
Neighbor Oblivious Learning (NObLe) for Device
Localization and Tracking

Zichang Liu
Department of Computer Science

Rice University
Houston, USA

zichangliu@rice.edu

Li Chou
Department of Computer Science

Rice University
Houston, USA
lchou@rice.edu

Anshumali Shrivastava
Department of Computer Science

Rice University
Houston, USA

anshumali@rice.edu

Abstract—On-device localization and tracking are increasingly
crucial for various applications. Along with a rapidly growing
amount of location data, machine learning (ML) techniques are
becoming widely adopted. A key reason is that ML inference is
significantly more energy-efficient than GPS query at comparable
accuracy, and GPS signals can become extremely unreliable for
specific scenarios. To this end, several techniques such as deep
neural networks have been proposed. However, during training,
almost none of them incorporate the known structural information
such as floor plan, which can be especially useful in indoor
or other structured environments. In this paper, we argue that
the state-of-the-art-systems are significantly worse in terms of
accuracy because they are incapable of utilizing this essential
structural information. The problem is incredibly hard because
the structural properties are not explicitly available, making
most structural learning approaches inapplicable. Given that both
input and output space potentially contain rich structures, we
study our method through the intuitions from manifold-projection.
Whereas existing manifold based learning methods actively uti-
lized neighborhood information, such as Euclidean distances,
our approach performs Neighbor Oblivious Learning (NObLe).
We demonstrate our approach’s effectiveness on two orthogonal
applications, including Wi-Fi-based fingerprint localization and
inertial measurement unit(IMU) based device tracking, and show
that it gives significant improvement over state-of-art prediction
accuracy.

I. INTRODUCTION

The global market size for location-based services is ex-
pected to grow to USD 26.7 billion by 2025 from USD 13.8 bil-
lion in 2020 [1]. The key to the projected growth is an essential
need for accurate location information. For example, location
intelligence is critical during public health emergencies, such
as the current COVID-19 pandemic, where governments need
to identify infection sources and spread patterns. Traditional
localization systems rely on global positioning system (GPS)
signals as their source of information. However, GPS can
be inaccurate in indoor environments and among skyscrapers
because of signal degradation. Moreover, GPS is notorious for
battery drainage because of slow and demanding communica-
tion requirements [2]. Therefore, GPS alternatives with higher
precision and lower energy consumption are urged by industry.
Existing network infrastructure such as Wi-Fi (IEEE 802.11) is
utilized for localization [3] [4] to avoid expensive infrastructure
deployment. Besides, low-cost inertial measurement sensors
(IMU) based on accelerators and gyroscopes, which are widely
embedded in modern mobile devices, have also emerged as

popular solution [5] [6] for both indoor and outdoor device
tracking task. An informative and robust estimation of position
based on these noisy inputs would further minimize localization
error.

Machine learning (ML) techniques are a logical choice for
these estimation tasks, and popular algorithms such as k-nearest
neighbors and random forest have been proposed [7] [8]. Since
deep neural networks (DNN) have performed surprisingly well
in computer vision, natural language processing, and informa-
tion retrieval, many attempts have been made to utilize DNNs
for localization [9] [10] [11]. These approaches either formulate
localization optimization as minimizing distance errors or use
deep learning as denoising techniques for more robust signal
features.

Fig. 1: Both figures corresponds to the three building in UJIIndoorLoc
dataset. Left figure is the screenshot of aerial satellite view of the
buildings (source: Google Map). Right figure shows the ground truth
coordinates from offline collected data.

All the methods mentioned above fail to utilize common
knowledge: space is usually highly structured. Modern city
planning defined all roads and blocks based on specific rules,
and human motions usually follow these structures. Indoor
space is structured by its design floor plan, and a significant
portion of indoor space is not accessible. As an illustration,
consider Fig. 1 based on the largest publicly available indoor
Wi-Fi localization dataset UJIIndoorLoc [12], which covers
three buildings with four floors, a space of 397 meters by 273
meters. Space structure is clear from the satellite view, and
offline signal collecting locations exhibit the same structure.
Fig. 4(a) shows the outputs of a DNN that is trained using mean
squared error to map Wi-Fi signals to location coordinates. This

ar
X

iv
:2

01
1.

14
95

4v
1

 [
ee

ss
.S

P]
 2

3
N

ov
 2

02
0

regression model can predict locations outside of buildings,
which is not surprising as it is entirely ignorant of the output
space structure. It was observed in [8] [19] that projecting
the predicted outputs to the closest positions on the map
would increase localization precision. Our experiment shows
that forcing the prediction to lie on the map only gives marginal
improvements. In contrast, Fig. 4(d) shows the output of our
NObLe model, and it is clear that its outputs have a sharper
resemblance to the building structures.

We view localization space as a manifold and our problem
can be regarded as the task of learning a regression model
in which the input and output lie on an unknown manifold.
The high-level idea behind manifold learning is to learn an
embedding, of either an input or output space, where the
distance between learned embedding is an approximation to
the manifold structure. In scenarios when we do not have
explicit (or it is prohibitively expensive to compute) manifold
distances, different learning approaches use nearest neighbors
search over the data samples, based on the Euclidean distance,
as a proxy for measuring the closeness among points on the
actual manifold. While this is justified because the definition of
manifold states that any manifold locally is a Euclidean space,
however, the Euclidean distances between data pairs may not
be a good criterion for finding neighbors on manifold structures
for localization services as input signals are extremely noisy.

Our Contributions: Our proposal is inspired by approaches
in manifold learning. We argue that Euclidean distance is not
reliable for local manifold structure approximation in localiza-
tion, and propose to ignore small changes in the Euclidean dis-
tance and focus on the relative closeness of reconstructed em-
bedding. We propose Neighbor Oblivious Learning (NObLe),
a DNN approach that achieves structure-aware localization.
Further, we demonstrate the applicability of our techniques on
two independent applications: (1) Wi-Fi signal strength based
indoor localization and (2) IMU-based device positioning in
an outdoor environment. Our evaluations on both applications
show that NObLe gives significant accuracy improvements.
To illustrate that our system can be deployed on energy and
computation constraints mobile devices, we thoroughly ran
energy tests on two systems. We demonstrate that our model
has significantly smaller energy consumption (specifically, 27
times less energy on IMU tracking) than GPS measurements.

II. BACKGROUND AND RELATED WORK

Manifold Learning: Manifold learning is a class of non-
linear dimensionality reduction methods. The objective is to
find a low-dimensional representation describing some given
high-dimensional data observed from an input or feature space
X . It is generally assumed that ∀x ∈ X , x is sampled from
some smooth p-dimensional submanifold M ⊂ Rd. The man-
ifold learning task is to then find a mapping ψ : x → z ∈ Rs

such that p ≤ s � d, while, loosely stated, preserving
(structural) properties (e.g., interpoint distances) of the original
feature space. Two popular manifold learning methods are
locally linear embedding (LLE) [13] and isometric mapping
(Isomap) [14]. These algorithms follow a template comprised
of three steps: (1) construct a neighborhood graph, which

involves (expensive) nearest neighbor search; (2) construct a
(positive semi-definite) kernel, which is specified as shortest
path distances for Isomap, and weights (or coefficients) from
solving a system of linear equations for LLE; and (3) perform
partial Eigenvalue decomposition.

Wi-Fi Localization: It is cost-effective to leverage existing
wireless infrastructure to develop localization techniques. Com-
bining Wi-Fi with radio map is also known as fingerprinting,
which consists of two phases. Offline phase: signal features
are sampled at selected locations and processed to build the
radio map, a database of locations, and their corresponding
signal values. One type of signal feature used is received signal
strength indicator (RSSI) values from multiple wireless access
points (WAP). Online phase: observed RSSI values are matched
with points on the radio map to determine the current location,
which relies on searching for the most similar locations based
on the stored RSSI values in the radio map. Many of these
techniques do not use structural information.

Localization on IMU: Cheap inertial-based sensors on mo-
bile computing devices have emerged as a potential solution for
infrastructure-free indoor localization and navigation. However,
there are two main challenges. First, IMUs are extremely noisy,
making it impossible to use only through physical principles
and numerical integration. Second, it keeps updating previous
positions, which makes it subject to error accumulation. Various
techniques have been proposed to mitigate error accumulation
by ruling out illegal movements. A line of work utilizes a floor
map to hand-design heuristic rules to correct localization error.
For example, [8] achieved a mean error of 4.3m on a testbed of
163m by 62m. With a map, it uses high-accuracy turn detection
to correct positioning error based on the assumption that turns
can only be made on specific points on the map.

ML in Localization: Several ML algorithms, such as support
vector machines and neural networks, have been applied to
localization. Typically, signal strength readings are used as
inputs, and outputs are either two or three dimension vectors,
corresponding to 2-D or 3-D location estimates [22]. This
approach formulates localization as a regression problem that
predicts two continuously coordinate variable values given
signal strength vector. ML is also used for denoising in order to
extract core features for wireless signals. WiDeep [10] utilize
one auto-encoder (AE) for every WAP, making it hard to scale.
DeepFi [9] also utilizes DNNs, but also ignore structure infor-
mation. CNNLoc [11] utilizes a complex architecture including
stacked AEs and convolutional neural networks to achieve a
mean error of 11.78m on UJIIndoorLoc. ML was also applied to
IMU-based localization. [8] used nearest neighbors and random
forest regression to predict the travel distance based on IMU
readings.

III. PROPOSED SYSTEM DESIGN
A. Intuition

The world we live in contains many structural themes and
elements. Factoring in structure information usually lead to
performance improvement. For example, in computer vision,
many state-of-art approaches exploit structure within images.
Given the structural nature of localization space, we approach

the problem with the intuition and consideration that the input
and output space lies in a manifold space.

Manifold-based learning algorithms, usually unsupervised,
utilize local Euclidean distances to approximate neighborhood
structure. However, the input features for localization problems
are noisy signals. When a person is walking, the accelerometer
and gyroscope sensors are likely to pick up a lot of noise
due to spurious movements. Moreover, different individuals
have different walking styles. Similarly, Wi-Fi signals can
be noisy because of moving crowds or room set-ups. Thus,
small changes in such noisy input signals are not reliable
information about the manifold structure and direct adopting
traditional manifold learning approaches is not appropriate. To
combat this noise, we ignore small Euclidean differences and
propose Neighbor Oblivious Learning (NObLe). We propose
to quantize the continuous output space into a set of grid-like
neighborhood areas, and all data points within the same grid are
considered belonging to the same class. It is widely accepted
that the penultimate layer of deep neural network classifier
model can be regarded as learned embedding [15] [16]. We use
DNN and optimize it with cross entropy loss to maximize the
embedding distance between different classes, while oblivious
to embedding distance within the same class.
B. Space Quantization and Multi-label Classification

Consider a space S for localization. We collect data samples
of the form (~s, (x, y)), where ~s is a vector representing signal
features, and (x, y) denotes longitude and latitude coordinates.
We propose to perform space quantization on (x, y) to trans-
form continuous position coordinates into neighborhood area
classes. Each data sample now becomes (~s, c, (x, y)), where c
is a neighborhood area classes ID. Specifically, we divide S
into non-overlapping square grids with a side length of τ . In
practice, we set τ to be less than 0.2m. Then, we assign each
grid neighborhoods a class ID c and discard all classes without
any data points. Thus, instead of using position coordinates
as training labels, NObLe uses neighborhood class as ground
truth. During inference, NObLe uses the predicted class to look
up its neighborhood class’s central coordinates and returns it
as the prediction result.

Class A Class B Class C Class D

Fig. 2: Consider this space for localization. Gray circles represent
training data point locations. The whole space is quantized into four
class and data points are labeled with its corresponding grid class ID.

Our quantization approach exploits and approximates the
ground truth closeness between data points in the output space
without relying on Euclidean distance in the input space as
neighborhood approximation. Moreover, assume a thorough
training data sampling process over space S, our method
eliminates inaccessible areas such as dead or irrelevant space
from the output space because samples either cannot be or are

not intentionally collected from those areas. For example, in
Fig. 1, the middle area of top left buildings will not translate
to any neighborhood classes as no data resides in that area.

Our space quantization enables us to solve the manifold
regression problem with a fine-grained classification model.
However, we have introduced one hurdle. The classification
problem is likely to suffer from class data sparsity. Since our
grid is fine-grained, it is likely to contain very few training
samples. We could increase τ , or we could assign data samples
with multiple classes, the ones that are adjacent to the real class.
Moreover, we could also divide space S into grid neighborhood
of different length, τ and l where τ < l . Each data sample now
becomes (~s, c, r(x, y)) where c denotes for the neighborhood
classes ID of size τ and r denotes neighborhood classes ID of
size l. This formulation gives different levels of granularity of
the output manifold.
C. Why DNN Classification is Equivalent to Manifold Learning

We will make the connection between manifold learning
and our approach mathematically. To begin with, we in-
troduce multidimensional scaling (MDS), a popular mani-
fold learning algorithm, which has the objective: f(Z,X) =∑n

i=1

∑n
j=1+i(||zi−zj ||−||xi−xj ||)2 for n points. Essentially,

MDS tries to learn embedding Z on output manifold such that
the pairwise relationships on input space are preserved. Close
neighbors are encouraged to stay close in the reconstructed
space and vise versa.

In our formulation of NObLe, we use binary cross-
entropy loss function for multi-label classification, defined as
J(hc, ĥc) =

∑n
i=1

∑k
c=1−hc log(ĥc) − (1 − hc) log(1 − ĥc),

where k is the number of classes, n is the number of training
data, hc ∈ {0, 1} indicates the right class when hc = 1,
and ĥc is the sigmoid function: ĥc = (1 + exp(−w>c zi))−1.
Here, wc denotes the weight vector for class c at the last
layer, and zi denotes for the output from the second last
layer for input xi. We focus our analysis on the last layer
because the second last layer output can be interpreted as
learned embedding for input features. From a manifold learning
perspective, embedding from the last layer can be interpreted
as reconstructed embedding. For simplicity, suppose w and z
are normalized, we can rewrite ĥ from an inner product to the
Euclidean distance form as ĥc = (1+exp(12 ||wc−zi||2−1))−1.

For a given c, minimizing the cross entropy loss will result
in a setting such that ||wc− zi|| for the true class is minimized
(cf. false class is maximized). Consider zi as embedding given
input xi, zj as embedding given input xj . If xi, xj are near
neighbors, then by our formulation, xi, xj share same class
label. Thus, the following holds for two embedding zi and zj ,
||wc − zi||2 ≤ λ and ||wc − zj ||2 ≤ λ, where λ is a small
constant. And by triangle inequality, we have ||zi−zj ||2 ≤ 2λ.
As we can see, zi, zj is expected to be close, which resembles
the objective function of MDS without considering the distance
in the input space between xi and xj .

We present NObLe as a DNN based approach for localization
that can utilize structure information. It should be noted that
our evaluation measure is still position error (root mean square
error) even though we transform the data into fine-grained

classification inspired by manifold learning. In the next two
sections, we will use NObLe on two orthogonal input signals,
Wi-Fi for the positioning task, and IMU for the tracking task.

IV. APPLICATION WI-FI LOCALIZATION

In this section, we first present the detailed system design
of NObLe for Wi-Fi fingerprinting localization. We conduct
experiments on two representative indoor Wi-Fi localization
datasets: UJIIndoorLoc [12], the largest open-access dataset for
indoor Wi-Fi localization for large space multi-building setting,
and IPIN2016 [17] for small single building setting.

A. System Architecture

We follow the standard setup for Wi-Fi fingerprint lo-
calization. Assume there are W number of WAPs in the
given space. During the offline phase, Wi-Fi strength signal
readings received from each WAP at each sampling location
are recorded. Floor, building, longitude, and latitude are also
recorded for each sample. Both UJIIndoorLoc and IPIN2016
are collected in such a way, and each sample can be represented
as (~s, b, f, (x, y)). ~s = (s1, s2, . . . , sW), where si denotes the
RSS of i-th WAP, b denotes building ID, f denotes floor ID.
Given the collected data, we perform output space quantiza-
tion and convert each sample as (~s, b, f, c, r, (x, y)). Apply
the NObLe multi-label classification formulation, our model
takes ~s as inputs, and predict (b, f, c, r). During inference,
we use c to look up the corresponding central coordinates,
and output (xc, yc) as position and calculate position error
accordingly. One advantage of NObLe is that we can naturally
include floor/building classification tasks in our model without
extra effort. Floor/building classification is a standard task for
localization service. Current approaches utilize separate and
independent models for position prediction and building/floor
classification, creating extra overhead in real-world deploy-
ments. At the same time, from a manifold perspective, including
floor/building as output is beneficial for the model to learn the
reconstructed embedding because it gives useful information
about geodesic neighborhood over the manifold structure.

Signal Classification
Neural Network

C

B

F

Location
Coordinate

Fig. 3: Given wireless signal strength as input, NObLe predicts
multiple labels, which includes C for neighborhood class, B for
building, F for floor. At inference time, NObLe computes longitude
and latitude coordinates based on the predicted neighborhood class.

We consider a two hidden layer feed-forward neural network
that takes input vector ~s ∈ RW . The hidden layer size is set to
128. We normalize the input vector and apply multi-hot encod-
ing to the output class. We used hyperbolic tangent activation
functions, Xavier initialization [20], and batch normalization
[21] for training our model. The overview of our system is
shown in Fig. 3.

B. Performance Evaluation

In our experiments, we first show that NObLe achieves the
best performance compared to all other approaches on the same
datasets. Moreover, we set up three comparative models to
demonstrate that NObLe is aware of the output structure. We
applied the best effort hyperparameter tuning for all methods.

TABLE I: NObLe performance results on UJIIndoorLoc.

CLASSIFICATION ACCURACY (%)

BUILDING 99.74
FLOOR 94.25
QUANTIZE CLASS 61.63

POSITION ERROR DISTANCES (M)

MEAN 4.45
MEDIAN 0.23

We calculate position error following the standard procedure:
the Euclidean distance between predicted and true coordinates.
For the UJIIndoorLoc dataset, the best mean error distance on
the indoor localization ranking at IndoorLocPlatform website
[17] is 6.2 m, and the median is 4.63m. [11] reports a mean
position error of 11.78 m, a building hit rate around 99%,
and a floor hit rate around 94%. [18] reports a mean position
error of 9.29m, a building hit rate around 99%, and a floor
hit rate around 91%. As we can see in Table I, NObLe
achieves significantly smaller position error distances and at
least comparable building and floor hit rate.

In order to evaluate the performance improvement from the
perspective of structure awareness, we implement three com-
parison models: Deep Regression, Deep Regression Projection,
and Manifold Embedding. Deep Regression takes the same in-
put as NObLe. It is the same network size as NObLe. However,
it is trained with mean square error as loss function and directly
predicts coordinates in longitude and latitude. Deep Regression
Projection is based on [8]. Following Deep Regression, Deep
Regression Projection projects the predicted coordinates to the
nearest position on the map when the predictions do not lie
on the map. Manifold Embedding utilizes Isomap and LLE
to compute embedding from input signals. We built DNNs
with two hidden layers that take the manifold embedding as
input and output longitude and latitude coordinates. Manifold
Embedding achieves the best performance when we set the
embedding dimension at 400 for both Isomap and LLE. The
performance results for the models mentioned above are shown
in Table II.

TABLE II: Comparative distance (m) errors on UJIIndoorLoc.

MODEL MEAN MEDIAN

DEEP REGRESSION 10.17 7.84
REGRESSION PROJECTION 9.76 7.16
ISOMAP DEEP REGRESSION 11.01 7.56
LLE DEEP REGRESSION 10.05 7.43

Fig. 4(a), 4(b), 4(b), and 4(d), are plots of predicted coor-
dinates on the UJIIndoorLoc dataset. NObLe outputs the most
structured prediction compared to the true floor plan. We see
that deep regression outputs are spread out. From the satellite

(a) Deep Regression (b) Deep Regression Projection (c) Isomap Regression (d=400) (d) NObLe

Fig. 4: Plots of predicted coordinates from four models (labeled below each plot).

view in Fig. 1, we know that middle area of the top left building
is not part of buildings; however, a considerable number of
the deep regression outputs lie in this area. Manifold Embed-
ding predicts fewer points in this area and is visually more
structured compared to Deep Regression. This is as expected
because Isomap Embedding is reconstructed with the aim to
approximate output structure. Also, Deep Regression Projection
resembles the building structure because it eliminates prediction
based on human-crafted maps.

On IPIN2016, NObLe achieves an average error distance of
1.13m and a median average error distance of 0.046m, while
the Deep Regression gives an average error distance of 3.83m.
The best mean error distance on the indoor localization ranking
at IndoorLocPlatform website [17] is 3.71m.
C. Energy Measurement:

We measure energy consumption on the Nvidia Jetson TX2
module. Using UJIIndoorLoc, the average running energy for
each inference is 0.00518J, and the average latency is 2
milliseconds.

V. APPLICATION : DEVICE TRACKING USING IMUS

In this section, we will discuss the detailed system design
for device tracking using IMU signals. A user travels along a
certain path, and a sequence of IMU data corresponding to this
travel path is recorded. Given this sequence, we want to predict
the user location at the end of this path. Without available
public datasets, we collect labeled data over an outdoor space
of 160m by 60m ourselves and show that NObLe achieves
accurate device tracking in terms of path ending position errors.

A. Data Collection
We follow the standard setting of device tracking using IMU.

We collect our data from two independent walks around an
area of 160m by 60m on our university campus. The sampling
frequency is around 50Hz, and the total walking time is around
1 hour and 15 minutes. There are in total 177 reference loca-
tions with GPS coordinates (longitude and latitude). Between
each reference point, there are 768 readings for each inertial
sensor on a single axis. We record 3-axis gyroscope, 3-axis
accelerometer, and timestamps. We construct walking path as
follows: (1) randomly choose a reference location as start
position, (2) randomly choose a path length less than 50 and
determine the end position accordingly, (3) concatenate IMU
readings between starting and ending positions as the input. In
total, we obtained 6857 paths, and we use 4389 for training,
1096 for validation, and 1372 for testing.

B. System Architecture

The input consists of two parts: (1) initial location coordi-
nates hstart and (2) a sequence of IMU signals G = g1, g2, . . .,
where gi ∈ Rd×n. d is the dimension of each inertial sensor
readings and n is the number of sensors. We perform output
space quantization at τ = 0.4m and assign neighborhood
classes c for path ending location. Following the NObLe
formulation, our model takes (G, hstart) as inputs, and predicts
ĉ. Then, we calculate ending position in longitude and latitude
based on predicted neighborhood class ĉ.

Our system includes three main parts: (1) projection module,
(2) displacement module, and (3) location module. The projec-
tion module takes gi and outputs an embedding in a lower
dimension. Then, all projection embeddings are concatenated
together. Each gi is multiplied by the same trainable projec-
tion weight. The concatenated embedding is passed into the
displacement module, a two-layer feed-forward neural network
that predicts the displacement vector of a user’s travel path. This
module is not environment-specific, and a trained module can
be plugged into other models designed for location tracking
in other environments. Taken projected embedding, the dis-
placement network outputs a displacement vector V ∈ R2 for
tracking on the 2-D plane or V ∈ R3 for 3-D tracking involving
floors. The location network takes the resulting displacement
vector and one-hot encoded starting location class, and outputs
location class at the end of travel path. We used Xavier
initialization [20] and batch normalization [21] for training.
The overview of our system is shown in Fig. 5(a).
C. Performance Evaluation

NObLe achieved a mean error distance of 2.52m and a me-
dian distance of 0.4m. [8] iterative corrects prediction location
at all turnings on the path and achieves an average error distance
of 4.3m. LocMe [19] reports a median of 1.1m position error
on test-bed size of 70m by 100m by constantly correcting at
elevators and walls. We could not test their method on our
dataset as they did not open source their code. It is evident
that incorporating of map knowledge is essential in these two
previous works. However, both of these systems require human
effort to transfer map knowledge into heuristic rules.

Similar to our experiment on Wi-Fi Localization, we im-
plemented Deep Regression in order to demonstrate NObLe’s
structure awareness. The results are shown in Table III.

Fig. 5(b) shows information on the IMU dataset. From Fig.
5(c), it is evident that Deep Regression performs poorly on
estimating the structural knowledge of the space since the

IMU	Input

Projection Displacement
	Network

Start	Position

Displacement
Vector

Coordinate
Class

Coordinate	
Location

Location	Network

(a) (b) (c) (d)

Fig. 5: (a) Network architecture for IMU localization. (b) User travel paths for testing. Color dots represent the sampling position along this
path. Gray dots represents other sampling position in the dataset but not on this path. Changing of color represents the the travel sequence.
(c) and (d) are IMU predicted coordinates for Deep Regression and NObLe respectively.

TABLE III: Position error distance (m) for IMU tracking.

MEAN MEDIAN

DEEP REGRESSION MODEL 10.41 10.05
[8] 4.3 N/A
NOBLE 2.52 0.4

predicted locations, blue dots, are scattered in the space. In
contrast, NObLe performs better in capturing the structural
information since the predicted location points more closely
resembles the space structure as seen in Fig. 5(d) (cf. Fig. 5(b)).
D. Energy Measurement

We measured energy consumption on an edge computing
device emulator, Nvidia Jetson TX2 module. For a testing path
for around 8 seconds, NObLe consumed around 0.08599J for
inference calculation with a 5 milliseconds latency. Inertial
sensors’ energy cost is 0.1356J for 8 seconds, and the total
energy consumption is approximately 0.22159J, which is 27×
less than the GPS energy requirement 5.925J based on [8].

VI. CONCLUSION

We propose a novel method for accurate localization and
device tracking problem, Neighbor Oblivious Learning (NO-
bLe), with the focus on the structure of the output space. We
demonstrated that our formulation is essentially equivalent to
manifold learning without approximation of local Euclidean
distances in the input space. We applied NObLe on two
orthogonal applications, Wi-Fi localization and IMU tracking,
and showed a significant increase in localization accuracy.

REFERENCES

[1] Markets And Markets, ”Location Analytics Market by Component (So-
lutions and Services), Location Type (Indoor Location and Outdoor
Location), Application (Remote Monitoring, Risk Management), Verti-
cal (Retail, Government and Defense), and Region - Global Forecast
to 2025”, https://www.marketsandmarkets.com/Market-Reports/location-
analytics-market-177193456.html, 2020,

[2] T. O. Oshin, S. Poslad, and A. Ma, ”Improving the Energy-Efficiency of
GPS Based Location Sensing Smartphone Applications”, 2012 IEEE 11th
International Conference on Trust, Security and Privacy in Computing and
Communications, 2012, 99.1698-1705

[3] P. Bahl and V. N. Padmanabhan, ”RADAR: an in-building RF-based
user location and tracking system,” Proceedings IEEE INFOCOM 2000.
Conference on Computer Communications. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies (Cat.
No.00CH37064), Tel Aviv, Israel, 2000, pp. 775-784 vol.2

[4] A. M. Ladd, K. E. Bekris, A. P. Rudys, D. S. Wallach and L. E. Kavraki,
”On the feasibility of using wireless ethernet for indoor localization,”
in IEEE Transactions on Robotics and Automation, vol. 20, no. 3, pp.
555-559, June 2004

[5] J. Yi, J. Zhang, D. Song, and S. Jayasuriya, ”IMU-based localization
and slip estimation for skid-steered mobile robots,” 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Diego,
CA, 2007, pp. 2845-2850

[6] Q. Yuan and I. Chen, “Localization and velocity tracking of human via
3 IMU sensors,” Sensors and Actuators A: Physical, Volume 212, 2014,
Pages 25-33, ISSN 0924-4247

[7] M. A. Youssef, A. Agrawala and A. Udaya Shankar, ”WLAN location
determination via clustering and probability distributions,” Proceedings
of the First IEEE International Conference on Pervasive Computing and
Communications, 2003. (PerCom 2003)., Fort Worth, TX, 2003, pp. 143-
150

[8] E. J. J. Gonzalez et al., ”Location detection for navigation using IMUs
with a map through coarse-grained machine learning,” Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), 2017, Lausanne,
2017, pp. 500-505

[9] X. Wang, L. Gao, S. Mao and S. Pandey, ”CSI-Based Fingerprinting for
Indoor Localization: A Deep Learning Approach,” in IEEE Transactions
on Vehicular Technology, vol. 66, no. 1, pp. 763-776, Jan. 2017

[10] M. Abbas, M. Elhamshary, H. Rizk, M. Torki and M. Youssef, ”WiDeep:
WiFi-based Accurate and Robust Indoor Localization System using Deep
Learning,” 2019 IEEE International Conference on Pervasive Computing
and Communications (PerCom, Kyoto, Japan, 2019, pp. 1-10

[11] X. Song et al., ”A Novel Convolutional Neural Network Based Indoor
Localization Framework With WiFi Fingerprinting,” in IEEE Access, vol.
7, pp. 110698-110709, 2019

[12] J. Torres-Sospedra et al., “UJIIndoorLoc: A New Multi-Building and
Multi-Floor Database for WLAN Fingerprint-Based Indoor Localization
Problems,” 2014 Int Conf Indoor Position Indoor Navigation Ipin, pp.
261–270, 2014

[13] S. T. Roweis and L. K. Saul, “Nonlinear Dimensionality Reduction by
Locally Linear Embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
2000

[14] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A Global Geometric
Framework for Nonlinear Dimensionality Reduction,” Science, vol. 290,
no. 5500, pp. 2319–2323, 2000

[15] M. M. Bronstein, J. Bruna, Y. Lecun, A. Szlam, and P. Vandergheynst,
“Geometric Deep Learning,” Ieee Signal Proc Mag, vol. 34, no. 4, pp.
18–42, 2017

[16] Y. Bengio, A. Courville, and P. Vincent, “Representation Learning: A
Review and New Perspectives.”, International Conference on Learning
Representations, 2014

[17] J. Torres-Sospedra et al., IPIN2016 Tutorial,
http://indoorlocplatform.uji.es/databases/get/2/

[18] K. S. Kim, S. Lee, and K. Huang, “A scalable deep neural network
architecture for multi-building and multi-floor indoor localization based
on Wi-Fi fingerprinting,” Big Data Anal, vol. 3, no. 1, p. 4, 2018

[19] Xinye Lin and Xiao-Wen Chang and Xue Liu, “LocMe: Human Loco-
motion and Map Exploitation Based Indoor Localization,” 2017 IEEE
International Conference on Pervasive Computing and Communications
(PerCom), pp. 131–140, 2017

[20] X. Glorot and Y. Bengio, “Understanding the Difficulty of Training Deep
Feedforward Neural Networks,” AISTATS, 2010

[21] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” ICML, 2015

[22] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of Wireless Indoor
Positioning Techniques and Systems,” IEEE, 2007

	I Introduction
	II Background and Related Work
	III Proposed System Design
	III-A Intuition
	III-B Space Quantization and Multi-label Classification
	III-C Why DNN Classification is Equivalent to Manifold Learning

	IV Application Wi-Fi Localization
	IV-A System Architecture
	IV-B Performance Evaluation
	IV-C Energy Measurement:

	V Application : Device Tracking Using IMUs
	V-A Data Collection
	V-B System Architecture
	V-C Performance Evaluation
	V-D Energy Measurement

	VI Conclusion
	References

