B Tile
	III-C MemPool cluster
	III-C1 Top1 – single 64x64 radix-4 butterfly
	III-C2 Top4 – four parallel 64x64 radix-4 butterflies
	III-C3 TopH – hierarchical approach

	IV Hybrid Addressing Scheme
	V Performance analysis
	V-A Interconnect architecture
	V-B Hybrid addressing scheme
	V-C Benchmarks

	VI Physical implementation
	VI-A Methodology
	VI-B Tile implementation
	VI-C MemPool cluster implementation
	VI-D Power analysis

	VII Conclusion
	References

