
Accepted for publication at the 24th Design Automation and Test in Europe Conference (DATE) 2021. ©2021 IEEE.

Reliability-Aware Quantization for Anti-Aging NPUs

Sami Salamin∗, Georgios Zervakis∗, Ourania Spantidi†,
Iraklis Anagnostopoulos†, Jörg Henkel∗, and Hussam Amrouch‡

∗Chair for Embedded Systems (CES), Karlsruhe Institute of Technology, Karlsruhe, Germany
†Department of Electrical and Computer Engineering, Southern Illinois University, Carbondale, U.S.A.
‡Chair of Semiconductor Test and Reliability (STAR), University of Stuttgart, Stuttgart, Germany

∗{sami.salamin, georgios.zervakis, henkel}@kit.edu, †{ourania.spantidi, iraklis.anagno}@siu.edu, ‡amrouch@iti.uni-stuttgart.de

Abstract

Transistor aging is one of the major concerns that challenges designers in advanced technologies. It profoundly
degrades the reliability of circuits during its lifetime as it slows down transistors resulting in errors due to timing
violations unless large guardbands are included, which leads to considerable performance losses. When it comes to
Neural Processing Units (NPUs), where increasing the inference speed is the primary goal, such performance losses
cannot be tolerated. In this work, we are the first to propose a reliability-aware quantization to eliminate aging effects
in NPUs while completely removing guardbands. Our technique delivers a graceful inference accuracy degradation over
time while compensating for the aging-induced delay increase of the NPU. Our evaluation, over ten state-of-the-art
neural network architectures trained on the ImageNet dataset, demonstrates that for an entire lifetime of 10 years,
the average accuracy loss is merely 3%. In the meantime, our technique achieves 23% higher performance due to the
elimination of the aging guardband.

Keywords— Approximate Computing, Adaptive Approximation, Aging, Neural Networks, Quantization, Reliability

1 Introduction

Late advancements in Neural Networks (NNs) research boosted the accuracy of several machine learning applications, at the cost of
an immense increase in computational demands [1]. However, to achieve that and to bring the inference speed of Deep NNs (DNNs)
to an acceptable level, custom ASIC Neural Processing Units (NPUs) are becoming ubiquitous in general purpose and embedded
computing [1–3]. An NPU consists of thousands of multiply-accumulate (MAC) units [4], which provide massive parallelism
of the performed computations that DNNs demand. Google TPU integrates 64K MACs [1], while even the embedded-oriented
Samsung [3] and Google [2] NPUs employ 1K and 4K MACs, respectively. In NPUs, a large number of MAC units are tightly
packed together within a small footprint. Their inherent nature to simultaneously perform tens of tera operations per second,
makes NPUs subject to elevated on-chip power densities that rapidly result in excessive on-chip temperatures during operation [4].

Circuit Aging: The very high utilization of MAC circuits within NPUs [1,4] exposes the underlying transistors to continuous
stress with very little time for relaxation and recovery. As a result, transistors age faster. In addition, the presence of excessive
temperatures, as mentioned earlier, exacerbates further the problem as the majority of mechanisms behind transistor aging
exponentially depend on the operating temperature [5, 6]. Generated defects, due to transistor aging phenomena such as Bias
Temperature Instability (BTI) and Hot-Carrier Injection (HCI), manifest themselves as a degradation in the main electrical
characteristics of transistors. In practice, the threshold voltage (Vth) increases [6] leading, in turn, to a reduction of the drain
current of a transistor in the ON state (Ion). This considerably increases the propagation delay of the transistor and thus, of
the logic cells (Eq. 1-2 [7]). Hence, circuits exhibit timing errors because the operating frequency becomes unsustainable over
time. To overcome that and keep aging effects at bay for the entire projected lifetime (e.g., 10 years), a timing guardband (tGB)
must be included on top of the critical path delay (Eq. 3) at design time. This leads directly to large losses in performance from
the beginning until the end of lifetime even through aging-induced delay degradations do not yet exist (or are very small) at the
early phases of the chip’s lifetime. Hence, the cost of guardbanding is paid from the very beginning even though it is not yet
needed (Eq. 4). Several approaches have been proposed [8,9] w.r.t. guardband narrowing and aimed at minimizing the associated
performance losses. However, they reduce the aging impact by inducing area/power overhead, through transistor over-sizing [8].

Ion ∝ Vdd − (Vth + ∆Vth) (1)

tCP (fresh) =
∑

mi∈CP
Dmi ; Dmi ≈

CVdd
4

(
1

IonN
+

1

IonP

)
(2)

tfreq(x) < tCP (fresh) + tGB(y), x 6 y ⇒ timing errors ! (3)

tfreq(x) > tCP (fresh) + tGB(y), x < y ⇒ Perf. loss ! (4)

ar
X

iv
:2

10
3.

04
81

2v
1

 [
cs

.A
R

]
 8

 M
ar

 2
02

1

0

350

700

1050

1400

0 10 20 30 40 50
10−5

10−4

10−3

10−2

10−1

(a)

(fresh) (10 Years)

0

0.2

0.4

0.6

0.8

1

10−5 10−4 10−3 10−2

(b)
M

E
D

Pr
ob

ab
ili

ty
(l

og
)

Transistor Aging (∆Vth) [mV]

MED
MSB Flip Probability

N
or

m
al

iz
ed

A
cc

ur
ac

y

Bit Flip Probability (log)

ResNet20
ResNet32
ResNet44

Fig. 1: a) The error characteristics of an 8-bit multiplier under
aging. b) Accuracy of three ResNets when injecting errors
(random bit flips in the 2 MSBs with a given probability) at
the multiplications of the convolutional layers.

guardband, i.e., 23%, while timing errors caused by transistor
aging are suppressed for the entire lifetime of 10 years.

II. RELATED WORK

In [12]–[14] approximate multipliers are employed and run-
time reconfigurable approximate NN inference accelerators are
implemented. However, [12]–[14] target power and not delay
optimization. In [11], fixed approximation through precision
scaling is applied in order to narrow or remove aging guard-
bands. Nevertheless, fixed approximation leads to constant
quality degradation that cannot be adapted over time. In [10],
adaptive input cutting and masking techniques are proposed
to mitigate aging and achieve a graceful accuracy degrada-
tion of a DCT/IDCT accelerator. However, [10] was only
applied to the very slow ripple-carry adder and array multiplier.
Moreover, [10] requires control circuitry to set the run-time
approximation. [10], [11] reduce the computational precision
of the accelerator itself. Hence, considering that errors due to
approximate hardware are input-dependent, by just omitting
some bits from the computations [10], [11], the quality loss
for some inputs might be unacceptable [12].

III. AGING-INDUCED TIMING ERRORS

Aging-induced timing degradation increases the circuit’s
delay over time and thus, timing errors occur when the circuit’s
paths fail to fulfill the required timing constraints [11] (Eq. 3).
Induced timing errors result in unacceptable accuracy loss even
after just 1 year, as shown in [10]. In arithmetic circuits, errors
mainly occur in the most significant bits (MSBs) [10]. To ex-
plore that, we demonstrate in Fig. 1a, the aging-induced timing
errors of a 8-bit multiplier circuit (i.e., the vital component
of any NPU). The circuit is obtained from the commercial
Synopsys DesignWare library. Fig. 1a presents i) the Mean
Error Distance (MED) for different aging levels (represented
as different values in threshold voltage increase (∆Vth)) and
ii) the resulting probability of a bit flip in one of the two
MSBs. One million random generated inputs are used. MED
is defined as the average absolute distance between the output
of the accurate and of the aged circuit. ∆Vth=50mV represents

the end of lifetime, i.e., 10 years [15]. No timing guardbands
are used in this investigation. Hence, the multiplier is clocked
with the maximum frequency obtained from operation at the
critical path delay of the fresh multiplier. As shown in Fig. 1a,
more errors are produced over time (higher MED), and the
probability of a bit-flip at the MSBs increases significantly.

Recent research demonstrated that the deeper NNs become,
the more susceptible to errors generated in the multiplier units
their accuracy becomes [13]. In Fig. 1b, we present an estima-
tion of how aging-induced timing errors impact the accuracy
of different NNs. Note, post-synthesis timing simulation to
capture the accuracy loss due to aging is infeasible. DNNs
feature millions of multiplications [13], [14] and simulating
only one inference requires several hours [13]. Hence, we run
inference at software level and we inject errors in the performed
multiplications. Error injection is implemented by randomly
flipping one of the two MSBs with a given probability, where
each experiment is performed ten times to capture the average
accuracy. Three ResNets are considered and the probability of
the bit flip ranges from 10−5 to 10−2. As shown in Fig. 1b,
as the probability of a bit flip increases, the accuracy drops
significantly and becomes unacceptable after a very small
probability level of 5× 10−4. In addition, for the deeper NNs
(i.e., as the size of ResNet increases) the accuracy drops faster.
It is noteworthy that the bit flip probability (~10−3) of the 8-
bit multiplier with only a 20mV voltage threshold increase due
to aging, results in an unacceptable accuracy drop for all the
examined NNs. In Fig. 1, for the sake of exemplification, we
examine only the bit-flip probability at the MSBs. As shown in
Figs. 1, aging-induced timing errors are critical for the NPU’s
accuracy, leading to poor quality even after a small degradation.

IV. MAC DELAY ANALYSIS UNDER INPUT COMPRESSION

The core component of NPUs is the MAC unit. NPUs
perform millions of MAC operations per inference and the
overall performance of the NPU is defined by the speed of
single MAC unit. In our work, we consider a microarchitecture
based on Google Edge TPU [2] that comprises a 64×64 systolic
MAC array. Hence, we design a MAC unit that consists of an
8-bit unsigned multiplier and a 22-bit unsigned adder to prevent
accumulation overflow. Then, we synthesize the RTL descrip-
tion of the MAC using Synopsys Design Compiler targeting
maximum performance using the 14nm FinFET technology
which is calibrated with measurement data from Intel. The
optimized arithmetic modules of the DesignWare library are
used to describe the MAC unit, as done in commercial chips.

Not all timing paths in a circuit feature the same delay and
therefore, the paths that will be activated are input-dependent.
For arithmetic circuits (such as a MAC unit), lower bit-width
numbers lead to shorter carry propagations and thus, faster
operation [10], [11]. Exploiting the latter, we compress the
inputs of the MAC to achieve faster operation. The accurate
MAC, in practice, performs the operation: A × B + C. The
width of A and B is 8 bits while the width of C is 22 bits.
The compressed inputs A′, B′, and C ′ feature a bit-width of
8−α, 8−β, and 22−(α+β), respectively. Since the compressed
inputs feature smaller bit-width, we apply zero-padding to the
remaining bits. Two options are available for zero-padding: i)
MSB-padding, i.e., fill with zeros the MSB positions, and ii)

Figure 1: a) The error characteristics of an 8-bit multiplier under aging. b) Accuracy of three ResNets when injecting
errors (random bit flips in the 2 MSBs with a given probability) at the multiplications of the convolutional layers.

where x is chip’s age, x=0 as fresh chip. y is projected lifetime. mi refers to transistors that form the circuit’s critical path (CP).
Dmi is simplified propagation delay of logic gate [7], and C represents the load capacitance connected to the gate.

Aging-Aware Approximation: Recently, approximate computing has been employed to address aging in error-tolerant
applications [10,11]. Approximate computing exploits the inherent error resilience of several applications, to trade-off computational
accuracy with other metrics, e.g., delay [10–14]. Aging-aware works in approximate computing introduce directed approximations
to improve a circuit’s performance and mitigate the aging effects. However, they examined very simple topologies, e.g., RCA
adders and array multipliers [10, 11].

In this work, we suppress aging effects in NPUs by applying, for the first time, adaptive approximation through input compression
in which reliability-aware quantization is used. With a marginal inference accuracy loss, we demonstrate that aging guardbands
can be removed for the entire projected lifetime.
Our novel contributions within this paper are as follows:
(1) This is the first work that employs quantization as a novel mechanism to eliminate aging effects in NPUs.
(2) We present, for the first time, a graceful-approximation technique that suppresses, over time, aging effects in NPUs. Our
technique enables designers to remove aging guardbands and hence eliminates the associated performance loss.
(3) We demonstrate that for an average accuracy loss of merely 3%, our technique eliminates the performance loss due to aging
guardband, i.e., 23%, while timing errors caused by transistor aging are suppressed for the entire lifetime of 10 years.

2 Related work

In [12–14] approximate multipliers are employed and run-time reconfigurable approximate NN inference accelerators are imple-
mented. However, [12–14] target power and not delay optimization. In [11], fixed approximation through precision scaling is
applied in order to narrow or remove aging guardbands. Nevertheless, fixed approximation leads to constant quality degradation
that cannot be adapted over time. In [10], adaptive input cutting and masking techniques are proposed to mitigate aging and
achieve a graceful accuracy degradation of a DCT/IDCT accelerator. However, [10] was only applied to the very slow ripple-carry
adder and array multiplier. Moreover, [10] requires control circuitry to set the run-time approximation. [10,11] reduce the compu-
tational precision of the accelerator itself. Hence, considering that errors due to approximate hardware are input-dependent, by
just omitting some bits from the computations [10,11], the quality loss for some inputs might be unacceptable [12].

3 Aging-Induced Timing Errors

Aging-induced timing degradation increases the circuit’s delay over time and thus, timing errors occur when the circuit’s paths
fail to fulfill the required timing constraints [11] (Eq. 3). Induced timing errors result in unacceptable accuracy loss even after
just 1 year, as shown in [10]. In arithmetic circuits, errors mainly occur in the most significant bits (MSBs) [10]. To explore that,
we demonstrate in Fig. 1a, the aging-induced timing errors of a 8-bit multiplier circuit (i.e., the vital component of any NPU).
The circuit is obtained from the commercial Synopsys DesignWare library. Fig. 1a presents i) the Mean Error Distance (MED)
for different aging levels (represented as different values in threshold voltage increase (∆Vth)) and ii) the resulting probability
of a bit flip in one of the two MSBs. One million random generated inputs are used. MED is defined as the average absolute
distance between the output of the accurate and of the aged circuit. ∆Vth=50mV represents the end of lifetime, i.e., 10 years [15].
No timing guardbands are used in this investigation. Hence, the multiplier is clocked with the maximum frequency obtained from

0.75

0.80

0.85

0.90

0.95

1.00

(0
,1

)
(0

,2
)

(0
,3

)
(0

,4
)

(1
,0

)
(1

,1
)

(1
,2

)
(1

,3
)

(1
,4

)
(2

,0
)

(2
,1

)
(2

,2
)

(2
,3

)
(2

,4
)

(3
,0

)
(3

,1
)

(3
,2

)
(3

,3
)

(3
,4

)
(4

,0
)

(4
,1

)
(4

,2
)

(4
,3

)
(4

,4
)

N
or

m
al

iz
ed

D
el

ay
(α, β) [bit]

LSB padding MSB padding

Fig. 2: Delay gain of the 8-bit MAC when applying (α, β) input
compression. Both MSB and LSB paddings are evaluated.

LSB-padding, i.e., fill with zeros the LSB positions. In the latter
case, the result A′ ×B′ + C ′ is shifted left α+ β places.

In Fig. 2, we evaluate the delay of our MAC unit when
compressing its inputs, i.e., performing A′×B′+C ′ instead of
A×B+C. Various compression values (α, β) and both padding
options are examined. As shown in Fig. 2, around 23% delay
gain can be achieved for up to (4, 4) compression. In addition,
Fig. 2 shows that some compression values are benefited by
MSB padding while others by LSB padding. Therefore, both
padding options should be considered. Fig. 2 demonstrates that
by just compressing the MAC inputs, we can achieve significant
delay gain without any circuit modifications.

In order to compress the MAC inputs, while merely impact-
ing the inference accuracy of the NN, we employ multiple low
bit-width quantization techniques [16]–[19]. Particularly, we
quantize the activations and the weights to 8−α and 8−β bits
respectively, and we perform the appropriate padding afterward
(Section V). In that way, our approach enables i) accurate
operation when no aging effects appear (i.e., no compression),
and ii) gradually increase the compression (α and β values)
over time to increase the delay gain as the NPU ages.

V. INPUT COMPRESSION THROUGH QUANTIZATION

Typically, NNs are trained using a 32-bit floating point
(FP32) number representation. Post-training quantization aims
at reducing the number of bits used to represent weights and
activations of NNs (e.g., 8-bit integers, INT8). Consequently,
the model size is reduced while the accuracy is maintained very
close to the accuracy of the FP32 model [16].

In this work, we utilize post-training quantization to imple-
ment input compression and leverage the respective delay gain
proposed in Section IV to address NPU aging. To represent
the compressed inputs, A′, B′, and C ′, we target quantization
with different bits for weights and activations. Therefore, we
created a library of multiple low-bit width post-training quan-
tization methods based on recently published approaches. We
integrate multiple methods, since some of them are optimized
for specific NNs, or they are optimized for very low precision.
Some other methods require off-line statistics and in some
cases the actual quantization is time-consuming due to the
multiple optimizations. Particularly, we have included uniform
symmetric [16] and asymmetric min/max quantization [17],
as well as more sophisticated methods and libraries such as
ACIQ [18] (w/ and w/o bias correction), and LAPQ [19], which
support per-channel bit optimizations, stats-based analysis, and
bias correction. All these methods do not require NN retraining

Synthesis
[Synopsys Design Compiler]

MAC RTL
Description

Timing Analysis
[Synopsys PrimeTime]

Baseline Library
(Based on Intel 14nm

Technology Measurements)netlist

Our Aging-Aware
Libraries(α, β), aging delay

Extract Compression (α, β) that
Satisfies the Timing Requirement

Aging
Level

(α, β)

NN Quantization with
(α, β) compression

& Accuracy evaluation
[PyTorch]

Trained NN
Model

Test
Dataset Library of

Quantization
Methods [16]-[19]

Aging-Aware
Quantized NN

Accuracy
Threshold

Fig. 3: Our device-to-system implementation that enables
aging-aware quantization to suppress aging effects in NPUs.

and allow the utilization of different precision for weights
and activations. More details about the employed quantization
technique in [16]–[19]. As an example to demonstrate that
different methods have different effects on NNs, for ResNet50,
LAPQ is the best method for W8A4 (INT8 for weights INT4
for activations) where accuracy drops 1.7% on the ImageNet
dataset. For W4A4, ACIQ is the best method with a drop of
only 4.2% (corresponding drop of LAPQ is 11.3%), verifying
its design principle that targets low bit-width quantization.
Contrary, VGG13 on ImageNet, LAPQ is the best quantization
method both for W8A4 and W4A4 with accuracy drop of only
1% and 4.2% respectively.

For 8-bit quantization, the activations and weights are quan-
tized to the [0, 28) segment, while the biases to [0, 216).
Considering (α, β) compression, the activations are quantized
to [0, 28−α), the weights to [0, 28−β), and the biases to [0,
216−α−β)). When considering LSB padding, the convolution
inputs are shifted left and thus, convolution operation equals:

Fshifted = Bias× 2(α+β) +
∑

∀j

(
(Aj × 2α)× (Wj × 2β)

)

=
(
Bias +

∑

∀j

(
Aj ×Wj

))
× 2(α+β) = F × 2(α+β)

(5)

Hence, the output needs to be shifted right α + β positions.
However, the latter does not require additional hardware since
it can be easily performed at the software side when stor-
ing/reading the convolution result to/from the memory. On the
other hand, when MSB padding is used, no shift is required.

VI. IMPLEMENTATION OF AGING-AWARE QUANTIZATION

Here, we describe our implementation (summarized in Fig. 3)
to perform the proposed aging-aware quantization. Our imple-
mentation starts from the device level all the way up to the
system level where the NN inference accuracy is impacted.
A. Aging Modeling
(1) Aging Model: In this work, we employ the state-of-the-art
physics-based aging model [20]. This model has been validated
against semiconductor measurements for various technologies
and transistor structures. It is able to precisely capture aging-
induced degradation (∆Vth) for the 14nm technology.

Figure 2: Delay gain of the 8-bit MAC when applying (α, β) input compression. Both MSB and LSB paddings are
evaluated.

operation at the critical path delay of the fresh multiplier. As shown in Fig. 1a, more errors are produced over time (higher MED),
and the probability of a bit-flip at the MSBs increases significantly.

Recent research demonstrated that the deeper NNs become, the more susceptible to errors generated in the multiplier units their
accuracy becomes [13]. In Fig. 1b, we present an estimation of how aging-induced timing errors impact the accuracy of different
NNs. Note, post-synthesis timing simulation to capture the accuracy loss due to aging is infeasible. DNNs feature millions of
multiplications [13,14] and simulating only one inference requires several hours [13]. Hence, we run inference at software level and
we inject errors in the performed multiplications. Error injection is implemented by randomly flipping one of the two MSBs with
a given probability, where each experiment is performed ten times to capture the average accuracy. Three ResNets are considered
and the probability of the bit flip ranges from 10−5 to 10−2. As shown in Fig. 1b, as the probability of a bit flip increases, the
accuracy drops significantly and becomes unacceptable after a very small probability level of 5× 10−4. In addition, for the deeper
NNs (i.e., as the size of ResNet increases) the accuracy drops faster. It is noteworthy that the bit flip probability (~10−3) of the
8-bit multiplier with only a 20mV voltage threshold increase due to aging, results in an unacceptable accuracy drop for all the
examined NNs. In Fig. 1, for the sake of exemplification, we examine only the bit-flip probability at the MSBs. As shown in
Figs. 1, aging-induced timing errors are critical for the NPU’s accuracy, leading to poor quality even after a small degradation.

4 MAC Delay Analysis Under Input Compression

The core component of NPUs is the MAC unit. NPUs perform millions of MAC operations per inference and the overall performance
of the NPU is defined by the speed of single MAC unit. In our work, we consider a microarchitecture based on Google Edge TPU [2]
that comprises a 64 × 64 systolic MAC array. Hence, we design a MAC unit that consists of an 8-bit unsigned multiplier and a
22-bit unsigned adder to prevent accumulation overflow. Then, we synthesize the RTL description of the MAC using Synopsys
Design Compiler targeting maximum performance using the 14nm FinFET technology which is calibrated with measurement data
from Intel. The optimized arithmetic modules of the DesignWare library are used to describe the MAC unit, as done in commercial
chips.

Not all timing paths in a circuit feature the same delay and therefore, the paths that will be activated are input-dependent. For
arithmetic circuits (such as a MAC unit), lower bit-width numbers lead to shorter carry propagations and thus, faster operation [10,
11]. Exploiting the latter, we compress the inputs of the MAC to achieve faster operation. The accurate MAC, in practice, performs
the operation: A × B + C. The width of A and B is 8 bits while the width of C is 22 bits. The compressed inputs A′, B′, and
C′ feature a bit-width of 8 − α, 8 − β, and 22 − (α + β), respectively. Since the compressed inputs feature smaller bit-width, we
apply zero-padding to the remaining bits. Two options are available for zero-padding: i) MSB-padding, i.e., fill with zeros the
MSB positions, and ii) LSB-padding, i.e., fill with zeros the LSB positions. In the latter case, the result A′ × B′ + C′ is shifted
left α+ β places.

In Fig. 2, we evaluate the delay of our MAC unit when compressing its inputs, i.e., performing A′×B′+C′ instead of A×B+C.
Various compression values (α, β) and both padding options are examined. As shown in Fig. 2, around 23% delay gain can be
achieved for up to (4, 4) compression. In addition, Fig. 2 shows that some compression values are benefited by MSB padding while
others by LSB padding. Therefore, both padding options should be considered. Fig. 2 demonstrates that by just compressing the
MAC inputs, we can achieve significant delay gain without any circuit modifications.

In order to compress the MAC inputs, while merely impacting the inference accuracy of the NN, we employ multiple low bit-
width quantization techniques [16–19]. Particularly, we quantize the activations and the weights to 8−α and 8−β bits respectively,
and we perform the appropriate padding afterward (Section 5). In that way, our approach enables i) accurate operation when no
aging effects appear (i.e., no compression), and ii) gradually increase the compression (α and β values) over time to increase the
delay gain as the NPU ages.

Synthesis
[Synopsys Design Compiler]

MAC RTL
Description

Timing Analysis
[Synopsys PrimeTime]

Baseline Library
(Based on Intel 14nm

Technology Measurements)netlist

Our Aging-Aware
Libraries(α, β), aging delay

Extract Compression (α, β) that
Satisfies the Timing Requirement

Aging
Level

(α, β)

NN Quantization with
(α, β) compression

& Accuracy evaluation
[PyTorch]

Trained NN
Model

Test
Dataset Library of

Quantization
Methods [16]-[19]

Aging-Aware
Quantized NN

Accuracy
Threshold

Figure 3: Our device-to-system implementation that enables aging-aware quantization to suppress aging effects in
NPUs.

5 Input Compression Through Quantization

Typically, NNs are trained using a 32-bit floating point (FP32) number representation. Post-training quantization aims at reducing
the number of bits used to represent weights and activations of NNs (e.g., 8-bit integers, INT8). Consequently, the model size is
reduced while the accuracy is maintained very close to the accuracy of the FP32 model [16].

In this work, we utilize post-training quantization to implement input compression and leverage the respective delay gain
proposed in Section 4 to address NPU aging. To represent the compressed inputs, A′, B′, and C′, we target quantization with
different bits for weights and activations. Therefore, we created a library of multiple low-bit width post-training quantization
methods based on recently published approaches. We integrate multiple methods, since some of them are optimized for specific
NNs, or they are optimized for very low precision. Some other methods require off-line statistics and in some cases the actual
quantization is time-consuming due to the multiple optimizations. Particularly, we have included uniform symmetric [16] and
asymmetric min/max quantization [17], as well as more sophisticated methods and libraries such as ACIQ [18] (w/ and w/o bias
correction), and LAPQ [19], which support per-channel bit optimizations, stats-based analysis, and bias correction. All these
methods do not require NN retraining and allow the utilization of different precision for weights and activations. More details
about the employed quantization technique in [16–19]. As an example to demonstrate that different methods have different effects
on NNs, for ResNet50, LAPQ is the best method for W8A4 (INT8 for weights INT4 for activations) where accuracy drops 1.7%
on the ImageNet dataset. For W4A4, ACIQ is the best method with a drop of only 4.2% (corresponding drop of LAPQ is
11.3%), verifying its design principle that targets low bit-width quantization. Contrary, VGG13 on ImageNet, LAPQ is the best
quantization method both for W8A4 and W4A4 with accuracy drop of only 1% and 4.2% respectively.

For 8-bit quantization, the activations and weights are quantized to the [0, 28) segment, while the biases to [0, 216). Considering
(α, β) compression, the activations are quantized to [0, 28−α), the weights to [0, 28−β), and the biases to [0, 216−α−β)). When
considering LSB padding, the convolution inputs are shifted left and thus, convolution operation equals:

Fshifted = Bias× 2(α+β) +
∑

∀j

(
(Aj × 2α)× (Wj × 2β)

)

=
(
Bias+

∑

∀j

(
Aj ×Wj

))
× 2(α+β) = F × 2(α+β)

(5)

Hence, the output needs to be shifted right α+ β positions. However, the latter does not require additional hardware since it can
be easily performed at the software side when storing/reading the convolution result to/from the memory. On the other hand,
when MSB padding is used, no shift is required.

6 Implementation of Aging-Aware Quantization

Here, we describe our implementation (summarized in Fig. 3) to perform the proposed aging-aware quantization. Our implemen-
tation starts from the device level all the way up to the system level where the NN inference accuracy is impacted.

Algorithm 1 Aging-Aware Quantization

Input: 1. Synthesized Netlist, 2. Aging Level: e.g., ∆Vth,
3. Trained Model & Test Dataset, 4. Accuracy Loss Threshold: e

Output: Aging-Aware Quantized Model

1: List = []
2: for all (α, β) ∈ [0, 8]2:
3: Run STA with (corresponding aging library, compression (α, β))
4: if timing constraint is met: List ← add (α, β)

5: (α, β) ← (α, β) in List with min
(√

α2 + β2
)

6: for all method in Quantization Library
7: Quantize Model using method and size (8-a, 8-b)
8: Capture accuracy on test dataset
9: if threshold e is satisfied: return Quantized Model

6.1 Aging Modeling

(1) Aging Model: In this work, we employ the state-of-the-art physics-based aging model [20]. This model has been validated
against semiconductor measurements for various technologies and transistor structures. It is able to precisely capture aging-induced
degradation (∆Vth) for the 14nm technology.

(2) Aging-Aware Cell Libraries: To enable aging support in commercial digital design tool flows, we generate aging-aware cell
libraries. First, we calibrate the (BSIM-CMG) model to match Intel’s 14nm FinFET technology measurements provided in [21].
Details on calibration and validation of BSIM-CMG are available in [22]. Then, we employ the state-of-the-art physics-based aging
model to estimate the corresponding ∆Vth over time. In this work, we consider aging from 0 to 10 years for the typical projected
lifetime. Aging gradually increases ∆Vth over time. ∆Vth for a fresh chip is equal to 0, while after 10 years it reaches 50mV, as
demonstrated from measurements for the FinFET technology [15, 20]. Aging mechanism is affected by the operating conditions
(e.g., utilization and temperature). For instance, ∆Vth = 20mV may correspond to 1-2 years. Hence, in our analysis, we consider
∆Vth as an unbiased measure of the aging level and we investigate aging effects at different ∆Vth levels from 0mV (fresh) to 50mV
(10 years) with a step of 10mV. Afterward, for each ∆Vth step, we create an aging-aware cell library by characterizing all standard
cells on the respective ∆Vth based on the open-source FinFET standard cells from Silvaco, using Synopsys SiliconSmart. This
is done using the commercial SPICE simulation that measures the delay and power of every standard cell under the influence of
∆Vth.

(3) Aging-induced Delay Analysis: Synopsys Design Compiler and the compile ultra command are used to synthesize the
circuit’s RTL description targeting maximum performance, i.e., zero-slack. For synthesis, we consider the fresh library, i.e., baseline
without aging. Next, we use Synopsys PrimeTime to perform static timing analysis (STA) on the post-synthesis netlist. During
STA we employ our aging-aware cell libraries to precisely capture the impact of aging on the circuit’s delay. We consider the
worst-case analysis where all transistors exhibit the maximum degradation. In addition, we analyze the timing information of both
the uncompressed and compressed (i.e., reduced bit width) inputs. In the latter case, we specify that the respective input bits of
the bit positions that are padded with zeros (due to input compression) are constantly set to ‘0’. Hence, we precisely obtain the
circuit’s delay w.r.t. the aging period and the paths that are activated due input compression.

6.2 Our Proposed Aging-Aware Quantization

In Section 4, we demonstrated that applying input compression on the MAC unit delivers considerable delay gains that can
potentially eliminate the aging-induced timing errors. As discussed in Section 5, input compression in NPUs can be applied by
employing low bit-width quantization. Nevertheless, the latter still results in accuracy loss, despite the numerous quantization
methods that have been proposed. In our work, we introduce an adaptive approximation approach by progressively increasing the
input compression over time. Our implementation is illustrated in Fig. 3 and described in Algorithm 1. First, we synthesize the
RTL description of our circuit as described above (Section 6.1 (3)) to obtain the post-synthesis netlist without aging. We consider
the MAC unit as our driving circuit since the accuracy and delay of the MAC operation will define the accuracy and speed of the
NPU [1, 13]. Next, we use PrimeTime and our aging-aware libraries (Section 6.1 (2)) to perform timing analyses to identify all
the compression values (α, β), under both MSB and LSB padding, that satisfy the timing constraint of the MAC unit (lines 2-4).
Targeting minimum compression, we select the (α, β) that minimizes

√
α2 + β2 (line 5). In the case of a tie, we select the (α,

β) with the highest precision for the activations [18] (i.e., smallest α). Finally, we use the obtained compression value (α, β) to
quantize the NN model. The quantization size equals 8−α for the activations, 8−β for the weights, and 16−α−β for the biases.
For the quantization procedure, we consider all of the available methods in our library (Section 5), and we capture the inference
accuracy on the test dataset by using the quantized model (lines 6-8). If a user-defined accuracy loss threshold is satisfied, then
the quantized model is the output of our algorithm (line 9). If a desired accuracy loss threshold is not available, we iterate over
all the quantization methods to select the one that delivers the highest accuracy.

Table 1: Achieved accuracy and selected quantization method for varying NNs at various aging levels (represented by
∆Vth).

Accuracy Loss (%) / Quantization Method Selected

Neural Network 10mV 20mV 30mV 40mV 50mV

ResNet50 0.27 / M5* 0.36 / M5 0.97 / M3* 1.47 / M4* 2.37 / M4

ResNet101 0.26 / M5 0.36 / M5 1.28 / M5 0.97 / M4 1.84 / M4

ResNet152 0.28 / M5 0.34 / M5 1.08 / M5 1.12 / M4 2.10 / M4

VGG13 0.15 / M4 0.22 / M3 0.39 / M3 1.20 / M4 2.54 / M4

VGG16 0.05 / M5 0.14 / M5 0.29 / M3 0.73 / M4 1.09 / M4

VGG19 0.20 / M3 0.33 / M3 0.46 / M3 1.09 / M4 2.37 / M4

Alexnet 0.28 / M5 0.54 / M5 0.99 / M5 2.72 / M4 4.00 / M4

SqueezeNet 1.1 0.55 / M5 1.51 / M5 3.61 / M4 6.03 / M4 7.83 / M4

Wide ResNet50 0.14 / M5 0.24 / M5 0.67 / M5 1.27 / M4 2.49 / M4

Wide ResNet101 0.23 / M5 0.41 / M5 1.33 / M5 1.41 / M4 2.92 / M4

* M3: LAPQ [19], M4: ACIQ [18], M5: ACIQ w/o bias correction [18]

Table 2: The extracted compression values (α,β) and padding for the examined aging levels.

Aging [∆Vth] 10mV 20mV 30mV 40mV 50mV

(α, β) / Padding (2,0)/LSB (2,2)/MSB (3,1)/LSB (2,4)/LSB (3,4)/LSB)

The (α, β) values that are extracted during the timing analysis phase ensure that the timing constraint is met. Hence, no
aging-induced timing errors occur and accurate computations are performed on the compressed inputs. In that way, the inference
accuracy is defined only by the accuracy delivered by quantization for the respective compression values. Therefore, the inference
accuracy can be captured purely at software level, without the need to perform time-consuming post-synthesis timing simulations
that are infeasible for large datasets [13]. In addition, the padding selection does not affect the quantization process/accuracy,
and only affects how the data will be stored in memory (see Section 5). Note that the α and β values depend on the NPU
microarchitecture (e.g., MAC size) and the aging period. On the other hand, the selected quantization method depends on both
the (α, β) and the NN. Hence, for a specific aging period, different NNs will feature the same (α, β) while they might utilize a
different quantization method. Targeting to minimize the employed compression, in line 5 of Algorithm 1, we select the (α, β) that
minimizes

√
α2 + β2, i.e., we use the Euclidean distance from (0, 0) as a surrogate model of the applied compression. To evaluate

the efficiency of our model in estimating the applied compression we run the following experiment. For each quantization method
in our library and for each NN examined in Section 7, we quantize the NN using the respective method and (α, β) compression
and then, we capture the accuracy loss w.r.t. the FP32 model. This procedure is repeated ∀(α, β) ∈ [0, 4]2. Next, we rank (α, β)
based on i) the computed accuracy loss, and ii) our model. Finally, we calculate the Pearson Correlation Coefficient between the
two rankings obtained. Over the ten examined NNs and the five quantization methods, the Pearson Coefficient is 0.84 on average
(ranging from 0.71 to 0.92). Hence, our model achieves a very strong correlation in ranking the (α, β) compression values. As an
alternative, we can evaluate lines 6-8 for all the extracted (α, β) values. However, considering that some quantization methods
are time-consuming, this would heavily impact the execution time of our implementation. On the other hand, by considering only
one (α, β) during quantization, only 1 hour was required, in the worst case.

7 Experimental Results and Evaluation

In order to evaluate the effectiveness of our technique in eliminating the aging-induced timing errors in NPUs, we examine the delay
gain delivered by our technique as well as the respective accuracy loss that has to be traded due to the applied input compression.
For our evaluation, we consider the Edge TPU microarchitecture [2] and we use the MAC unit described in Section 4 (i.e., 8-bit
multiplier/22-bit adder) as our driving circuit. In addition, we consider ten NNs (listed in Table 1) with varying characteristics.
For aging analysis, we use the libraries and workflow described in Section 6.1. All the NNs are trained on the ImageNet dataset [23]
and their implementation is based on official PyTorch repositories (Torchvision) [24]. Hereafter, when referring to the baseline
design, we refer to the MAC unit when using 8-bit quantization for activations and weights [1] (i.e., no compression α=β=0).
Moreover, the accuracy loss is calculated with respect to the accuracy achieved with FP32 inference. Therefore, even the baseline
with no-aging will exhibit a small (negligible) accuracy loss. In our algorithm, we do not set an accuracy loss threshold but instead,
we iterate over all the quantization methods to select the one that delivers the highest accuracy. For aging, we examine 10 years as
the typical projected lifetime. Finally, for our analysis, we also evaluated precision scaling by applying LSB masking on the 8-bit
quantized NNs [10, 11]. However, without retraining precision scaling delivered unacceptable accuracy loss for all the examined
NNs and aging levels. Considering, that DNN retrain is very time consuming [13], precision scaling [10, 11] is not included in our
discussion.

Table 2 reports the compression values (α,β) and padding as extracted by our algorithm for the examined aging periods (i.e.,

TABLE I: Achieved accuracy and selected quantization method
for varying NNs at various aging levels (represented by ∆Vth).

Accuracy Loss (%) / Quantization Method Selected
Neural Network 10mV 20mV 30mV 40mV 50mV
ResNet50 0.27 / M5* 0.36 / M5 0.97 / M3* 1.47 / M4* 2.37 / M4
ResNet101 0.26 / M5 0.36 / M5 1.28 / M5 0.97 / M4 1.84 / M4
ResNet152 0.28 / M5 0.34 / M5 1.08 / M5 1.12 / M4 2.10 / M4
VGG13 0.15 / M4 0.22 / M3 0.39 / M3 1.20 / M4 2.54 / M4
VGG16 0.05 / M5 0.14 / M5 0.29 / M3 0.73 / M4 1.09 / M4
VGG19 0.20 / M3 0.33 / M3 0.46 / M3 1.09 / M4 2.37 / M4
Alexnet 0.28 / M5 0.54 / M5 0.99 / M5 2.72 / M4 4.00 / M4
SqueezeNet 1.1 0.55 / M5 1.51 / M5 3.61 / M4 6.03 / M4 7.83 / M4
Wide ResNet50 0.14 / M5 0.24 / M5 0.67 / M5 1.27 / M4 2.49 / M4
Wide ResNet101 0.23 / M5 0.41 / M5 1.33 / M5 1.41 / M4 2.92 / M4
* M3: LAPQ [19], M4: ACIQ [18], M5: ACIQ w/o bias correction [18]

TABLE II: The extracted compression values (α,β) and padding
for the examined aging levels.

Aging [∆Vth] 10mV 20mV 30mV 40mV 50mV
(α, β) / Padding (2,0)/LSB (2,2)/MSB (3,1)/LSB (2,4)/LSB (3,4)/LSB)

model achieves a very strong correlation in ranking the (α, β)
compression values. As an alternative, we can evaluate lines
6-8 for all the extracted (α, β) values. However, considering
that some quantization methods are time-consuming, this would
heavily impact the execution time of our implementation.
On the other hand, by considering only one (α, β) during
quantization, only 1 hour was required, in the worst case.

VII. EXPERIMENTAL RESULTS AND EVALUATION

In order to evaluate the effectiveness of our technique in
eliminating the aging-induced timing errors in NPUs, we ex-
amine the delay gain delivered by our technique as well as the
respective accuracy loss that has to be traded due to the applied
input compression. For our evaluation, we consider the Edge
TPU microarchitecture [2] and we use the MAC unit described
in Section IV (i.e., 8-bit multiplier/22-bit adder) as our driving
circuit. In addition, we consider ten NNs (listed in Table I) with
varying characteristics. For aging analysis, we use the libraries
and workflow described in Section VI-A. All the NNs are
trained on the ImageNet dataset [23] and their implementation
is based on official PyTorch repositories (Torchvision) [24].
Hereafter, when referring to the baseline design, we refer to
the MAC unit when using 8-bit quantization for activations
and weights [1] (i.e., no compression α=β=0). Moreover, the
accuracy loss is calculated with respect to the accuracy achieved
with FP32 inference. Therefore, even the baseline with no-aging
will exhibit a small (negligible) accuracy loss. In our algorithm,
we do not set an accuracy loss threshold but instead, we iterate
over all the quantization methods to select the one that delivers
the highest accuracy. For aging, we examine 10 years as the
typical projected lifetime. Finally, for our analysis, we also
evaluated precision scaling by applying LSB masking on the
8-bit quantized NNs [10], [11]. However, without retraining
precision scaling delivered unacceptable accuracy loss for all
the examined NNs and aging levels. Considering, that DNN
retrain is very time consuming [13], precision scaling [10], [11]
is not included in our discussion.

Table II reports the compression values (α,β) and padding as
extracted by our algorithm for the examined aging periods (i.e.,
aging is represented by an increasing ∆Vth over time). Over
the aging periods, Fig. 4a depicts the delay of the MAC when

0.96
1.00
1.04
1.08
1.12
1.16
1.20
1.24

(a)

2
3

%

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00

0 10 20 30 40 50

(b)

(fresh) (10 Years)

N
or

m
al

iz
ed

D
el

ay Baseline
Ours

N
N

A
cc

ur
ac

y
lo

ss
[%

]

Transistor Aging (∆Vth) [mV]

Fig. 4: a) The normalized delay, from the beginning (i.e.,
fresh) to the end of lifetime (10 years), of the baseline and
our approach w.r.t the delay of the fresh baseline. b) Graceful
accuracy degradation, over time, delivered by our aging-aware
quantization, presented by box plots w.r.t. the examined NNs.

employing our technique (i.e., applying inputs compression as
in Table II) in comparison with the delay degradation of the
baseline. In Fig. 4a, the delay is normalized with respect to the
delay of the fresh baseline (i.e., without aging) without timing
guardbands. As shown, the delay of the baseline increases
over time (normalized delay is higher than 1), reaching a
performance loss of 23% under 10 years aging. This is an
expected behavior due to the aging phenomena where transis-
tors become slower. Hence, without timing guardbands, aging-
induced timing errors occur which will significantly deteriorate
the NPU accuracy (see Fig. 1b). Contrarily, this is not the
case when applying our technique. As Fig. 4a demonstrates,
our approach does not follow the baseline degradation style.
This is because our technique adaptively compresses the inputs
over time to gracefully compensate the delay increase due to
aging. The normalized delay is always less than or equal to 1,
making our aging-aware quantization technique resilient against
aging-induced delay degradation. Therefore, considering that
the achieved delay can be always similar, if not even better, to
the delay without aging, our technique effectively suppresses
the aging effects and no timing errors will occur. Importantly,
our technique shows almost fixed delay from day-zero until
the end of the projected lifetime, and hence no guardband is
required. Thus, for 10 years lifetime, by removing the timing
guardband, a 23% delay gain is achieved compared to baseline.

Nevertheless, our approach results in accuracy degradation
since lower range is used for the weights and activations. For
the examined NNs, Fig. 4b depicts the accuracy degradation
over aging when applying our aging-aware quantization (see
Table II). The (α,β) and padding in Table II refer to worst-
case delay analysis and hence their selection depends solely on
the aging period. Thus, the same compression is used for all
the NNs. Note that, since our technique eliminates the timing
errors, the accuracy of the aged NPU matches the accuracy
achieved by the respective exact quantized model (i.e., (α,β)
compression and no-aging). In Fig. 4b, the accuracy loss is
presented by box plots over the examined NNs and aging

Figure 4: a) The normalized delay, from the beginning (i.e., fresh) to the end of lifetime (10 years), of the baseline
and our approach w.r.t the delay of the fresh baseline. b) Graceful accuracy degradation, over time, delivered by our
aging-aware quantization, presented by box plots w.r.t. the examined NNs.

aging is represented by an increasing ∆Vth over time). Over the aging periods, Fig. 4a depicts the delay of the MAC when employing
our technique (i.e., applying inputs compression as in Table 2) in comparison with the delay degradation of the baseline. In Fig. 4a,
the delay is normalized with respect to the delay of the fresh baseline (i.e., without aging) without timing guardbands. As shown,
the delay of the baseline increases over time (normalized delay is higher than 1), reaching a performance loss of 23% under 10
years aging. This is an expected behavior due to the aging phenomena where transistors become slower. Hence, without timing
guardbands, aging-induced timing errors occur which will significantly deteriorate the NPU accuracy (see Fig. 1b). Contrarily,
this is not the case when applying our technique. As Fig. 4a demonstrates, our approach does not follow the baseline degradation
style. This is because our technique adaptively compresses the inputs over time to gracefully compensate the delay increase due to
aging. The normalized delay is always less than or equal to 1, making our aging-aware quantization technique resilient against
aging-induced delay degradation. Therefore, considering that the achieved delay can be always similar, if not even better, to
the delay without aging, our technique effectively suppresses the aging effects and no timing errors will occur. Importantly, our
technique shows almost fixed delay from day-zero until the end of the projected lifetime, and hence no guardband is required.
Thus, for 10 years lifetime, by removing the timing guardband, a 23% delay gain is achieved compared to baseline.

Nevertheless, our approach results in accuracy degradation since lower range is used for the weights and activations. For the
examined NNs, Fig. 4b depicts the accuracy degradation over aging when applying our aging-aware quantization (see Table 2).
The (α,β) and padding in Table 2 refer to worst-case delay analysis and hence their selection depends solely on the aging period.
Thus, the same compression is used for all the NNs. Note that, since our technique eliminates the timing errors, the accuracy of
the aged NPU matches the accuracy achieved by the respective exact quantized model (i.e., (α,β) compression and no-aging). In
Fig. 4b, the accuracy loss is presented by box plots over the examined NNs and aging periods. As shown, our technique delivers
graceful accuracy degradation over time. For example, the average accuracy loss is 0.24%, 0.45%, 1.11%, 1.80%, and 2.96% for
aging (∆Vth) 10mV, 20mV, 30mV, 40mV, and 50mV, respectively, where 50mV is equal to 10 years aging. In addition, as shown in
Fig. 4b, for all the examined periods, the accuracy loss is well concentrated around the median demonstrating that our technique
is slightly affected by the NN model. The highest reported accuracy loss is 7.83% for 10 years aging for the SqueezeNet network.
SqueezeNet features always the highest accuracy loss for all aging periods. SqueezeNet is by design a very compressed network
and thus, it is affected considerably by low bit-width quantization. The above analysis examines timing guardband elimination.
However, with (3,1) compression and only 9% guardband the accuracy loss becomes 1.11%, on average, for 10 years aging. The full
accuracy results are summarized in Table 1. In addition, in Table 1, we report the quantization method selected by our algorithm
for each case. Table 1 reports the accuracy as obtained from PyTorch for the respective compression and quantization method. As
shown in Table 1, the quantization method LAPQ [19] is selected in the 14% of the cases, while ACIQ [18] and ACIQ w/o bias [18]
are selected in the 44% and 42% of the cases, respectively. The methods [16, 17] were not selected in any aging level since the
required compression values (Table 2) were very high and out of the effective range of [16, 17]. Table 1 highlights the importance
of considering a quantization methods library since the best quantization method varies with respect to the required compression
and the NN model itself.

Finally, we evaluate the energy efficiency of our technique. Over time, our technique adaptively compresses the MAC inputs to
eliminate the aging effects. However, input compression leads also to reduced switching activity and thus, lower power consumption.
Fig. 5 depicts the normalized energy of our technique w.r.t the energy consumption of the baseline for varying aging levels. In
Fig. 5, the MAC unit using our approach is operated at the maximum frequency of the fresh MAC, while for the baseline a 23%
timing guardband (Fig. 4a) is used to prevent timing errors due to aging. As shown in Fig. 5, for no aging, our technique does not
induce any overhead, while for 10mV-50mV aging, it delivers 46% energy reduction on average (ranging from 21% up to 67%).

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 10 20 30 40 50

N
or

m
al

iz
ed

E
ne

rg
y

Transistor Aging (∆Vth) [mV]

46% avg energy reduction

(fresh) (10 Years)

Fig. 5: Normalized energy consumption of our technique over
the baseline for varying aging levels. Aging timing guardband
is used for the baseline to prevent timing errors.

periods. As shown, our technique delivers graceful accuracy
degradation over time. For example, the average accuracy loss
is 0.24%, 0.45%, 1.11%, 1.80%, and 2.96% for aging (∆Vth)
10mV, 20mV, 30mV, 40mV, and 50mV, respectively, where
50mV is equal to 10 years aging. In addition, as shown in
Fig. 4b, for all the examined periods, the accuracy loss is
well concentrated around the median demonstrating that our
technique is slightly affected by the NN model. The highest
reported accuracy loss is 7.83% for 10 years aging for the
SqueezeNet network. SqueezeNet features always the highest
accuracy loss for all aging periods. SqueezeNet is by design a
very compressed network and thus, it is affected considerably
by low bit-width quantization. The above analysis examines
timing guardband elimination. However, with (3,1) compres-
sion and only 9% guardband the accuracy loss becomes 1.11%,
on average, for 10 years aging. The full accuracy results are
summarized in Table I. In addition, in Table I, we report the
quantization method selected by our algorithm for each case.
Table I reports the accuracy as obtained from PyTorch for the
respective compression and quantization method. As shown in
Table I, the quantization method LAPQ [19] is selected in the
14% of the cases, while ACIQ [18] and ACIQ w/o bias [18]
are selected in the 44% and 42% of the cases, respectively. The
methods [16], [17] were not selected in any aging level since
the required compression values (Table II) were very high and
out of the effective range of [16], [17]. Table I highlights the
importance of considering a quantization methods library since
the best quantization method varies with respect to the required
compression and the NN model itself.

Finally, we evaluate the energy efficiency of our technique.
Over time, our technique adaptively compresses the MAC
inputs to eliminate the aging effects. However, input compres-
sion leads also to reduced switching activity and thus, lower
power consumption. Fig. 5 depicts the normalized energy of
our technique w.r.t the energy consumption of the baseline
for varying aging levels. In Fig. 5, the MAC unit using our
approach is operated at the maximum frequency of the fresh
MAC, while for the baseline a 23% timing guardband (Fig. 4a)
is used to prevent timing errors due to aging. As shown
in Fig. 5, for no aging, our technique does not induce any
overhead, while for 10mV-50mV aging, it delivers 46% energy
reduction on average (ranging from 21% up to 67%).

VIII. CONCLUSION

In this paper, we employ quantization, for the first time,
to suppress aging in NPUs. Our technique applies adaptive

aging-aware quantization over time and achieves a progressive,
though small, accuracy degradation, while in the meantime
it eliminates the deleterious aging-induced timing errors. Our
technique enables removing the aging timing guardbands and
boosts the NPU performance, while in the meantime it sig-
nificantly decreases the energy consumption. Moreover, our
approach modifies only the inputs of the NPU and it does not
require any modifications to the underlying microarchitecture.

ACKNOWLEDGEMENT

Authors would like to thank Yogesh Chauhan and Souvik
Mahapatra and their teams for the valuable help in compact
model calibration. This work is supported in part by the German
Research Foundation (DFG) through the project “ACCROSS:
Approximate Computing aCROss the System Stack”.

REFERENCES

[1] N. P. Jouppi, et al., “In-datacenter performance analysis of a tensor
processing unit,” in Int. Symp. on Computer Architecture, 2017.

[2] S. Cass, “Taking ai to the edge: Google’s tpu now comes in a maker-
friendly package,” IEEE Spectrum, vol. 56, no. 5, 2019.

[3] J. Song et al., “7.1 an 11.5 tops/w 1024-mac butterfly structure dual-
core sparsity-aware neural processing unit in 8nm flagship mobile soc,”
in IEEE International Solid-State Circuits Conference, 2019.

[4] H. Amrouch, G. Zervakis et al., “NPU Thermal Management,” in IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., 2020.

[5] W. Sootkaneung, S. Howimanporn et al., “Thermal effect on performance,
power, and bti aging in finfet-based designs,” in DATE, 2017.

[6] S. Mahapatra, N. Goel et al., “A Comparative Study of Different Physics-
Based NBTI Models,” TED, vol. 60, no. 3, March 2013.

[7] C. Hu, Modern semiconductor devices for integrated circuits. Prentice
Hall, 2010.

[8] S. Roy, D. Liu et al., “Osfa: A new paradigm of aging aware gate-
sizing for power/performance optimizations under multiple operating
conditions,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 35, no. 10, 2016.

[9] J. Keane and C. H. Kim, “Transistor aging,” in IEEE Spectr, vol. 48,
April 2011, p. 28–33.

[10] H. Kim, J. Kim et al., “Aging compensation with dynamic computation
approximation,” IEEE Trans. Circuits Syst. I, vol. 67, no. 4, 2020.

[11] H. Amrouch, B. Khaleghi et al., “Towards aging-induced approxima-
tions,” in Design Automation Conference, 2017.

[12] G. Zervakis, H. Amrouch et al., “Design automation of approximate
circuits with runtime reconfigurable accuracy,” IEEE Access, vol. 8, 2020.

[13] Z.-G. Tasoulas, G. Zervakis et al., “Weight-Oriented Approximation for
Energy-Efficient Neural Network Inference Accelerators,” TCASI, 2020.

[14] V. Mrazek, Z. Vasicek et al., “Alwann: Automatic layer-wise approxima-
tion of deep neural network accelerators without retraining,” in Interna-
tional Conference on Computer-Aided Design (ICCAD), Nov 2019.

[15] A. Thirunavukkarasu, H. Amrouch et al., “Device to circuit framework
for activity-dependent nbti aging in digital circuits,” IEEE Trans. Electron
Devices, vol. 66, no. 1, 2019.

[16] R. Krishnamoorthi, “Quantizing deep convolutional networks for efficient
inference: A whitepaper,” arXiv preprint arXiv:1806.08342, 2018.

[17] B. Jacob, S. Kligys et al., “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in CVPR, 2018.

[18] R. Banner, Y. Nahshan et al., “Post training 4-bit quantization of
convolutional networks for rapid-deployment,” in NeurIPS, 2019.

[19] Y. Nahshan, B. Chmiel et al., “Loss aware post-training quantization,”
arXiv preprint arXiv:1911.07190, 2019.

[20] N. Parihar, N. Goel et al., “Bti analysis tool—modeling of nbti dc, ac
stress and recovery time kinetics, nitrogen impact, and eol estimation,”
TED, vol. 65, no. 2, 2018.

[21] S. Natarajan et al., “A 14nm logic technology featuring 2nd-generation
finfet, air-gapped interconnects, self-aligned double patterning and a
0.0588 µm2 sram cell size,” in Int. Electron Devices Meeting, 2014.

[22] S. Mishra, H. Amrouch et al., “A simulation study of nbti impact on
14-nm node finfet technology for logic applications: Device degradation
to circuit-level interaction,” TED, vol. 66, no. 1, 2018.

[23] J. Deng, W. Dong et al., “Imagenet: A large-scale hierarchical image
database,” in Conf. on computer vision and pattern recognition, 2009.

[24] Pytorch, “Torchvision models, https://pytorch.org/docs/stable/torchvision/
models.html.”

Figure 5: Normalized energy consumption of our technique over the baseline for varying aging levels. Aging timing
guardband is used for the baseline to prevent timing errors.

8 Conclusion

In this paper, we employ quantization, for the first time, to suppress aging in NPUs. Our technique applies adaptive aging-
aware quantization over time and achieves a progressive, though small, accuracy degradation, while in the meantime it eliminates
the deleterious aging-induced timing errors. Our technique enables removing the aging timing guardbands and boosts the NPU
performance, while in the meantime it significantly decreases the energy consumption. Moreover, our approach modifies only the
inputs of the NPU and it does not require any modifications to the underlying microarchitecture.

Acknowledgement

Authors would like to thank Yogesh Chauhan and Souvik Mahapatra and their teams for the valuable help in compact model cali-
bration. This work is supported in part by the German Research Foundation (DFG) through the project “ACCROSS: Approximate
Computing aCROss the System Stack”.

References

[1] N. P. Jouppi, et al., “In-datacenter performance analysis of a tensor processing unit,” in Int. Symp. on Computer Architecture,
2017.

[2] S. Cass, “Taking ai to the edge: Google’s tpu now comes in a maker-friendly package,” IEEE Spectrum, vol. 56, no. 5, 2019.

[3] J. Song et al., “7.1 an 11.5 tops/w 1024-mac butterfly structure dual-core sparsity-aware neural processing unit in 8nm flagship
mobile soc,” in IEEE International Solid-State Circuits Conference, 2019.

[4] H. Amrouch, G. Zervakis, S. Salamin, H. Kattan, I. Anagnostopoulos, and J. Henkel, “NPU Thermal Management,” in IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., 2020.

[5] W. Sootkaneung, S. Howimanporn, and S. Chookaew, “Thermal effect on performance, power, and bti aging in finfet-based
designs,” in DATE, 2017.

[6] S. Mahapatra, N. Goel, S. Desai, S. Gupta, B. Jose, S. Mukhopadhyay, K. Joshi, A. Jain, A. E. Islam, and M. A. Alam, “A
Comparative Study of Different Physics-Based NBTI Models,” TED, vol. 60, no. 3, March 2013.

[7] C. Hu, Modern semiconductor devices for integrated circuits. Prentice Hall, 2010.

[8] S. Roy, D. Liu, J. Singh, J. Um, and D. Z. Pan, “Osfa: A new paradigm of aging aware gate-sizing for power/performance
optimizations under multiple operating conditions,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 10,
2016.

[9] J. Keane and C. H. Kim, “Transistor aging,” in IEEE Spectr, vol. 48, April 2011, p. 28–33.

[10] H. Kim, J. Kim, H. Amrouch, J. Henkel, A. Gerstlauer, K. Choi, and H. Park, “Aging compensation with dynamic computation
approximation,” IEEE Trans. Circuits Syst. I, vol. 67, no. 4, 2020.

[11] H. Amrouch, B. Khaleghi, A. Gerstlauer, and J. Henkel, “Towards aging-induced approximations,” in Design Automation
Conference, 2017.

[12] G. Zervakis, H. Amrouch, and J. Henkel, “Design automation of approximate circuits with runtime reconfigurable accuracy,”
IEEE Access, vol. 8, 2020.

[13] Z.-G. Tasoulas, G. Zervakis, I. Anagnostopoulos, H. Amrouch, and J. Henkel, “Weight-Oriented Approximation for Energy-
Efficient Neural Network Inference Accelerators,” TCASI, 2020.

[14] V. Mrazek, Z. Vasicek, L. Sekanina, M. A. Hanif, and M. Shafique, “Alwann: Automatic layer-wise approximation of deep
neural network accelerators without retraining,” in International Conference on Computer-Aided Design (ICCAD), Nov 2019.

[15] A. Thirunavukkarasu, H. Amrouch, J. Joe, N. Goel, N. Parihar, S. Mishra, C. K. Dabhi, Y. S. Chauhan, J. Henkel, and
S. Mahapatra, “Device to circuit framework for activity-dependent nbti aging in digital circuits,” IEEE Trans. Electron
Devices, vol. 66, no. 1, 2019.

[16] R. Krishnamoorthi, “Quantizing deep convolutional networks for efficient inference: A whitepaper,” arXiv preprint
arXiv:1806.08342, 2018.

[17] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko, “Quantization and training of
neural networks for efficient integer-arithmetic-only inference,” in CVPR, 2018.

[18] R. Banner, Y. Nahshan, and D. Soudry, “Post training 4-bit quantization of convolutional networks for rapid-deployment,”
in NeurIPS, 2019.

[19] Y. Nahshan, B. Chmiel, C. Baskin, E. Zheltonozhskii, R. Banner, A. M. Bronstein, and A. Mendelson, “Loss aware post-
training quantization,” arXiv preprint arXiv:1911.07190, 2019.

[20] N. Parihar, N. Goel, S. Mukhopadhyay, and S. Mahapatra, “Bti analysis tool—modeling of nbti dc, ac stress and recovery
time kinetics, nitrogen impact, and eol estimation,” TED, vol. 65, no. 2, 2018.

[21] S. Natarajan et al., “A 14nm logic technology featuring 2nd-generation finfet, air-gapped interconnects, self-aligned double
patterning and a 0.0588 µm2 sram cell size,” in Int. Electron Devices Meeting, 2014.

[22] S. Mishra, H. Amrouch, J. Joe, C. K. Dabhi, K. Thakor, Y. S. Chauhan, J. Henkel, and S. Mahapatra, “A simulation study
of nbti impact on 14-nm node finfet technology for logic applications: Device degradation to circuit-level interaction,” TED,
vol. 66, no. 1, 2018.

[23] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in Conf.
on computer vision and pattern recognition, 2009.

[24] Pytorch, “Torchvision models, https://pytorch.org/docs/stable/torchvision/models.html.”

http://arxiv.org/abs/1806.08342
http://arxiv.org/abs/1911.07190
https://pytorch.org/docs/stable/torchvision/models.html

	1 Introduction
	2 Related work
	3 Aging-Induced Timing Errors
	4 MAC Delay Analysis Under Input Compression
	5 Input Compression Through Quantization
	6 Implementation of Aging-Aware Quantization
	6.1 Aging Modeling
	6.2 Our Proposed Aging-Aware Quantization

	7 Experimental Results and Evaluation
	8 Conclusion

