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Jérôme Lachaize‡ Olivier Notebaert‡ Antoine Certain‡ David Steenari§
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Abstract—Embedded GPUs have been identified from both
private and government space agencies as promising hardware
technologies to satisfy the increased needs of payload processing.
The GPU4S (GPU for Space) project funded from the European
Space Agency (ESA) has explored in detail the feasibility and
the benefit of using them for space workloads. Currently at the
closing phases of the project, in this paper we describe the main
project outcomes and explain the lessons we learnt. In addition,
we provide some guidelines for the next steps towards their
adoption in space.

I. THE GPU4S PROJECT

The space industry is facing a dramatic increase in the per-
formance required by future missions as forthcoming space-
craft require to acquire orders of magnitude more data com-
pared to existing ones, supporting much higher resolutions,
precision and sampling frequencies. Moreover, other types of
space missions like robotic exploration such as the ExoMars
rover [1] and new types of space missions and concepts like
the space tug [2] and active debris removal [3] or the Mars
Helicopter [4] that uses a COTS processor for operation, all
of them require highly autonomous operations, which need
significant on-board processing capabilities.

Embedded Graphics Processing Units (GPUs) have shown a
great potential in high performance processing in temperature
and battery-constrained devices, following the widespread and
successful use of GPUs in high-performance domain. For this
reason, there is a lot of investment in GPU studies funded from
government space agencies [5] [6] [7] [8] as well the private
sector [9] [10]. Some of these works focus on radiation studies
of certain GPU products, while others implement closed source
space applications. However, each of these works is isolated
and uses its own hardware and software, the latter frequently
limited from export control due to space’s sensitive nature
in defence applications, which makes impossible to compare
against one another and draw general conclusions about the
use of GPUs and their adoption in space.

The GPU4S (GPU for Space) [7] project funded by the
European Space Agency (ESA) which is currently at its
closing phase, aims at evaluating the potential of embedded
GPUs for use in space, for the first time and define the
roadmap of GPU adoption in space. In order to achieve this
long term goal, several intermediate steps had to be achieved.

First, we had to confirm that the existing and mainly future
space software can be effectively parallelised in order to
exploit the performance advantage of GPUs – as they are
known to work well with certain types of algorithms which
require massively parallel processing, but also exhibit regular
behaviour in memory accesses and branching.

To achieve this, we needed to ensure that programming
GPUs can be mastered with reasonable effort by industry, and
therefore highly efficient software versions can be achieved
without excessive investment on the development cost. For ex-
ample, the Cell Broadband Engine [11] (CBE) jointly designed
by IBM, Sony and Toshiba was one of the most powerful and
energy efficient architectures of its time, but it was proven
notoriously difficult to program [12], reducing its industry
adoption beyond the gaming sector.

Second, we needed to be able to experimentally evaluate
various embedded GPUs to identify the most promising can-
didates for space use, primarily based on their performance
and energy efficiency, as well as their software tools and
libraries. This resulted in a selection of the most promising
IP (intellectual property) GPU solution as well as the most
promising COTS (commercial off-the-shelf) GPU solution.
The former can be used for the development of a radiation
hardened version of an embedded GPU IP, based on European
technology, which is the leader in embedded GPU designs, to
support Europe’s non-dependence in the space domain, while
the latter can be used in the shorter term to enable the fast
adoption of GPUs in space.

Next, in order to perform a comparison between various
GPUs and their GPU programming models for the space
domain, we created an open source benchmarking suite for
GPU on board-processing, named GPU4S Bench [13], which
was used for the benchmarking of the selected GPU devices.
In addition to this benchmarking suite, we developed sev-
eral demonstrators of space algorithms ported on embedded
GPUs [14] [15].

Finally, we define a roadmap regarding the adoption of
GPUs in space. In this paper, we describe the main outcomes
of the above performed activities in the GPU4S project and
we present the lessons we have learnt throughout the duration
of the project.
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II. MAIN OUTCOMES AND LESSONS LEARNT

A. Space Software Survey

One of the first tasks of the project was the study of existing
space software as well as the requirements of future missions.
For this reason, we have conducted a theoretical analysis of
algorithms found in several space domains, identifying poten-
tial candidates for GPU acceleration based on their processing
characteristics. The outcome of the survey has been published
in two parts, in [7] and in [16].

In particular, we observed that most of the existing space
algorithms are a good fit for the GPU programming model,
especially the ones used in on-board image processing. As
these algorithms are mainly working on several pixels inde-
pendently, there is abundant parallelism to be exploited by
the massively parallel GPU hardware. This has been also
confirmed at a later stage of the project, by our demonstrator
of the Euclid NIR (Near Infrared) ESA software, which we
ported on an embedded GPU [14].

On the other hand, one type of algorithms we initially
identified as not a good candidate for GPU parallelisation was
compression algorithms such as the ones found in the CCSDS
standard. The reason for this was the low-parallelism exhibited
in such operations, due to the serial operation of the algorithm
and dependencies between parts of the data.

However, later in the project we implemented another set
of demonstrators, porting the CCSDS 121 and CCSDS 122
space compression algorithms, which showed that even these
algorithms could be accelerated on a GPU [15]. This was
achieved by exploiting coarse grained parallelism, similar to
the batching performed in neural network processing on GPUs.

Regarding the requirements of future missions, we ob-
served a trend towards increasing the amount of acquired data
from scientific instruments, as well as of the computational
power required to support advanced functionalities such as
autonomous navigation, which could be provided by GPUs.

Lesson 1: Modern GPUs can accelerate a wide range
of existing and future on-board algorithms, even when
their parallelism is not inherent.

Lesson 2: The only certain way to verify whether an
algorithm can significantly benefit from a GPU, is to
actually port it to a GPU.

B. Embedded GPU Hardware Survey

Another important project milestone was the study of ex-
isting embedded GPUs in order to select the most appropriate
GPU IP of a European Embedded GPU vendor for a future
radiation-hardened implementation by ESA or the most ap-
propriate COTS embedded GPU for short term adoption. One
of the criteria established by ESA for the selection was the
availability of the IP in order to produce an FPGA prototype,
while another one was the software ecosystem of each GPU.

We started by surveying embedded GPUs using their public
information and by producing a classification of embedded
GPUs and GPU-like architectures for space [7]. In particular,
we identified low-end and high-end GPUs based on their
ability to support general purpose programming languages or
only graphics. Moreover, we defined additional classes such
as COTS, soft IP products as well as high-level synthesis.

Meanwhile, we established links the licensing departments
of embedded GPU vendors and suffered long delays until
Non Disclosure Agreements (NDAs) were in place, as we
explain in [16]. However eventually it became apparent that
no commercial silicon IP vendor is willing to share any
non-public details about their product, including their price,
without an upfront commitment to buy their IP, even under
NDA. This creates the counter-intuitive situation in which
one IP customer has to select an IP vendor without being
able to know their exact benefit or drawbacks compared to
an equivalent product from a competitor. However, once the
customer decides to do business with an IP provider, then they
can get access to the full portfolio of that vendor, in order to
select the most appropriate product offering to their needs,
from that company.

Lesson 3: There is no way to select a priori the
most appropriate commercial silicon IP from different
vendors.

For this reason, the selection of proprietary IPs by semi-
conductor companies is performed with obscure criteria e.g.
using consulting companies or personal decisions from high-
level executives.

Another important finding from our experience is that the
current licensing models of most IP vendors are focused
around royalties arising from large volume markets such as
consumer electronics or automotive, and therefore they are not
prepared to work with low-volume markets like space, nor to
customise their designs. There are also several challenges for
the production of FPGA prototypes with commercial GPU IP.
First, modern embedded GPU designs cannot fit on existing
FPGAs, without producing a considerably reduced version,
e.g. in terms of cache size, number of shader cores etc.
Moreover, these reduced version can only fit on specific FPGA
boards approaching the cost of $50K. Obviously, this cannot
be achieved with the budget of a small exploratory project
such as GPU4S (150K euros).

Lesson 4: A project responsible to license or produce
a demonstrator with commercial silicon or FPGA IP
needs to have considerable budget available, specifi-
cally allocated for the cost of the IP vendor.

For this reason, it is not surprising that open source hard-
ware is increasingly considered for low volume markets. For
this reason, we extended our survey to open source GPU
designs. As we reported in [16], there are several open source
GPU or GPU-like designs.



The outcome of our survey however is not positive either.
Most of the existing GPUs are incomplete, model obsolete
GPUs with deprecated software stacks, lack documentation
and support. Moreover, the ones which replicate commercial
designs are potentially subject to patent infringements. How-
ever, the most important limitation of open source designs
is their non-commercial friendly licenses such as GPL, which
make impossible to use in a niche domain such as space, where
several proprietary IPs are combined in an FPGA or ASIC.

Lesson 5: Existing open-source GPU designs cannot
be used for our purpose.

Fortunately, meanwhile the open source hardware commu-
nity has grown and matured significantly with the proliferation
of the RISC-V movement. These last couple of years several
successful examples of open source processor IPs with liberal
licenses have been included in commercial designs, which
gives hope that in the future there may be similar designs
in the GPU domain.

Lesson 6: The RISC-V movement can create opportu-
nities for a commercially-friendly open source GPU.

Apart from soft GPU IPs, we have also explored the
possibility of High-Level Synthesis (HLS), which allows to
program modern FPGAs in an easy way using OpenCL similar
to GPUs, instead of hardware description languages. However,
HLS is only available in the latest COTS FPGAs but not yet
in space-grade FPGAs. Moreover, this solution does not offer
the fast reconfiguration of GPU kernels, since the synthesis
and reconfiguration times of HLS kernels are significantly
longer, in the order of seconds or minutes. Last but not least,
HLS kernels written in OpenCL require heavy annotations
or modifications to achieve high performance, so that their
code is considerably different that GPUs. However, HLS has
a potential to facilitate FPGA development for space and it is
worth to be explored in a separate study funded by ESA.

Lesson 7: HLS is not equivalent to a soft GPU.

Since the soft GPU survey did not culminate in a viable
GPU product, we decided to consider COTS GPUs. In terms
of performance, our analysis showed that NVIDIA’s embedded
products are the ones providing the highest theoretical perfor-
mance, something we also confirmed at later stages with our
benchmarking. Moreover, NVIDIA’s proprietary programming
language, CUDA, is the one with the largest developer base.

NVIDIA’s embedded GPUs have been used in several
rugged products and have been chosen for NASA Missions,
however they suffer from short product lines with short market
availability window. Therefore, component obsolescence in
critical domains can be an issue. In addition, NVIDIA supplies
their latest GPU SoCs only as part of modules, which limits
the possibility for dedicated designs for space, both in terms

of form factor and use of other COTS devices (e.g. power ICs)
that need their own screening for the use in space.

Embedded AMD products have been also used in rugged
environments, especially in aerospace. AMD supports the open
standard OpenCL as well as a CUDA compatible language
called HIP [17]. In addition, AMD provides more information
regarding its architecture, and for this reason open source
drivers as well as third party drivers such as the safety certified
drivers from CoreAVI [18]. In terms of product lines offer
longer availability for products used in critical domains (10
years).

A recent study on the radiation tolerance of COTS GPU
SoCs from several vendors, revealed some concerns with
certain NVIDIA GPUs which were not as apparent in AMD
GPUs, due to being implemented with other foundry pro-
cesses [19].

Lesson 8: NVIDIA embedded products provide higher
performance and software tooling, but AMD provides
better properties for space.

From European vendors, ARM dominates the embedded
GPU market, while Imagination Technologies was at the
time of our survey the only one to offer an ASIL-B safety
certified GPU in the Renesas R-CAR H3 platform and was
designing new products with ASIL-D certification. However,
ARM recently announced a GPU design compliant with ASIL-
D. In terms for absolute performance, European GPUs are
outperformed by NVIDIA and AMD products.

C. Embedded GPU Benchmarking

The next important milestone has been the performance
and performance efficiency benchmarking of the selected plat-
forms: NVIDIA Xavier, ARM G-72 found in the HiKey 970
and the Imagination PowerVR GX6650 found in Renesas’s
R-CAR H3.

However, the cancellation of the manufacturing of the R-
CAR H3 line led us to replace it with the NVIDIA TX2.
Moreover, in the meanwhile, an AMD Embedded Ryzen
platform V1605B has been released. For this reason, we
extended our analysis to this platform as well, by purchasing
one of the first production units. Unfortunately, setting up a
software environment with a working OpenCL GPU driver
has been very challenging. We had faced similar issues with
setting up the environment of the HiKey. On the other hand,
setting up the NVIDIA platforms was seamless. The reason is
that NVIDIA has full control over its platforms, while other
GPU design firms depend on integration with third part IPs
and face software fragmentation.

Lesson 9: NVIDIA’s vertical integration results in
tighter control of product releases in both hardware
and software.

In order to benchmark the selected embedded GPUs, we
identified the need for a relevant on-board benchmarking suite.



However, we noticed a considerable lack of standard bench-
marking solutions for payload processing in space, especially
regarding GPUs. To deal with this, we have created the GPU4S
Bench [13], an open source benchmark suite of representative
space algorithms across different space domains based on the
space software survey we conducted in the first months of the
project. In addition to GPU benchmarking, GPU4S Bench can
be also used for the evaluation of GPU programming models
for space payload processing. The reason why we designed
GPU4S as Open Source with ESA’s GPL-like license, is in
order to be free of company IP rights or government export
controls, which are dominating the space domain.

Lesson 10: Complex space application software is
subject to restrictions.

Open source benchmarks maximise the potential of becom-
ing the de-facto means of performance and energy efficiency
comparison between embedded GPUs for space, as well as
to allow reproducibility and crowd-sourcing results from new
architectures. Being able to directly compare results from the
same suite among different targets saves time and reduces
costs, while it enables taking more straightforward decisions
for the hardware of future space programs. Such a benefit has
been already observed with the NPB benchmarks from NASA
in supercomputing [20] as well as the NIR HAWAII-2RG BM
algorithm [21], which has been used in several internal and
ESA-funded activities for comparative analysis of numerous
platforms. Such an algorithm is much more useful compared
to an advanced and complete but proprietary processing space
application e.g. [5] or [22], which cannot be reproduced in
future studies performed by different contractors.

Details regarding the design principles and the implemented
algorithms can be found in [13] while a summary of the
coverage of different space domains can be seen in Table I.

Lesson 11: Open source benchmarks, such as GPU4S
Bench [13], are required to circumvent space software
restrictions and maximise benefit from public funding.

Using the GPU4S benchmark suite allowed us to compare
results of the different GPUs. All measurements were obtained
using the same power budget.

The NVIDIA Xavier has outperformed all platforms in
terms of performance, while in terms of energy efficiency, the
best choice has been either the NVIDIA Xavier or the TX2.

In terms of maximum power consumption, our power mea-
surements indicate that the GPU boards consume in total up
to 15W, as indicated by their TDP, therefore confirming our
initial selection that they can fit in the power budget of an
on-board system.

Lesson 12: Embedded GPUs comply with on-board
power requirements.

Apart from the benchmarking of GPUs, the development of
the GPU4S Bench allowed us to evaluate also aspects related
to the programming model of the GPUs as well as to their
software ecosystem. First, the development, debugging and
maintenance of CUDA and its equivalent open source version
from AMD, HIP, are easier than OpenCL, since the latter is
a lower-level API and therefore each CUDA/HIP statement
corresponds to multiple OpenCL statements. In general, there
is portability between the two languages, but not 100% guaran-
teed even on the same platform. For example, we encountered
a corner case that prevented execution of the OpenCL since the
implementations make an implicit assumption that the number
of threads in a kernel have to be multiple of 32 although there
is no such limitation stated in the standard.

Lesson 13: CUDA and HIP offer easier programma-
bility than OpenCL.

In addition, since we developed hand-written, hand-
optimised and vendor libraries versions of our benchmarks,
we were able to assess whether it is possible to obtain high
performance on GPUs with reasonable programming effort.
In this aspect, we found two counter-intuitive situations. First,
vendor optimised libraries are not always the fastest option.
Most of these libraries are optimised for long, repetitive execu-
tions, so they exhibit a long initialisation cost that can exceed
the actual processing cost of small amount of data or for small
periods of time. This can be an issue in cases that the GPU
applications vary in time during the mission, or simply because
an application or the platform needs to restart due to a radiation
fault. In these cases, hand written implementations are a more
appropriate solution, even if they provide significantly lower
performance, especially for small sizes. However, we noticed
cases in which our implementations outperformed the vendor
library such as in double precision floating point, probably
because the library was not optimised until then for our target
platforms, which are not frequently used for such calculations.

Lesson 14: Vendor optimised GPU libraries have a
large initialisation cost, so they are not always the best
choice, but they depend on the application scenario.

Lesson 15: It is possible to obtain high performance
with reasonable GPU development effort.

Lesson 16: The only way to assess the obtained
performance is through actual implementation.

Apart from individual algorithmic building blocks used in
several space applications, we also ported space-relevant full
applications to embedded GPUs. This includes an inference
chain designed for the CIFAR-10 data set [13], the Euclid NIR
ESA application [14] and implementations of the CCSDS 121
and 122 compression standards [15].



TABLE I
BUILDING BLOCKS OF GPU4S BENCH [13] EXTRACTED FROM CURRENT AND FUTURE PAYLOAD APPLICATIONS ACROSS ALL SPACE DOMAINS.

Domains Compression Vision Based Navigation Image Processing Neural Network Signal Processing
Building Blocks Processing

Fast Fourier Transform SAR [23], GENEVIS [24] ADS-B [25], NGDSP [26]
Finite Impulse Response Filter MER [27] ADS-B [25], NGDSP [26]

Discrete Wavelet Transform CCSDS 122 [28]
Matrix Computation MER [27], GENEVIS [24] HTI [29] Inference [30] [31]

Convolution OpenCV HTI [29], GENEVIS [24] Inference [30] [31]
Correlation OpenCV GO3S [32], GENEVIS [24] ADS-B

Max Detection and DNN Primitives MER [27] GO3S [32] Inference [30] [31] ADS-B [25]
Synchronisation Mechanism GENEVIS [24] EUCLID NIR [21], GO3S [32] TensorFlow ADS-B [25], NGDSP [26]

Memory Allocation CERES [33], OpenCV EUCLID NIR [21], GO3S [32] TensorFlow ADS-B [25], NGDSP [26]

Our results have shown that in all cases, the NVIDIA GPUs
are able to provide significant speedups, both compared to their
CPUs as well as compared to existing space processors. The
same applications on the AMD platform provide lower GPU
performance, but strong parallel CPU performance compared
to the parallel CPU performance of the NVIDIA platforms.

Overall however, the performance of the NVIDIA Xavier’s
GPU outperformed all other versions and platforms.

Lesson 17: GPUs can significantly accelerate complex
space processing compared to other technologies.

D. Radiation Effects

As already mentioned, a synthesis of radiation testing results
of embedded GPUs are available [19], with indication that
certain AMD devices have more promising radiation tolerance
than some recent NVIDIA devices, mainly due to effects
related to the used process node technologies from competing
foundries. Both types of GPUs have been considered for
experimental launches of national agencies and nanosatellites.
These missions are going to provide valuable information
regarding the radiation tolerance of these devices in the space
environment. However, as GPU SoCs are complex devices
to test for radiation effects - and currently publicly available
radiation test results do not cover all needed parameters for
future space qualification - more radiation tests are essential
for their general use in space. ESA is currently planning
further radiation tests of embedded GPUs.

Meanwhile, our analysis from the use of COTS devices in
space shows that solutions based on redundancy can mitigate
radiation effects. However, hardware triplication as imple-
mented in some space-grade systems although it is effective,
it will probably exceed significantly the power budget of
an on-board space system. For this reason, other solutions
leveraging the inherent parallelism of the GPU hardware and
software can achieve similar degree of reliability. For example,
hardware [34] or software [35] GPU reliability solutions
proposed for the automotive sector can be reused in space as
well. Software solutions [36] are particularly interesting, since
they can be applied directly in existing systems. However, all
these potential proposals need to be assessed in a relevant
space environment as part of a radiation testing campaign
and/or experimental missions.

Lesson 18: GPU reliability solutions for the automo-
tive domain can be adopted for use in space.

III. ROADMAP AND WAY FORWARD

Based on the project’s outcomes and the lessons learnt that
we have presented, we conclude that Embedded GPUs are an
appropriate solution for high-performance processing in space.

However, in order to be adopted we need to solve some of
their identified issues. First, it seems that the only potential
option at least at the moment is to adopt them as COTS
components. Therefore, we need to address the up-screening of
these devices, particularly in terms of radiation effects, as well
as their long term availability. COTS devices are becoming
more accepted for the use in space, mainly driven by adoption
in nano-satellites. ESA is also working on specific guidelines
for the use of COTS devices in space.

Moreover, the available software fault detection, isolation,
and recovery (FDIR) techniques need to mature and be tested
in relevant environments. Such activities are already planned
by national agencies and can be complemented by flight
heritage results from commercial and nanosatellite missions
using GPUs.

Regarding the domains of COTS GPU adoption in space,
institutional missions for example are rarely based on such
technologies in order to reduce risk. However, if they are
proven as an enabling technology by the use in other type
of missions, they may be considered for wider adoption.

Earth Observation commercial missions are more likely to
adopt GPUs since their typical processing tasks can be easily
parallelised. Moreover, the recent experimental use of AI pro-
cessors in space such as the Intel Movidius for cloud removal
in Earth Observation shows that this domain is open to COTS
hardware and software. With the increased adoption of AI
techniques in space, GPUs have the potential to be used. The
reason is that GPUs are good accelerators for AI taks as we
have shown also with our CIFAR-10 demonstrator. Although
AI accelerators are more efficient for this type of processing,
layer operations of AI algorithms are constantly changing, so
the flexibility of GPUs provides a long term solution for AI
processing as well as for other image processing too.

Nano-satellites already heavily rely on COTS components
and can directly benefit from embedded GPUs, and there are
several missions which already adopt embedded GPUs. The



main benefit in that case is the reduction of cost both in terms
of hardware as well as of software, which can be developed
fast and there is large availability of GPU software developers.
This applies also to constellation missions, where cost is an
important driver, too, although at a smaller extent.

The mission duration and orbit are also important for the
possible adoption of GPUs. Low-earth orbit missions (LEO)
and missions with short duration will likely adopt COTS GPUs
first, due to the more limited exposure to radiation.

Finally, another domain that can benefit from GPUs is
New Space. Several commercial satellite operators envision
the use of satellite-as-a-service in which they rent time of their
platform to customers. Since the processing requirements of
each customer are different and are not known a priori, the
ability of the fast reprogramming offered by the GPU can be
an important feature for these missions.
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