OMU: A Probabilistic 3D Occupancy Mapping
Accelerator for Real-time OctoMap at the Edge

Tianyu Jia?, En-Yu Yang!, Yu-Shun Hsiao', Jonathan Cruz', David Brooks', Gu-Yeon Wei', Vijay Janapa Reddi'
'Harvard University, Cambridge, MA, 2Peking University, Beijing, China

Abstract—Autonomous machines (e.g., vehicles, mobile robots,
drones) require sophisticated 3D mapping to perceive the dy-
namic environment. However, maintaining a real-time 3D map
is expensive both in terms of compute and memory requirements,
especially for resource-constrained edge machines. Probabilistic
OctoMap is a reliable and memory-efficient 3D dense map model
to represent the full environment, with dynamic voxel node

(\] pruning and expansion capacity. This paper presents the first
O\ efficient accelerator solution, i.e. OMU, to enable real-time prob-
O abilistic 3D mapping at the edge. To improve the performance,
(\] the input map voxels are updated via parallel PE units for data
>parallelism. Within each PE, the voxels are stored using a specially
developed data structure in parallel memory banks. In addition,
a pruning address manager is designed within each PE unit to
2 reuse the pruned memory addresses. The proposed 3D mapping
accelerator is implemented and evaluated using a commercial
O 12 nm technology. Compared to the ARM Cortex-A57 CPU in
the Nvidia Jetson TX2 platform, the proposed accelerator achieves
'D?up to 62x performance and 708 x energy efficiency improvement.
Furthermore, the accelerator provides 63 FPS throughput, more
than 2x higher than a real-time requirement, enabling real-time
: perception for 3D mapping.

I. INTRODUCTION

1 [cs.A

3D Mapping is an essential perception process in au-
~> tonomous machines to build polygonal representation for the
environment. With the information of the 3D map, autonomous
machines can perceive the surrounding environment and per-
form several safety-critical autonomous execution tasks, such
as localization, motion planning, and collision detection [[1]].
To build a 3D map, the sensor data generated from sensors,
such as the 3D point cloud, is streamed into the computation
pipeline to create and update the map, such as a corridor 3D
map example in Fig. [ Within the end-to-end computation of
autonomous systems, the perception stage (i.e., parse sensor
- == data, build the 3D map, and localization) is a computationally
intensive process for tracking real-time changes in the envi-
a ronment. For example, in a package delivery task for a micro
aerial vehicle (MAV), the 3D map generation can take more
than 70% of the total runtime for autonomous navigation [2].
Maintaining and querying a 3D map in real-time is costly
in terms of both memory and computation resources. As many
3D maps discretize the environment into cubic volumes (i.e.,
voxels), there is high memory access and capacity requirement
for 3D map build and update. Due to the randomness of the
input map voxel coordinates, the memory access pattern is
highly irregular. The bandwidth of the memory is the main
performance bottleneck impeding the real-time 3D mapping.
Furthermore, the 3D map also requires large memory storage,
which further increases with a higher resolution (i.e., smaller

v:2205.03325

Point Cloud
(from sensor)
P30 o o
P20 P o,
o o

Fig. 1. The computation pipeline in a autonomous machine. 3D Mapping is a
crucial task that serves many (safety) purposes and can consume as much as
70% the execution time [2]].

voxel size). For example, in a 3D scan dataset [3]], a full 3D map
with a resolution of 10 cm could require significant memory
storage ranging from 10 MB to more than 5 GB [4].

In addition to the high memory access demand, the large vol-
ume of sensor data leads to a significant computation challenge
for real-time 3D mapping. For example, the Microsoft Kinect
sensor produces 9.2 million 3D points per second [S[]. Such
a high volume of points leads to low hardware throughput,
i.e., below the real-time requirement 30 frames per second
(FPS) [6]. Prior work explored the sampled frames or sparse
points cloud for 3D maps, but most real-time 3D mappings
still need to run on high-end CPUs [7] or GPUs [8], leading
to significant power and form factor overhead. In resource and
energy-constrained autonomous machines at the edge, enabling
real-time 3D mapping is even more challenging.

In this work, we present the first 3D mapping accelerator for
an efficient and widely used 3D occupancy mapping algorithm,
i.e., OctoMap [4]. OctoMap is one of the most widely used
approaches to represent the entire 3D environment due to its
memory-efficient “Octree” structure; it is akin to the H.264
codec for video compression. In the OctoMap, the 3D map
voxels are stored in the Octree, where all nodes are recursively
divided into octants (i.e., eight children), as shown in Fig.
The occupancy of each voxel is represented by probability,
forming a reliable 3D map. Furthermore, the map leaf nodes
can be pruned (compressed) based on the likelihood of children
nodes. Although OctoMap is a state-of-the-art approach with
promising results to save memory storage, it can still not meet
the real-time throughput requirement on most desktop CPUs
and edge device CPUs (based on our analysis in Section [III.
Therefore, we develop an efficient 3D OctoMap accelerator,
i.e. OctoMap Processing Unit (OMU), in this work to enable
its operation in real-time for edge machines.

To improve the hardware accelerator’s performance, we first
analyze the performance bottlenecks of OctoMap on CPUs. We



1. update Leaf 2. update Parents

input voxel
L\mrem
{
|
L\eaf
@)
all children Reduce

are the same Node pruning

[ > delete L
(b)
Fig. 2. (a) The probability update operations for every voxel input, (b) the

pruning operation when all the children have the same occupancy probability
(tree depth=2 for illustration).

memory storage

observe that the voxel node pruning and expansion consume
most of the runtime. Based on this workload analysis, we
designed OMU with three key features. First, we update the
map’s voxels in parallel processing element (PE) units to
maximize the compute throughput by up to 8x. Second, we
designed a special data storage structure and parallel memory
banks to improve voxel store/fetch throughput by another 8x.
Third, we created a pruning address manager to manage the
pruned addresses and maintains high memory utilization.

We evaluated the proposed OMU accelerator after synthesis,
place and route using a commercial 12 nm CMOS technology.
Compared to a state-of-the-art desktop Intel 19 CPU and a
more conventional robotics platform (i.e., ARM Cortex-A57
CPU in Jetson TX2), the accelerator achieves 13x and 62X
performance improvement, respectively, and a 708 x energy
efficiency improvement compared to the ARM A57 CPU. OMU
only consumes 250.8 mW of power and achieves 63 FPS in
throughput, thus enabling low-power real-time perception in
resource-constrained autonomous machines.

The contributions of our work are as follows:

o We present a comprehensive workload breakdown and
characterize the bottlenecks in 3D OctoMap. We observe
that the node pruning stage consumes the most run-time,
which we optimize via parallel access of children nodes.

« We develop a series of hardware acceleration techniques
for probabilistic 3D mapping, including a method for par-
allel map-voxel updates, an efficient memory data storage
structure, and a dynamic pruning-address management.

e« We demonstrate a 12 nm probabilistic 3D mapping ac-
celerator OMU. The experimental results show significant
performance and power benefits, and 2x higher through-
put than the real-time requirement for 3D mapping tasks.

II. BACKGROUND

Over the past decades, many space representation approaches
have been studied to map the unstructured environments into a
digitized representation. The 3D maps contain the environment
information in three dimensions, which is demanded in the
perception of autonomous machines.

TABLE I
COMPARISON OF MAPPING ACCELERATORS

Dadu-p | Dadu-cd | Navion | CNN-SLAM | This

[13] [14] [10] [11] Work
Dense Map v v No No v
Probabilistic No No No No v
Real-time No No v v v

Dense vs. Sparse Map: Depending on whether the map
can represent the whole 3D environment, the map models can
be categorized as either dense or sparse maps. For navigation
and manipulation tasks in autonomous machines or robots, a
“dense” 3D map model, which can cover the entire environment
space, is desired for collision detection and motion planning.
Several dense 3D models have been widely used to represent
the environments, such as point clouds, elevation maps, multi-
level surface maps, Octree [4], and signed distance fields [9].
However, only Octree and signed distance fields can represent
the unknown space. Compared to the dense map, sparse 3D
maps are built based on extracted features or landmarks [[10]
[L1] [12]]. However, these sparse 3D maps cannot represent the
unknown space, which is necessary for the collision detection
task in autonomous motion planning.

Probabilistic Representation: To represent the space, each
space point or voxel can be simply recorded in a binary manner
as either occupied or free. However, given the uncertainty of
sensor measurement (e.g. noise, errors), the simple binary space
representation often leads to an inaccurate map [4]]. A more
reliable probabilistic map model can represent the map data
by its occupancy probability instead of only representing the
map voxels by occupied or free. During the map update, the
map voxel updates its occupancy probability on top of the
prior probability. The map voxels can be merged (pruned)
with their neighbors with the same probability to save memory
storage with the occupancy probability values. Although the
probabilistic map is reliable and memory efficient, it needs a
unique data storage structure and additional hardware.

Mapping Accelerators: To accelerate the perception of
autonomous systems, there are a few specialized accelerators
that have been developed for resource-constrained autonomous
robots or drones, as shown in TableE} For example, an OctoMap
based motion planning accelerator was developed for collision
detection in robots [|13]] [[14]. However, the accelerator preloads
and processes a lossy 3D map in batches, missing the chal-
lenges of real-time map building. There are also SLAM-based
accelerators designed for real-time applications [10] [[11], while
they only build a sparse 3D map using extracted features and
cannot represent the entire environment including the unknown
space. Different from prior arts, in this work, we propose an
accelerator solution—OMU to support dense and probabilistic
3D mapping in real-time.

III. OCTOMAP WORKLOAD ANALYSIS

To understand the computation bottleneck and guide the
OctoMap accelerator design, we first introduce the basic op-
erations in OctoMap and analyze its workload breakdown.



TABLE II
DETAILS OF OCTOMAP 3D SCAN DATASET.

FR-079 corridor | Freiburg campus | New College
Scan Number 66 81 92361
Average Points / Scan 89x103 248x103 156
Point Cloud (x10°) 5.9 20.1 145
Voxel Update (x10%) 101 1031 449
19 CPU Latency (s) 16.8 177.7 71.3
CPU Throughput (FPS) | 5.23 5.03 5.04

A. OctoMap Overview

As the map generation example illustrated in Fig. the
3D sensors generate a series of point clouds for 3D map
building. A ray casting kernel will process the point cloud data
to identify free voxels along the ray, while the point cloud
will be registered as occupied voxels. In the OctoMap, the 3D
space is discretized into equal-sized voxels and stored in an
Octree structure, where all nodes are recursively divided into 8
children, as shown in Fig. [2] Each leaf node n is represented by
the log-odds notation of the occupancy probability, as shown
in equation (1), where P(n) is a prior probability [4].

P(n) }

1= P(n) M

Lleaf(n) = log |:
There are three basic operations to update the occupancy
status of one voxel: update leaf node, recursively update parent
nodes, and node pruning. First, based on the coordinates of
the input voxel, a corresponding leaf node is found with its
occupancy probability updated. Due to the log-odds notation of
the probability value, only a simple addition operation is needed
to update its probability, as shown in equation (2). Next, to en-
able efficient memory storage and multi-resolution queries, the
occupancy probabilities of the parents are recursively updated
from the bottom to the root. The probability policy of the parent
nodes takes the maximum occupancy of all its eight children,
as illustrated by equation (3). If all the children have identical
occupancy during the parent update, the children nodes are
pruned while its parent becomes a leaf. On the contrary, if
all the children no longer have the same occupancy, the pruned
leaf node is expanded. Experiments show that Octree pruning
can significantly reduce the memory storage by up to 44% with
no accuracy loss [4].

Lieag(n|21:¢) = L(n|21:0—1) + L(n|2) 2
Lparent(n) = rfl:aSX Lleaf(ni) (3)

During the queries of the map, the occupancy value will be
fetched based on the voxel coordinates. Based on the predefined
clamping thresholds, the log-odds occupancy value can be
classified as a status of occupied, free, or unknown.

B. Runtime Breakdown and Bottleneck Analysis

To characterize 3D mapping as a computational task, we
performed runtime analysis for a variety of map graphs from
the OctoMap 3D scan dataset [3]. Each map we select is a
representative sample from the dataset suite. The 3D maps
have been run on a beefy Intel i9-9940X desktop CPU, with
the experiment details listed in Table [lIl They contain multiple

1% 1% 2%

23% 26%
41% 34%
61% 14% 57% 16%
23%
Ray Casting Update Leaf Update Parents Node Prune/Expand

@ ®) ©

Fig. 3. Runtime breakdown in OctoMap workloads (a) FR-079 corridor, (b)
Freiburg campus, and (c) New College.

3D laser scans, with every scan providing different numbers
of 3D points. In this experiment, all the maps use the same
resolution (i.e., voxel size) of 0.2 m. For example, to complete
the 3D mapping of the FR-079 corridor map, the 3D laser
generates 5.9 million points in the point cloud, which leads to
more than 100 million voxel updates. To build the entire 3D
map, the 19 CPU takes between 16 seconds and 3 minutes. The
CPU throughput is only 5 frames per second when equivalently
derived for common 320x240 sensor image size, and is much
lower than a 30 FPS requirement in real-time application [6].

To understand the hardware requirements of OctoMap, we
break down the runtime of each OctoMap operation (i.e.,
ray casting, update leaf, update parents, and node prune or
expand) as shown in Fig. 3] The node prune and expand
stages consume most of the runtime in all of the maps and
is the workload bottleneck. This bottleneck is due to the ample
tree prune leading to significant irregular memory access for
children nodes. The limited memory bandwidth degrades the
children node access and becomes the performance bottleneck
for OctoMap. The node prune in the New College dataset takes
less total runtime than the other two maps, mainly due to the
fewer points per scan leading to less node pruning.

It is worth to mention that the number of voxel updates can
be reduced by voxel overlap search during ray casting. Hence
the overlapped voxels only need to be updated once to save
the memory access cost. However, to enable the voxel overlap
search, the ray casting needs special voxel hashing and complex
hardware acceleration, as [[15]]. In this work, we focus on the
voxel map integration challenge, which can be combined with
other advanced ray casting acceleration.

IV. HARDWARE ACCELERATION FOR 3D OCTOMAP

To improve the real-time performance of 3D OctoMap, we
developed a series of acceleration techniques, including parallel
Octree update (for 8x compute throughput), efficient data
storage and parallel memory storage (for additional 8 x memory
bandwidth), and dynamic prune address management (for high
memory utilization), as shown in Fig. f]

A. Parallel Octree Update

In the conventional OctoMap update, the input voxels are
updated in series during the mapping process, as there is
potential update dependency between voxels. Even the latest
version of OctoMap that is available on GitHub is still a
single-threaded application library This series voxel update
significantly limits the throughput of the OctoMap computation.

I At the time of writing, the latest release of OctoMap is 1.9.6. It is publicly
accessible online at https://github.com/OctoMap/octomap.


https://github.com/OctoMap/octomap

» Voxel Schedule/; — = -
[ e ARNOOL reelOccupied | IProbablllly
oI check
> 999Q999% Probability
T e S Wy U p date
PEOPEL ------ PE7
| | Voxels pointers
] /tags
g prob
8 | 3|l
8 5 |E|lz
5] 74 |E
5| Vorelquey |77, P -
54 D check & 1| TreeMemO & ol w
3 RGN B 8x | O
< queue LU
< ! o
=1 _- t' Zl Prune Addr Manager | W 0=
g Probability g C| o —

Fig. 4. Hardware acceleration techniques for OctoMap.

In this work, to parallelize the voxel update while maintain-
ing the update dependency, the entire Octree is partitioned into
8 PE units and store map voxels based on the first-level tree
branches. As shown in Fig. 4] for each input voxel, it is sent to a
voxel scheduler module. Based on the first-level tree branch ID,
which is generated by the voxel coordinate, the voxel update
request is issued to different PE units. The number of PE is
set to 8 (for eight children of each node) to maximum voxel
update throughput by up to 8x.

B. Parallel Memory Storage and Efficient Data Structure

As our workload analysis indicates the voxel pruning is the
performance bottleneck, we adopt an 8 parallel bank memory
organization in each PE to enables parallel children access,
i.e. all eight children can be accessed simultaneously within
one clock cycle. This memory structure provides 8x memory
bandwidth improvement and significantly alleviates the node
pruning bottleneck, as illustrated in Section Together with
the PE level data parallelism, the accelerator is able to process
64 x more voxel updates than a single-threaded CPU.

To efficiently store the voxels in Octree, we introduce a new
data storage structure for the probabilistic OctoMap algorithm.
This is shown in Fig. 5] Within each of the 8 memory banks,
the data is stored in a 64-bit format, including 32-bits for the
memory pointer, 16-bits for the children’s status tags, and 16-
bits for the fixed-point log-odds voxel probability.

Memory pointer [63:32]: It is used to point out the memory
address of its eight children. The children with the same parent
share the same address pointer, while can be distinguished by
the memory bank offset (e.g., T-Mem0 stores the children[0]).

Status tag [31:16]: Each child has a 2 bits status tag. There
are 4 possible statuses for each child, i.e., unknown, occupied,
free, or inner node (i.e., non-leaf node).

Probability [15:0]: The occupancy probability of the current
node is represented using a fixed-point value. The data type is
chosen to have zero loss from the floating-point maps.

Compared to the previous Octree storage [14]], our work
support probabilistic voxel update and multi-voxel access in
parallel. Furthermore, the special design data structure also
allows easier tree pruning, as it only needs to prune (delete)
one memory address pointer for all children, leading to a simple
memory address management.

Data structure:

Voxel 2:
[_pointer | tag | prob |
63 -7 31 Is. 0
% 00 unknown; 01 occupied; 10 free; 11 inner
[63:32]: pointer to 8 children
N [31:16]: 2b for each child status
@% [15:0]: fixed point node probability
f
1 (inner) = 4 (inner)
-~ = = 2 (inner) -
= 3 (lean = |
- 5 (inner) -
] — 6 (leaf)

T-Mem0 T-Meml T-Mem2 T-Mem3 T-Mem4 T-Mem5 T-Mem6 T-Mem?7

Fig. 5. Developed data structure for probabilistic map update.

Fig. [5] also provides an illustration example for two voxel
updates with a simple tree depth of 3 (the real OctoMap has
a tree depth of 16). Based on the input voxel coordinate, we
generate the children’s address at each tree depth to guide the
memory access (i.e., address generation module). For example,
the Root node (depth=0) is stored in the first row of the
memories, containing the address pointer to its children in
depth=1. Hence, Node 1 is updated and stored in the second
row of T-Mem 3 because it is the 4th child. Similarly, the leaf
Node 3 is stored in T-Mem 2 due to its branch ID. When the
tree integrates a new voxel, it will expand the memory storage
if the tree branch does not exist before, such as Node 5 and
Node 6 in the example. This dynamic memory usage improves
overall memory utilization.

C. Dynamic Pruning Address Management

The probabilistic 3D OctoMap has the advantage of dy-
namic tree pruning to significantly reduce memory storage. To
efficiently manage the Octree prune and expansion, a prune
address manager module is designed in each PE to record the
random pruned memory addresses and maximize the memory
address reuse. As shown in Fig. [f] the prune address manager
records the pruned address pointers during tree prune and issues
available address pointer during the new tree branch expansion.
The main logic inside the module is a stack buffer to store all
the pruned memory address pointers. We use a simple stack
buffer instead of a more complex FIFO to manage the dynamic
addresses with very small area cost.

During the tree pruning, the pruned pointer will be written
into the stack. At the same time, this prune address manager
can provide pruned pointers for new input voxels to reuse the
pruned memory space during tree expansion. Due to this prune
address manager, the map memories always maintain a high
utilization during the 3D mapping, which also helps to relax
the total memory capacity requirement.

'_I% pruned Prune Addr Manager
= 8l pointerl | Paned S
= _,l write Stack
m stack Top
R treed
== expan:
4T pruned Stack for | 2|3 |2
— pointer2 pruned |Z[Z| : g
SRR pointers ||| |3 =
TreeMem

Fig. 6. Dynamic prune address manager.



3D point
g Free Queue Ray cloud L VAN
6] : 2
s l-l Occupied Queue Casting £

[ Voxel Scheduler ]

query

| | | e
Pe-0 || PE-1 LIl PE2 [I} PE3 [1]] 12
PE-4 || PE5 || PE6 [ | PE7 |

occupancy.

Controller prob7:01223[ y/ox el Query
query ===

Fig. 7. Overview of the proposed OMU accelerator.

V. OVERVIEW OF OMU ACCELERATOR

We developed an accelerator solution OMU to enable real-
time 3D OctoMap at the edge. The architecture overview of
OMU is shown in Fig. |/} Its key components are the following:

PE Units: The most essential modules in the accelerator are
the PE elements, which store and update the partitioned 3D
map. The PE number is set to be 8 to maximize the OctoMap
throughput, but it is also scalable depending on the real-time
latency and power consumption requirements. In our design,
each PE contains 256 kB memory, which consists of 8 32 kB
memory banks. The memory size for each PE is chosen based
on the consideration of workload sizes and the accelerator area.

Voxel Scheduler: The input voxels for all of the PEs are
scheduled using the voxel scheduler. We partition the Octree
across the PE units, based on the first-level tree branches.
During execution, the voxel scheduler will issue the voxel
update task to different PEs based on the voxel coordinates.

Ray Casting and Voxel Queues: The accelerator contains
a ray casting module, which performs ray casting operations
to identify free voxels between origin and points in the point
cloud. The free and occupied voxels identified during the ray
casting are stored into queues to be scheduled. The latency of
the ray casting has been hidden within the map voxel update.
This module can also be replaced by the more advanced ray
casting accelerator [[15] to reduce the voxel update number.

Voxel Query: The accelerator supports a voxel query service,
which is a strong requirement for tasks like collision detection
in autonomously moving robots. During the voxel query, the
probability of the requested voxel is fetched from one PE
and sent to the voxel query module. Based on the probability
thresholds, the occupancy (i.e., occupied, free, or unknown) of
the queried voxel is identified.

Interconnect: The accelerator is designed with a standard
AXI slave interface. A controller module is developed within
the accelerator to contain a few sets of configuration registers.
To launch the accelerator operation, the user can program the
AXI master host CPU to control accelerator configurations. The
host CPU also manages to transfer point cloud data from shared
memory or DMA DRAM to the accelerator.

VI. EXPERIMENTAL RESULTS
A. Methodology

We implemented the OMU accelerator using synthesizable
SystemC with the aid of hardware components from the open-

PE-0 PE-1 RE-2: PE-3

ay Casting
& Query

1.25mm
AXI-

PE-4 PE-5 PE-6 PE-7

Zomm
Fig. 8. OMU accelerator layout with 8 PEs in 12nm.

source MatchLib library [16]. The Verilog RTL is then gener-
ated by the Catapult high-level synthesis (HLS) tool. To obtain
realistic area and energy results, the RTL of the accelerator is
performed using commercial EDA tools based on a commercial
12 nm process. Also, a commercial 12 nm SRAM compiler
generates all the SRAM memories.

The accelerator is signed off at 0.8 V with 1 GHz frequency.
We pushed the design to its maximum frequency to obtain bet-
ter real-time processing performance. The energy, performance,
and area results are reported based on the post-P&R netlist at
the typical corner. The layout view of the accelerator with 8-PE
(each containing 256kB SRAM to store mappings) is shown in
Fig. [8l The accelerator consumes 2.5 mm? area.

B. Performance Evaluation

We compare the performance of the OMU accelerator with
an Intel 19-9940x desktop CPU and an ARM Cortex-A57 CPU
on the Nvidia Jetson TX2 platform. The 3D mappings from
the OctoMap 3D scan dataset [3|] are used for the evaluations.
As shown in Fig. [9] the proposed OMU achieves 12.8x and
62.4x latency reduction for the 3D map FR-079 corridor
compared to the Intel 19 CPU and the edge Arm A57 CPU.
The OMU accelerator performs 62.4 FPS throughput thanks to
the performance improvement, more than 2x of the real-time
application requirement of 30 FPS.

Table shows the the improvement across different 3D
maps. Table provides the merits of accelerator throughput.
Compared to the 5 FPS throughput in Intel i9 CPU, the edge
CPU in TX2 can only achieve 1 FPS. In contrast, our acceler-
ator achieves more than 60 FPS for all 3D maps, significantly
improving compared to two baseline CPUs. Therefore, with
the proposed acceleration techniques, the OMU accelerator can
support 3D mapping applications in real-time systems.

90 70
m Arm A57 CPU

mArm A57 CPU

o
o

70 u Intel i9 CPU g u Intel i9 CPU
L 0 Accelerator = 50 Accelerator
g -
&' 50 2 40 i
b5 < Real-time
— 40 D 30 fmmm— e e ———m—————
© =]
- 30 S 20
£
20 =

,_\
o
[
N
0o
X
/
-
o

o

(@ )

Fig. 9. (a) Latency and (b) throughput improvement of the OMU for the 3D
map FR-079 corridor.



TABLE III
LATENCY PERFORMANCE (S) COMPARISON TABLE.

FR-079 corridor | Freiburg campus | New College
Intel 19 CPU 16.8 177.7 71.3
Arm A57 CPU 81.7 897.2 401.5
OMU accelerator 1.31 14.4 6.5
Speedup over 19 12.8% 12.3% 11.9%
Speedup over AS7 | 62.4x 62.2%x 61.7x
TABLE IV

THROUGHPUT PERFORMANCE (FPS) COMPARISON TABLE.

FR-079 corridor | Freiburg campus | New College
Intel 19 CPU 5.23 5.03 5.04
Arm A57 CPU 1.07 1.0 0.97
OMU accelerator | 63.66 62.05 60.87
TABLE V

ENERGY CONSUMPTION (J) COMPARISON TABLE
FR-079 corridor

Freiburg campus | New College

Arm A57 CPU 227.2 2416.2 1147.4
OMU accelerator | 0.32 3.62 1.63
Energy benefit 708.8x 668.1x 703.6x

Fig. [10] shows the breakdown in the accelerator to illustrate
the benefits. The Octree node prune and expand only takes less
than 20% runtime in the OMU operations. Compared to the
CPU operations, it is evident that the computation bottleneck,
i.e., node prune and expand, has been significantly alleviated.
This improvement mainly comes from the latency reduction due
to the parallel voxel updates and memory storage. Especially,
the parallel voxel fetching for all children nodes significantly
improves the node update speed and reduces the costly irregular

memory accesses in the CPUs.
— 100%

80% f
60% Less than 20%

40%

i9 CPU

tl

20%

OMU Acc.

<

0%

Runtime Breakdow

FR-079 FR-079  New
Corridor Campus College Corridor Campus College

Update Leaf Update Parents Node Prune/Expand
Fig. 10. Runtime breakdown in i9 CPU and OMU accelerator.

FR-079 FR-079  New

C. Power and Energy Evaluation

We analyze the OMU accelerator power after synthesis,
place and route using the same 12 nm technology. At 1GHz,
the accelerator consumes 250.8 mW power, in which 91%
power is consumed by SRAM access due to the frequency
voxel data access and update. We did not compare the energy
consumption of the accelerator with Intel 19 CPU, as the latter
is a desktop CPU with a TDP power 165 W. We compare the
power and energy with an edge platform (Nvidia Jetson TX2)
as it is more representative. During the 3D mapping run on the
TX2 platform, the power consumption of Cortex-A57 CPU is
recorded, which is between 2.6 and 2.9 Watts.

Using the average power, we compare the energy consump-
tion between OMU accelerator and the A57 CPU in the Jetson
TX2, as shown in Table [V] We observe that the proposed OMU
achieves notably 668 x to 708 x energy efficiency improvement
than AS57 CPU. Therefore, the proposed OMU provides an
efficient and feasible edge computing solution for real-time 3D
perception in autonomous machines.

VII. CONCLUSION

3D mapping is an essential process in the perception of
autonomous machines. In this paper, we introduce a 3D map-
ping accelerator to support real-time dense and probabilistic
OctoMap efficiently. The proposed OMU hardware accelerator
is designed with parallel voxel update and storage, efficient
data storage structure, and dynamic prune address management.
The accelerator is implemented with a commercial 12 nm
technology and evaluated with OctoMap 3D scan dataset.
Compared to an ARM AS7 CPU, the proposed OMU achieves
up to 62x performance improvement and a 63 FPS throughput,
enabling 3D mapping in real-time for perception tasks on low-
power edge use case deployments.

ACKNOWLEDGMENT

This work is supported in part by JUMP ADA Research Cen-
ter, DARPA DSSoC program, and the NSF Awards 1718160
and 1955422.

REFERENCES

[1] S. Casas, A. Sadat, and R. Urtasun, “Mp3: A unified model to map,
perceive, predict and plan,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2021.

B. Boroujerdian, H. Genc, S. Krishnan, W. Cui, A. Faust, and V. Reddi,

“Mavbench: Micro aerial vehicle benchmarking,” in International Sym-

posium on Microarchitecture (MICRO), 2018.

[3] Online, “OctoMap 3D scan dataset,” http://ais.informatik.uni-freiburg.de/

projects/datasets/octomap/.

A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,

“Octomap: An efficient probabilistic 3d mapping framework based on

octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189-206, 2013.

J. Biswas and M. Veloso, “Depth camera based indoor mobile robot lo-

calization and navigation,” in IEEE International Conference on Robotics

and Automation (ICRA), 2012.

B. Singh, H. Li, A. Sharma, and L. S. Davis, “R-fcn-3000 at 30fps:

Decoupling detection and classification,” in Conference on Computer

Vision and Pattern Recognition (CVPR), 2018.

[71 W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2d lidar slam,” in IEEE International Conference on Robotics and
Automation (ICRA), 2016.

[8] A. Hermann and et al., “Unified gpu voxel collision detection for mobile
manipulation planning,” in IEEE International Conference on Intelligent
Robots and Systems (IROS), 2014.

[9] H. Oleynikova and et al., “Voxblox: Incremental 3d euclidean signed
distance fields for on-board mav planning,” in IEEE International Con-
ference on Intelligent Robots and Systems (IROS), 2017.

[10] A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, and V. Sze, “Navion: A
fully integrated energy-efficient visual-inertial odometry accelerator for
autonomous navigation of nano drones,” in Symposium on VLSI Circuits
(VLSI), 2018.

[11] Z.Li, Y. Chen, L. Gong, L. Liu, D. Sylvester, D. Blaauw, and H.-S. Kim,
“7.3 an 879gops 243mw 80fps vga fully visual cnn-slam processor for
wide-range autonomous exploration,” in /EEE International Solid-State
Circuits Conference (ISSCC), 2019.

[12] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: A versatile

and accurate monocular slam system,” IEEE Transactions on Robotics,

vol. 31, no. 5, pp. 1147-1163, 2015.

S. Lian, Y. Han, X. Chen, Y. Wang, and H. Xiao, “Dadu-p: A scalable

accelerator for robot motion planning in a dynamic environment,” in

Design Automation Conference (DAC), 2018.

[14] Y. Yang, X. Chen, and Y. Han, “Dadu-cd: Fast and efficient processing-
in-memory accelerator for collision detection,” in Design Automation
Conference (DAC), 2020.

[15] M. Kar and et al., “A ray-casting accelerator in 10nm cmos for efficient 3d
scene reconstruction in edge robotics and augmented reality applications,”
in Symposium on VLSI Circuits (VLSI), 2020.

[16] B. Khailany and et al., “A modular digital vlsi flow for high-productivity
soc design,” in Design Automation Conference (DAC), 2018.

[2

—

[4

[l

[5

—_

[6

[t

[13]


http://ais.informatik.uni-freiburg.de/projects/datasets/octomap/
http://ais.informatik.uni-freiburg.de/projects/datasets/octomap/

	I Introduction
	II Background
	III OctoMap Workload Analysis
	III-A OctoMap Overview
	III-B Runtime Breakdown and Bottleneck Analysis

	IV Hardware Acceleration for 3D OctoMap
	IV-A Parallel Octree Update
	IV-B Parallel Memory Storage and Efficient Data Structure
	IV-C Dynamic Pruning Address Management

	V Overview of OMU Accelerator
	VI Experimental Results
	VI-A Methodology
	VI-B Performance Evaluation
	VI-C Power and Energy Evaluation

	VII Conclusion
	References

