
Low-Latency Asynchronous Logic Design
for Inference at the Edge

Adrian Wheeldon, Alex Yakovlev, Rishad Shafik and Jordan Morris
Microsystems Group, Newcastle University, Newcastle Upon Tyne, UK

Email: adrian.wheeldon@ncl.ac.uk

Abstract—Modern internet of things (IoT) devices leverage
machine learning inference using sensed data on-device rather
than offloading them to the cloud. Commonly known as inference
at-the-edge, this gives many benefits to the users, including
personalization and security. However, such applications demand
high energy efficiency and robustness. In this paper we propose
a method for reduced area and power overhead of self-timed
early-propagative asynchronous inference circuits, designed using
the principles of learning automata. Due to natural resilience to
timing as well as logic underpinning, the circuits are tolerant to
variations in environment and supply voltage whilst enabling the
lowest possible latency. Our method is exemplified through an
inference datapath for a low power machine learning application.
The circuit builds on the Tsetlin machine algorithm further
enhancing its energy efficiency. Average latency of the proposed
circuit is reduced by 10× compared with the synchronous im-
plementation whilst maintaining similar area. Robustness of the
proposed circuit is proven through post-synthesis simulation with
0.25V to 1.2V supply. Functional correctness is maintained
and latency scales with gate delay as voltage is decreased.

I. INTRODUCTION

There is an accelerating demand for connected devices in
the internet of things (IoT) [1]. Such devices often comprise a
sensing aspect, collecting environmental or personal data, for
providing useful monitoring and decisions for transforming
our everyday life. The sensors collect vast amounts of data
which must be processed into a usable or more manageable
form. Traditionally this was done by offloading the data into
cloud compute servers, usually over a wireless medium. How-
ever this paradigm is quickly becoming unmaintainable as IoT
devices expand well into the billions [2]. Generated data sizes
become overwhelming, wireless data transmissions violate
power budgets, and we see a shift towards data processing at
the edge [3]. Designers of IoT products are turning to machine
learning (ML) in order to extract meaningful features from the
sensed data. Such products are often powered by batteries
or energy harvesters which demand low power and energy
efficiency, as well as robustness to supply variations [2].

There are several ML algorithms which may be suited to
such applications, with neural networks (NNs) in widespread
usage thanks to their often state-of-the-art accuracy and power-
ful hardware/software ecosystem. Hyperdimensional comput-
ing has also emerged in recent years with applications in low
power systems [4]. Recently the Tsetlin machine (TM) algo-
rithm has been proposed as a promising ML algorithm based on
Tsetlin automata—specialized learning automata. The Tsetlin
automata use reinforcement learning locally, together creating

an ensemble learning effect on the global scale which is
used to compose logic clauses. Existing hardware based on
TM offers a new direction for ML whose inference engine
is based on logic with little arithmetic [5]. The logic-based
underpinnings of the TM algorithm provide opportunities for
low power and energy efficient ML hardware design in the IoT.

In this work we apply an asynchronous circuit design
methodology [6] to the TM algorithm. By removing the pairing
between clock and supply voltage as in the synchronous
digital designs, it enables an aggressive voltage scaling [7]
for reduced energy per inference and also adds robustness
to environmental variations. Although we use ML as the key
application driver, it is possible these techniques can also be
applied in other application areas. Our method is built on
dual-rail circuits with early propagation [8]. Dual-rail is an
asynchronous circuit design style in the family of quasi delay
insensitive (QDI) circuits. It is inherently robust to circuit delay
variations which means it can operate across a wide range
of supply voltages and temperatures. This usually comes at
the cost of duplicated logic and completion detection (CD)
overhead [9]. In our design we carefully select circuit topology
to minimize such duplications. Additionally we use timing
optimizations to reduce overhead from CD.

Nomenclature: Positive- and negative-rail signals are de-
noted xp and xn respectively. xm denotes the mth signal in the
bit vector x. V→ S denotes a transition on a dual-rail signal
from a valid codeword to a spacer. Vice versa for S→ V.

Major Contributions of this paper:

1) application of early-propagative, reduced-overhead self-
timed dual-rail circuits to ML inference; and

2) analysis of operand and delay probability distributions in
the ML inference circuit.

Paper Organization: Section II introduces the concepts
of the TM algorithm. Section III first briefly introduces the
principles of dual-rail circuits before describing our reduced
CD scheme. Section IV presents our dual-rail inference data-
path design with in-depth analyses. We finally conclude our
findings in Section V.

II. TSETLIN MACHINE OVERVIEW

The main inference component of the TM is the conjunctive
clause which uses propositional logic expressions to produce a
vote. The composition of each clause (determined by inclusion
of literals) is controlled by the action outputs of a team of

ar
X

iv
:2

01
2.

03
40

2v
1

 [
ee

ss
.S

P]
 7

 D
ec

 2
02

0

Positive Automaton
Teams & Clauses

Negative Automaton
Teams & Clauses

Input Feature Vector (f)

Majority Voting

Clause Results Clause ResultsFeedback

Class Confidence

Classification

Figure 1. Simplified overview of a single Tsetlin machine (TM) classifier.

Tsetlin automata. For inference, the Tsetlin automata them-
selves are not required. Following a number of reinforcement
steps, the automata decide whether their associated literal
should be excluded from (action 1) or included in (action 2)
the clause. Figure 1 illustrates a TM classifier with automaton
teams and conjunctive clauses as one block for brevity.

Each clause can produce a vote for its class. Half of the
clauses can vote positively, while the other half of the clauses
can vote negatively. The inclusion of inhibition in the voting
system enables non-linearity in the inference process. The
votes are summed in a majority vote to produce a collective
result which gives an indication of confidence. This confidence
is used to influence future decisions of the automata [10].

A simple thresholding function can be used to generate the
final classification output. If the votes are positive (or zero), the
input data is determined to belong to the class. For a negative
sum the input data is determined to be not in the class.

For purposes of studying inference, we abstract the Tsetlin
automaton action outputs to the circuit’s environment and con-
centrate on only the clauses calculation and majority voting.

III. SELF-TIMING METHODOLOGY

In dual-rail logic two wires are used to encode a codeword.
For a single bit x, the dual-rail encoding consists of the
positive and negative rails {xp, xn}. x = 0 is encoded as
{0, 1}, and x = 1 is encoded as {1, 0}. One of the remaining
states—{0, 0} or {1, 1}—is chosen to represent the empty
state, referred to as a spacer, which separates valid codewords
temporally so they can be distinguished from each other.
Care must be taken to correctly handle spacer in the design,
otherwise data hazards could occur where one valid overtakes
another [11]. The remaining state is forbidden and must be
avoided by design.

In our design we abide by the following requirements to
ensure correct circuit operation:

1) Monotonic switching at the PIs.
2) Monotonic switching within the circuit.
3) Acknowledgment of S→ V on POs.
4) V→ S on POs and internal signals before new PIs applied.
5) PIs must transition S→ V and V→ S for each operand.
6) PIs transition V→ S only after S→ V on POs.

Requirements 1, 5 and 6 are assumed as part of the circuit’s
environment. To ensure Requirement 2, the circuit must be

constructed solely from unate logic gates. To maintain mono-
tonicity we must exclude non-unate logic gates (e.g. XOR and
XNOR) from our library when generating the dual-rail netlist.
Requirement 3 is taken care of by CD insertion. Requirement 4
can either be assumed as part of the environment or a delay
can be added to the falling edge of CD assertion. The latter
will be discussed in Section III-A.

A. Reduced Completion Detection Scheme

CD which acknowledges both S→ V and V→ S at the
primary outputs (POs) is expensive to implement due to the
vast amount of complex C-elements required [12]. By indi-
cating only S→ V transitions we can significantly reduce the
overhead of CD by using a small number of simple gates.

Full CD on internal signals is even more costly and removes
the possiblity of early propagation. Its job is to ensure S→ V
and V→ S occurs on internal nets for each operand. Internal
CD can be safely omitted by giving a grace period for the
internal signal to reset to spacer before applying new primary
inputs (PIs). Codeword validity and correct operation can still
be guaranteed as long as Requirements 4 to 6 are met.

In order to meet Requirement 4 there must be a sufficient
grace period from application of spacer at the PIs until ap-
plication of the next valid at the PIs. The grace period can
be determined by using static timing analysis to find the
maximum possible S→ V time on all nodes of the circuit.
Consequently the grace period can be guaranteed by either
1) the circuit environment waiting for the required grace
period; or 2) an appropriate delay built into the done signal of
the CD. The required delay can be calculated as td = tint−tio,
where tint is the maximum internal net V→ S time, and tio is
the maximum V→ S time from the PIs to POs. tint must include
false paths. It is these false path which lead to the distinction
between tint and tio. Since there may be some margin added
to td, or due to implementation of the delay td may be greater
than the requirement, the actual timing of the 1→ 0 transition
of done can be calculated by tdone1→0 = tio + td.

IV. INFERENCE DATAPATH

The inference datapath of the TM is derived from the full TM
diagram (Figure 1). The Tsetlin automata and their feedback
are not required for inference. Only the exclude action output is
required from the Tsetlin automata teams. In the diagram this
is abstracted to the PI e. We split the majority voting of the TM
into two sections. Firstly we distinctly count all positive votes
and negative votes by means of population counts. Secondly
the two counts are compared using a magnitude comparator
to determine the winner. The result of the comparison is taken
as the classifier outcome.

There are several ways to construct the circuit architecture.
This architecture has been chosen due to the simplicity and
efficiency of the asynchronous magnitude comparator as will
become clear in Section IV-C.

All PIs and POs of the circuit are dual-rail encoded. These
can interface natively with other dual-rail signals, or with
synchronous circuits using converters [11].

A. Clause Calculation

The e input to the inference datapath controls whether
the corresponding feature input (f) will be excluded from a
clause computation. We use OR gates to form a mask of each
feature input in each clause. The partial clause values, pc,
must be aggregated using an AND tree in order to evaluate the
entire clause comprising input from all f and their associated
automaton actions. The exclude signals (e) from the Tsetlin
automata mask fm and fm feature inputs causing logic-1 at
the AND gate inputs. If e2m (resp. e2m+1) is logic-0 (ie. the
feature input should be included in the clause calculation),
the value of fm (resp. fm) is passed through to the AND gate to
be evaluated. The partial clause evaluation circuit is replicated
as many times as there are feature inputs to the TM.

Since fm will be dual-rail encoded in our system, we
do not need to generate fm internally. By performing direct
mapping of a single-rail circuit, and along with negative gate
optimization [11], we arrive at the optimized dual-rail circuit
in Figure 2. All signal paths in this circuit have a single
inversion—satisfying spacer requirements and giving the block
an inverting spacer overall.

B. Population Count

We base our population count circuit on the optimized
design of Dalalah [13]. The eight-input design comprises nine
half-adders, two full-adders and two OR gates and is illustrated
in Figure 2. Each wire in the diagram represents two signals
which form the dual-rail encoding. The dual-rail OR gate is
internally constructed from one OR gate and one AND gate.
The dual-rail half-adders are constructed using two complex
gates and two simple gates each. There is no spacer inversion
within the half-adders as all signal paths have an even number
of inversions. The dual-rail full-adder is constructed from six
complex gates, two simple gates and four inverters [6]. It
has inverted spacers on carry-in and carry-out with respect to
the other inputs and outputs, therefore we must accommodate
for these in the population count design by adding spacer
inverters: 1) between HA8 and FA0; 2) between FA1 and the y3
output. The resulting dual-rail population count circuit has no
spacer inversion overall, therefore the output spacer will have
the same polarity as the input spacer.

C. Magnitude Comparator

The magnitude comparator compares the number of votes
from the positive and negative Tsetlin automaton teams. A
larger number of positive votes indicates that the input pattern
belongs to the class in question, and conversely, a larger
number of negative votes indicates that the input pattern does
not belong to the class in question.

The magnitude comparator is based on a request archi-
tecture [6] and compares the operands in bit-pairs, starting
from the most significant bit. Once a difference is found, the
answer is known, and the remainder of the bits need not be
compared. This architecture enables huge average-case latency
improvement over a synchronous counterpart. Energy savings

Figure 2. Block diagram of the Tsetlin machine (TM) inference path.
Including dual-rail circuits for partial clause evaluation; and population count
architecture, where each wire represents two signals with dual-rail encoding.
spinv: spacer inverter.

are also made by due to saved switching power on the lower
bits when the operands differ by a large magnitude.

Since the comparator’s outputs (less, equal, and greater)
are mutually exclusive, we take advantage of this in the
asynchronous design. We use a 1-of-3 encoding on the out-
put instead of the usual dual-rail—1-of-n encoding being a
superset of dual-rail. Provided a spacer seperates the valids,
the switching of 1-of-n codes is monotonic [14], therefore
satisfying Requirement 2. Without this trick, three sets of dual-
rail signals would be required at the comparator outputa at the
expense of more logic to drive these signals. The inputs to the
comparator are dual-rail encoded.

D. Inference Datapath Results

The inference datapath was synthesized using SYNOPSYS
DESIGN COMPILER for two different 65 nm silicon libraries.
UMC LL is a commercially available, low-leakage library
which we use with nominal 1.2V supply and TT corner. FULL
DIFFUSION is a custom library aimed at high performance
subthreshold operation [15]. It uses a full diffusion sizing strat-
egy with non-minimum-length transistors in order to mitigate
subthreshold effects. For this silicon library the circuit is first
synthesized at TT corner for nominal 1.2V supply and results
are shown with supply voltage in the range 0.25V to 1.2V.

Table I
COMPARISON OF SINGLE-RAIL AND DUAL-RAIL CIRCUITS AFTER SYNTHESIS.

Technology Design Cell Area Sequential
Area

Avg.Power
(µW)

Leakage Power
(nW)

Avg.Latency
(ps)

Max Latency
(ps)

tV→ S

(ps)
Avg.Inferences
(Millions s−1)

UMC LL Single-rail 1800 1300 470 75 2100 2100 — 480
Proposed Dual-rail 2000 1100 660 73 260 3100 3100 300

FULL DIFFUSION Single-rail 3400 2500 990 37 2400 2400 — 410
Proposed Dual-rail 3800 2400 1700 62 220 1900 1700 510

0.2 0.4 0.6 0.8 1 1.2
102

104

106

Supply Voltage (V)

L
at

en
cy

(p
s)

Figure 3. Scaling of dual-rail datapath latency with supply voltage for the
FULL DIFFUSION library.

Results in Table I show similar cell areas for both single-rail
and dual-rail designs for each silicon library. This is possible
due to the careful choice of dual-rail circuit architecture and
the reduced completion detection scheme. The dual-rail clause
computation and magnitude comparator are more area efficient
than their single-rail conterparts due to exploitation of dual-rail
encoding and clever use of 1-of-3 encoding respectively.

For the area of the sequential cells we count flip-flop area for
the single-rail designs and C-element area for dual-rail designs.
The sequential area is similar between designs, despite the
dual-rail design having twice as many sequential cells due to
the doubled input rails. The dual-rail circuit uses C-elements
as latches. These comprise four simple gates in the FULL
DIFFUSION library (due to lack of AOI32 cells) and a single
complex gate in the UMC LL library. Note that the cell
area varies dramatically between the libraries due to transistor
sizing—UMC LL being minimally-sized for superthreshold
and FULL DIFFUSION larger for subthreshold operation. The
number of cells does not vary significantly.

Latency is measured from S→ V in the dual-rail designs,
and the clock period defines the latency for single-rail designs.
The dual-rail circuit enables 10× reduction in average latency
thanks to early propagation. Average throughput is worsened
however, due to the lengthened logic path and the need for the
additional V→ S transition. Although the dual-rail switching
power is greater due to higher inherent activity factor, the
computation energy is reduced due to increased throughput.

Throughput period is defined by the single-rail circuit’s
clock period. For the dual-rail design, throughput period is
determined by tS → V + tS → V so that the PIs are ready for the
next operand. tV → S has the same magnitude as max(tS → V).

Figure 3 shows the effects of supply voltage on datapath
latency. The latency increases exponentially as the supply
voltage is reduced from 0.6V to 0.25V. The key point is that
the circuit functionality is guaranteed across the whole supply
voltage range thanks to the requirements in Section III and
without any alteration to the hardware.

V. CONCLUSION

In this paper we have demonstrated an asynchronous, self-
timed inference datapath design with area and power of equal
orders of magnitude to the synchronous equivalent. Early
propagation enables 10× lower inference latency than the
equivalent synchronous circuit on average. The savings are
enabled by a reduced CD scheme which can be applied to
any dual-rail asynchronous circuit. The new scheme introduces
a timing assumption which can be incorporated into the CD
circuit, so that the circuit environment does not need to be
adapted. This type of low-latency circuit can have applications
in speech recognition for wearables and other low-power ap-
plications where inference latency is of particular importance.

In future work we will apply asynchronous design styles to
the training datapath of the TM algorithm in order to enable a
fully-asynchronous ML hardware capable of on-chip learning.

REFERENCES

[1] M. Capra et al., “Edge computing: A survey on the hardware require-
ments in the Internet of Things world,” p. 100, Apr. 2019.

[2] R. Shafik, A. Yakovlev, and S. Das, “Real-power computing,” IEEE
Trans. Comput., vol. 67, no. 10, pp. 1445–1461, 2018.

[3] “Arm AI Platform Solutions Brief,” Arm Limited, Tech. Rep., 2020.
[4] A. Burrello et al., “Hyperdimensional Computing with Local Binary

Patterns: One-Shot Learning of Seizure Onset and Identification of
Ictogenic Brain Regions Using Short-Time iEEG Recordings,” IEEE
Trans. Biomed. Eng., vol. 67, no. 2, pp. 601–613, Feb. 2020.

[5] A. Wheeldon et al., “Learning automata based energy-efficient AI
hardware design for IoT applications,” Philos. Trans. R. Soc. A Math.
Phys. Eng. Sci., vol. 378, no. 2182, 2020.

[6] ——, “Self-timed, minimum latency circuits for the internet of things,”
Integration, vol. 69, pp. 138–146, Nov. 2019.

[7] R. Diamant, R. Ginosar, and C. Sotiriou, “Asynchronous sub-threshold
ultra-low power processor,” in 2015 25th Int. Work. Power Timing Model.
Optim. Simul. IEEE, Sep. 2015, pp. 89–96.

[8] C. F. Brej and J. D. Garside, “Early Output Logic using Anti-Tokens,”
in Proc. IEEE/ACM Int. Conf. Comput. Des., 2006, pp. 158–163.

[9] A. Yakovlev, P. Vivet, and M. Renaudin, “Advances in Asynchronous
logic: from Principles to GALS & NoC, Recent Industry Applications,
and Commercial CAD tools,” in Proc. Conf. Des. Autom. Test Eur., 2013.

[10] O.-C. Granmo, “The Tsetlin Machine - A Game Theoretic Bandit Driven
Approach to Optimal Pattern Recognition with Propositional Logic,”
Apr. 2018.

[11] D. Sokolov, “Automated synthesis of asynchronous circuits using direct
mapping for control and data paths,” Ph.D. dissertation, Newcastle
University, 2006.

[12] J. Sparsø and S. Furber, Principles of Asynchronous Design: A Systems
Perspective. Kluwer Academic Publishers, 2001.

[13] A. Dalalah, S. Baba, and A. Tubaishat, “New Hardware Architecture for
Bit-Counting,” in Proc. 5th WSEAS Int. Conf. Appl. Comput. Sci., 2006,
pp. 118–128.

[14] W. Bainbridge et al., “Delay-insensitive, point-to-point interconnect
using m-of-n codes,” in Ninth Int. Symp. Asynchronous Circuits Syst.
2003. Proceedings. IEEE Comput. Soc, 2003, pp. 132–140.

[15] J. Morris et al., “Unconventional Layout Techniques for a High Perfor-
mance, Low Variability Subthreshold Standard Cell Library,” in 2017
IEEE Comput. Soc. Annu. Symp. VLSI. IEEE, Jul. 2017, pp. 19–24.

	I Introduction
	II Tsetlin Machine Overview
	III Self-timing Methodology
	III-A Reduced Completion Detection Scheme

	IV Inference Datapath
	IV-A Clause Calculation
	IV-B Population Count
	IV-C Magnitude Comparator
	IV-D Inference Datapath Results

	V Conclusion
	References

