
SafeDM: a Hardware Diversity Monitor for
Redundant Execution on Non-lockstepped Cores
Francisco Bas†,‡, Pedro Benedicte†, Sergi Alcaide†, Guillem Cabo†, Fabio Mazzocchetti†, Jaume Abella†

†Barcelona Supercomputing Center (BSC)
‡Universitat Politècnica de Catalunya (UPC)

Abstract—Computing systems in the safety domain, such as
those in avionics or space, require specific safety measures related
to the criticality of the deployment. A problem these systems face
is that of transient failures in hardware. A solution commonly
used to tackle potential failures is to introduce redundancy in
these systems, for example 2 cores that execute the same program
at the same time. However, redundancy does not solve all potential
failures, such as Common Cause Failures (CCF), where a single
fault affects both cores identically (e.g. a voltage droop). If both
redundant cores have identical state when the fault occurs, then
there may be a CCF since the fault can affect both cores in the
same way. To avoid CCF it is critical to know that there is diversity
in the execution amongst the redundant cores.

In this paper we introduce SafeDM, a hardware Diversity Mon-
itor that quantifies the diversity of each redundant processor to
guarantee that CCF will not go unnoticed, and without needing to
deploy lockstepped cores. SafeDM computes data and instruction
diversity separately, using different techniques appropriate for
each case. We integrate SafeDM in a RISC-V FPGA space MPSoC
from Cobham Gaisler where SafeDM is proven effective with a
large benchmark suite, incurring low area and power overheads.
Overall, SafeDM is an effective hardware solution to quantify
diversity in cores performing redundant execution.

I. INTRODUCTION

Safety-related systems undergo strict development processes
in accordance with domain-specific safety regulations to prove
that their safety goals are satisfied. For instance, in the case
of automotive systems, the main functional safety standard
is ISO26262 [14], which defines several Automotive Safety
Integrity Levels (ASIL), from A to D, being ASIL-D the most
stringent one, as well as Quality Managed (QM) systems and
components, which correspond to those systems and compo-
nents without safety requirements.

In the case of ASIL-D systems and components, strong
guarantees are needed on the fact that a single fault cannot
lead the whole system to an undetected failure. In the case of
computing cores, this is generally achieved with Dual Core
LockStep (DCLS), as indicated in ISO26262. DCLS builds
upon two identical cores running the same software, being
one of them a shadow core not visible at the user level, and
executing the redundant task with some staggering so that both
cores never hold the same state and any fault affecting both
of them can only produce distinct errors, which, therefore, can
easily be detected. However, such an approach is expensive
because for each computing core, there is a shadow core that
can only be used for lockstepped execution, not to deliver
performance.

Commercial-Off-The-Shelf (COTS) processors for embedded
systems rarely implement DCLS, at least for moderate or high-
performance cores due to cost constraints (i.e., not wasting
half of the performance power of the SoC) and, therefore, are
not amenable to run ASIL-C/D functionalities. To overcome
this limitation, some works have recently proposed solutions to
enforce diversity either by software means [3] or by hardware
means [4] with an appropriate monitor that stalls the trail
core when its staggering w.r.t. the head core is regarded as

too short. Hence, there is some risk of the trail core catching
up with the head one, hence losing diversity. Unfortunately,
those solutions impose constraints such as having to run re-
dundant tasks with identical control flow at the software level,
which may not occur, for instance, if they read input data at
different time instants, if they run parallel applications and
thread synchronization occurs differently, or simply if non-
deterministic conditions are used for loops (e.g., conditions
partially depending on a random value).

To address the constraints of diverse redundancy based
on staggering, this paper presents SafeDM, a Safe Diversity
Monitor, which quantifies the diversity existing across the
state of two cores, but without interfering with execution.
SafeDM builds upon the observation that, naturally, software-
redundant execution tends to be diverse due to the serialization
of the access to some hardware shared resources and real-time
operating system (RTOS) services, as well as due to the use
of different address ranges. Hence, rather than enforcing some
staggering to enforce diversity, SafeDM monitors whether di-
versity effectively holds transparently to the execution notifying
whether such diversity is lost and how often. The existence
of SafeDM allows developing a safety concept for ASIL-D
functionalities where redundant threads are let to run without
imposing any type of staggering or process stall and, instead,
the SafeDM provides evidence that diversity exists and only
notifies the RTOS about diversity loss through interrupts to
prevent the loss from independence cause any side effect in
the form of increased vulnerability.

In particular, our contributions are as follows:
1) We present SafeDM, a diversity monitor to enable ASIL-D

compliance on regular (non-lockstepped) cores.
2) We integrate SafeDM in a 4-core multicore by Cobham

Gaisler for the space domain.
3) We evaluate SafeDM as part of Gaisler’s SoC triggering

scenarios where diversity is naturally tiny, as well as scenar-
ios with abundant diversity. Our results show that SafeDM
accurately detects the loss of diversity at the expense of
occasional false positives at most.

The rest of the paper is organized as follows. Section II
provides some background on functional safety and diversity.
Section III presents SafeDM. Section IV introduces the target
platform and how SafeDM has been integrated. SafeDM is
evaluated in Section V. Section VI describes some related work.
Finally, Section VII draws the main conclusions of this work.

II. BACKGROUND

The development process of safety-related electronics sys-
tems is similar for several domains, including industrial elec-
tronics [12], automotive [14] and railway [7] among others.
Without loss of generality, in this paper, we focus on the
automotive domain and its main functional safety standard,
ISO26262.

The safety development process follows the typical ‘V’
model. It starts with the definition of the safety goals of the
system, which are propagated into different safety requirements.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. http://dx.doi.org/10.23919/DATE54114.2022.9774540

SoC
Lockstepped

core

Head
core

Trail
core

=?

Input

Output

Error?

Fig. 1: High-level schematic of a lockstepped core.
When specifying the architecture of the system, those safety
requirements are mapped into system components applying
ASIL decomposition as needed so that each item has the
lowest ASIL possible while still fulfilling the overall safety
requirements. The safety requirements mapped to each item
(e.g., a CPU) determine the type of means needed for the
design, verification and validation of such item.

In the case of ASIL-D hardware items, they must be capable
of, at least, detecting any single fault. Redundancy provides
some protection, but it is not enough to avoid the so-called
Common Cause Failures (CCF). CCF correspond to those faults
that can cause identical errors in redundant components so
that errors go unnoticed and become failures at some scope.
To avoid CCF, safety standards impose the use of diverse
redundancy, so that if a single fault affects all redundant
components, at least the errors experienced will differ and
will be detected. In the case of storage and interconnects, the
typical solutions resort to Error Correction Codes (ECC) and
Cyclic Redundancy Checking (CRC). In the case of computing
components (e.g., a processor core), full redundancy is needed,
normally implemented in the form of lockstepped cores where
two identical cores are tied together replicating their inputs,
executing with some cycles of staggering, and comparing their
outputs for error detection as illustrated in Figure 1. This
scheme is used, for instance, by the Infineon AURIX [13] and
STmicroelectronics SPC570Sx [31] microcontroller families.

However, many moderate and high-performance processors
considered for the automotive domain, either because of their
own performance or because they come along with specific ac-
celerators needed for other functionalities (e.g., GPUs), do not
implement lockstepping. Hence, alternative means are needed
to achieve diverse redundancy. It can be achieved with diverse
implementations of the software, but this solution may double
design, verification and validation costs for such software.
Diverse redundancy can also be achieved by running equivalent
software on diverse cores. However, this implies that the SoC
has at least two types of cores, and performance is limited by
that of the slowest core, hence wasting the benefits provided by
high-performance cores. Instead, solutions based on software
(identical) replication with some form of staggering can provide
advantages compared to those of lockstepping, either with
software staggering [3] or with an ad-hoc hardware module [4].
However, those solutions are intrusive with the execution.

Recently, it has been shown that diversity naturally exists due
to the increasing complexity of the platforms [22], which would
remove the need for enforcing any staggering at all. However,
the safety concept of the system needs evidence of that. Hence,
we propose SafeDM to tackle this challenge.

III. SAFEDM DESIGN

This section introduces SafeDM, a diversity monitor pro-
viding evidence of existing diversity, and hence supporting
the safety concept of ASIL-D systems. In particular, we first
introduce the rationale behind SafeDM, and later on its design.

A. Rationale behind SafeDM
As explained before, diversity is expected to emanate from

system complexity [22], and this trend is expected to hold

given that both hardware and software components become
increasingly complex over time. However, in order to build a
safety concept, either diversity needs to be enforced (e.g. with
hardware or software mechanisms [3], [4]) or evidence of its
existence needs to be retrieved. The former guarantees diver-
sity by construction, but existing mechanisms are necessarily
intrusive with tasks execution by, preventively, stalling the trail
process when it is regarded as not sufficiently staggered w.r.t.
the head process. The latter allows building a safety measure
that, upon the detection of lack of diversity, takes an action.
Such action can either be the same action it would be taken
upon the detection of an error, or a softer action since lack of
diversity indicates lack of protection, but generally not an error.

We note that, as explained later, SafeDM can only raise
false positives (i.e. notifying lack of diversity when, in fact,
there is diversity), but not false negatives. Moreover, those false
positives – if any – occur seldom in practice. Hence, applying
the same safety measure as if an error had occurred is a viable
and simple strategy. Note that, in the context of automotive
systems, including ASIL-D systems, errors can be managed by
simply dropping the task. For instance, ASIL-D systems such as
braking and steering are executed at high frequency (e.g. every
50ms) and a hazard can occur if, for instance, errors are not
detected within a larger period (e.g. 200ms), which is the Fault
Tolerant Time Interval (FTTI). Hence, if a job of the braking
task is dropped, hence preserving the decision taken 50ms ago
during 50 additional ms, the system still remains safe as long
as new job drops do not occur consecutively.

B. Design
We note that lack of diversity occurs when two identical

computing components (e.g. two cores) perform identical activ-
ity simultaneously, so that voltage levels and current flows are
virtually identical in the same core locations, being just subject
to unavoidable, and typically low, variations (e.g. due to random
process variations). Hence, if the cores are executing different
instructions in a given pipeline stage, or operating different
data, voltages and currents differ across cores and hence, upon
a fault affecting both cores analogously, the effects – and hence
the errors if any – will differ.

Therefore, to know whether there is diversity in the program
execution of two different cores at a given cycle, we need to
consider both the instructions and data that are in the pipeline
at that given moment. If both cores are executing the same
instructions in all the stages of the pipeline and each stage is
using the same data, then there is no diversity between cores
unless it comes from other sources1.

Therefore, we need a method that allows summarizing the
core state in terms of both instructions and data, for comparison
to detect whether diversity exists. This is the Diversity Monitor
(DM), which is composed of two different signatures: the Data
Signature (DS) and the Instruction Signature (IS), encapsulat-
ing the state of data and instructions each, respectively. Next,
we introduce these two signatures, and later we develop on the
concept of the Diversity Monitor.

1) Data Signature (DS): To quantify the diversity in the
data being used in each core at a given time instant, the data
being read/written for the last n cycles on each of the register
ports is used. The reason for it is that all data being used in the
pipeline stages is read and/or stored from/to the register file, so
using the data read/written for a number of cycles guarantees
that all the data being used in the processor is captured. Note

1Note that, if other sources, that we neglect, bring diversity, SafeDM could
notify lack of diversity unnecessarily, hence causing a false positive, which
nevertheless does not challenge safety.

!"!! !"!" !"!#…!"! FIFO

!""! !""" !""#…!"" FIFO

!"$! !"$" !"$#…!"$ FIFO

… … …

Data Signature

(a) Data Signature DS

#!! #!" #!#…

#"! #"" #"#…

#$! #$" #$#…

… … …

Instruction Signature

(b) Instruction Signature IS

Fig. 2: Data and instruction signatures

that, while some data may be read through bypasses, such data
is also sent to the register file for writing, and hence, observed
at the register file ports. The size of n depends on the depth of
the processor pipeline and is implementation specific.

For each of the register ports m, a FIFO queue is used to
store the last n values read or written, depending on whether
the port is a read or write port. When a cycle passes, the oldest
data entry is removed from the head of the queue, and the new
data is inserted in the tail of the FIFO queue. By recording
the data at the register ports every cycle rather than every time
the register file is read or written, we avoid situations where
registers are read/written in the same order but with different
timing (e.g. with some staggering), hence with diversity, but no
diversity would be detected if we restricted ourselves only to
check the last values read or written disregarding their timing.

The Data Signature (DS) is computed by concatenating all
the values of all the FIFOs.

For example, for the data in m register ports RP1 to RPm,
considering the data of the last n cycles and denoting the data
of register port x at cycle y as RP y

x , DS consists of the
concatenation of n∗m register port entries (also see Figure 2a):

DS = RP 1
1RP 2

1 ...RPn
1 ...RP 1

2 ...RPn
2 ...RP 1

m...RPn
m

To compare the DS of two redundant cores, c0 and c1, we
use their Data Signatures DS0 and DS1, respectively. If the
difference is 0, it means that the data being read/written for the
last number of captured cycles is the same, so potentially there
is no diversity. Otherwise, if DS is different from 0, it means
that there is diversity since some of the data in the pipeline is
different across cores. Formally stated:

DataDiversity = (DS0 6= DS1)

2) Instruction Signature (IS): To know if there is diversity
between the instructions being executed in two cores at a
given time, we need to consider all the instructions that are
in execution (in flight) in the pipeline at that cycle, and the
specific pipeline stage each of them is. To account for this,
a sequence of the last o executed instructions in each of the
cores must be stored in a FIFO queue. Note that a FIFO queue
is a suitable block to store instructions since they are fetched
and retired in order. Instructions will be enqueued as they are
fetched and dequeued as they are retired (aka committed). The
Instruction Signature (IS) is computed by concatenating all of
the values of the FIFO.

Note that such an approach will indicate that diversity is
only lost whenever two cores process the same subset of
instructions in the same order, regardless of whether they
are being processed at different stages, which could lead
to false positives. However, cores for safety-related systems
are often relatively simple implementing superscalar, yet in-
order, pipelines. Hence, we analyzed the actual core where we
instantiate SafeDM (Cobham Gaisler’s NOEL-V core), which
we describe later, and realized that it fetches up to p instructions

per cycle (2 in NOEL-V), and the instructions in one stage
(either 1 or 2) move to the following stage as a group (either all
or none). Hence, rather than just keeping the list of instructions
in the pipeline, we keep the list of instructions in each pipeline
stage so that, if two cores are processing the same instruction
but any of them is in a different pipeline stage across cores,
their IS will differ.

For a core whose pipeline width is p instructions, and has o
pipeline stages, we note as Iyx the instruction in position x in
the yth stage of the pipeline (also see Figure 2b). Note that Iyx
can be an empty slot if no instruction was fetched in that slot,
or if the instructions in that pipeline stage were promoted to
the next stage and those in previous stages did not reach this
stage yet. Overall, IS is as follows:

IS = I11I
2
1 ...I

p
1 ...I

1
2 ...I

p
2 ...I

1
o ...I

p
o

Note that if the assumptions made for NOEL-V cores did
not apply to the target core, then IS would restrict to the list
of instructions fetched but not yet retired.

Analogously to the DS, we consider that two cores lack
diversity if their Instruction Signatures are equal:

InstructionDiversity = (IS0 6= IS1)

3) Diversity Monitor (DM): Overall, if either DS or IS
differ across cores, there is some diversity and hence, lack
of diversity is reported only whenever both signatures match
across cores. Note that, whenever there is no diversity there
is risk of experiencing a CCF, but such CCF does not have
to occur necessarily. Hence, SafeDM has been devised so that
lack of diversity can be managed in three different ways: (1)
reporting it as soon as it occurs once raising an interrupt; (2)
reporting it as soon as it occurs a given user-defined number
of times with an interrupt; or (3) not raising any interrupt and
letting the operating system polling the count of cycles without
diversity whenever needed.

What approach to follow out of those three is allowed by
SafeDM programming it accordingly.

4) Advantages of SafeDM w.r.t. staggering enforcing meth-
ods: As explained before, some solutions enforce some stag-
gering across cores to guarantee diversity [3], [4]. Those
approaches impose the constraint that both cores must execute
exactly the same instruction stream so that enforcing some stag-
gering guarantees diversity. Note that, if both cores executed
different instruction streams (e.g. one of them executes some
additional iterations of a loop) then they could lack diversity
despite having different instruction counts. This is problematic
for parallel programs, where synchronization effects may make
a given thread execute different instruction streams, or for
programs with non-deterministic conditions (e.g. if-conditions
dependent on random values).

SafeDM removes those constraints altogether. SafeDM only
considers the real state of the cores regardless of how they
reached that state. Hence, SafeDM puts no constraints on
the software run in each core and it could even be used to
support diverse software implementations of the same function,
which could potentially lack diversity if they use, for instance,
functions from the same library or the same operating system
services.

IV. SAFEDM INTEGRATION

A. MPSoC Platform
SafeDM has been implemented and evaluated in a commer-

cial MultiProcessor System on Chip (MPSoC) used in the space
industry, and developed by Cobham Gaisler [34], which builds
upon NOEL-V cores. The NOEL-V based MPSoC consists of

Bus

Core 1

DDR
Controller

SafeDM

Core 0

Register
file

Execution pipeline

$D1

$I1

Fig. 3: MPSoC schematic with SafeDM

reusable VHDL IP cores connected via on-chip buses, based on
the standard ARM AMBA 2.0. We have developed SafeDM in
VHDL and integrated it into the NOEL-V based platform.

1) MultiProcessor System on Chip: The MPSoC consists of
2 RISC-V 64-bit dual-issue 7-stage pipeline NOEL-V cores 3.
The main bus for communication is a 128 bit-wide Advanced
High-performance Bus (AHB). SafeDM is connected via an
Advanced Peripheral Bus (APB) interface to the main bus. Each
core has a private L1 Data and Instruction cache. The data
cache is write-through and with a write-no-allocate policy. The
L2 cache is shared amongst the cores and connected to the
main bus, together with the memory controller.

B. Integration

We have implemented SafeDM as an APB slave that inter-
faces with the rest of the MPSoC through the bus using the
APB interface. With this, the SafeDM is also portable to other
systems implementing the APB interface.

The main modules implemented can be seen in Figure 4.
In this integration, in addition to the modules required to
implement SafeDM, we have also added two extra modules for
testing the module (Instruction diff) and gathering of results
(History module).

1) Signature generator: This is the main module that stores
the register and instruction values in specific FIFOs. For the
data values, it requires the enable signals and the value being
read or written. Each register port has its own FIFO, in this
case, a total of 4. To compute DS, all the FIFOs for each
core are concatenated. Then, these are compared in a separate
comparator, and the data is stored in the History module.

Similarly, for the instructions, the instruction encoding plus
the valid bit are used, but in this case, just one FIFO is used
per core. Both FIFOs are compared, and the result of the
comparison is also sent to the History module.

In both cases, the hold signal is used to not overwrite any
values in the FIFOs if the pipeline is stalled.

2) APB logic: This module is designed to communicate with
the bus using the APB protocol. The rest of the implementation
is agnostic of the bus so that replacing this specific logic would
allow for SafeDM to be adapted to another bus protocol easily.

3) Instruction diff: In our experiments, in order to know
how far apart the programs being executed are (staggering),
we use this module that increases or decreases the count each
time core 0 or 1, respectively, commits an instruction. This
module is particularly useful to measure the staggering when
instruction streams across cores are identical, as it is the case
in our evaluation.

4) History module: To collect results on how often there
is lack of diversity, we have implemented a history module
that stores this information for both instructions and data. In
particular, it stores the results in a histogram fashion, where
the bin sizes can be configured.

Signature
generator 1

Signature
generator 2

APB_WRAPPER

Instruction diff

APB logic

History module

Register hist
Instruction histM

em
or

y

=
=

reg_values
inst_values

reg_values
inst_values

inst_diff

read_addr

mem_out

value (core 1)
enable (core 1)
value (core 2)

enable (core 2)

hold
instruction (core 1)

valid (core 1)
instruction (core 2)

valid (core 2)

icnt (core 1)
icnt (core 2)

Register signals

Instruction signals

Fig. 4: SafeDM internal block diagram
TABLE I: Taclebench results with different initial staggering.

Staggering 0 nops 100 nops 1000 nops 10000 nops

Benchmark Zero No Zero No Zero No Zero No
stag div stag div stag div stag div

binarysearch 0 0 0 0 0 0 0 0
bitcount 212 3 0 0 0 0 0 0
bitonic 0 0 0 0 24 0 0 0
bsort 0 0 83 0 0 0 0 0

complex upd. 50 0 0 0 0 0 0 0
cosf 0 0 0 0 0 0 0 0

countnegative 0 0 0 0 0 0 0 0
cubic 7268 757 6797 805 0 0 0 0

deg2rad 23 0 0 0 0 0 0 0
fac 11 0 0 0 0 0 0 0
fft 5341 0 0 0 0 0 0 0

filterbank 2136 539 0 0 0 0 0 0
fir2dim 0 0 0 0 0 0 0 0

iir 1903 651 0 0 0 0 0 0
insertsort 611 0 0 0 0 0 0 0

isqrt 0 0 0 0 0 0 0 0
jfdctint 2 0 0 0 0 0 0 0

lms 0 0 0 0 0 0 0 0
ludcmp 2840 574 0 0 0 0 0 0
matrix1 0 0 0 0 0 0 0 0

md5 3140 2050 0 0 0 0 0 0
minver 758 100 0 0 0 0 0 0

pm 67528 655 4884 0 417763 0 0 0
prime 26 0 0 0 0 0 0 0

quicksort 19289 1118 7387 891 1560 0 0 0
rad2deg 0 0 0 0 0 0 0 0

recursion 0 0 0 0 0 0 0 0
sha 1215 0 0 0 0 0 0 0
st 471 26 0 0 0 0 0 0

V. EVALUATION

A. Evaluation Framework

The SafeDM has been evaluated by synthesizing the MP-
SoC described in Section IV into a Xilinx Kintex UltraScale
KCU105 evaluation kit.

To evaluate SafeDM, we use the TACLe Benchmarks [8],
a set of benchmarks of varying types and sizes, specifically
designed for the evaluation of critical real-time embedded
systems. Those benchmarks are self-contained, meaning that
they do not need to read any data from files or peripherals,
hence easing their deployment on bare-metal setups.

We assess SafeDM on bare-metal, without any operating
system, so that we can exercise control over the experiments
and, whenever needed, analyze the timing behavior with tools
such as Modelsim, to see in a cycle-by-cycle basis what occurs
in the pipeline of the cores and in SafeDM.

B. Experiments

In a real platform deployment, programs will be started by
the real-time operating system (RTOS) that, depending on its
features, will be able to start them simultaneously in different
cores, or with some unintended staggering if, for instance,
programs are made to run by a single process that sets them to
run sequentially. To account for all these potential scenarios,
we have designed several sets of experiments:
• Without staggering: in this case both cores start the (redun-

dant) program at the same time. We load the program in
both cores and synchronize them so that they start exactly
at the same cycle.

• With staggering: we introduce a controlled delay between
one core starting the program and the other one. We use
the same synchronization mechanism, but one of the cores
will first execute a number of nop (no-operation) instructions
before it runs the actual program. We have considered 3
scenarios here depending on the number of nop instructions
between cores: 100, 1,000 and 10,000.
SafeDM is agnostic to whether there is some staggering or

its magnitude. SafeDM simply assesses whether the indicated
cores exhibit diverse behavior, leaving up to the RTOS or the
user deciding whether some staggering needs being introduced.

The results of the experiment have been summarized in
Table I. We have run each benchmark in a several times as
follows. For the experiments starting without staggering, we
have run them 4 times. For the experiments starting with
staggering, we have run them twice for each of the three
staggering values: one with one core starting first, and another
one with the other core starting first.

For all experiments, we have reported the number of cycles
when the distance between cores (staggering) is 0, as well as
the number of cycles when SafeDM reports that there is no
diversity. Across the multiple runs, we selected the highest
values found, although variations across runs are low. We have
considered that to report no diversity, both Data and Instruction
signatures need to be equal.

C. Results Analysis

We observe that, as expected, staggering is 0 infrequently,
and lack of diversity occurs even less frequently. In particular,
programs execute more than 56 millions of instructions on
average, and lack of staggering occurs up to 14,500 cycles on
average for one setup. Lack of diversity only occurs up to 224
cycles on average for one setup. Hence, even if non considered
sources of diversity existed in those cases, meaning that they
are false positives, their frequency would still be negligible.

In the experiment with no staggering, most of the bench-
marks maintain this difference of 0 instructions for some cycles,
but then quickly diverge due to the serialization in the access
to the different shared resources of the MPSoC. For example,
when both of them get to a load instruction for the first time,
they miss in L1 caches, and request access to the bus to
access L2/memory. One core is granted access first and get
its load served whereas the other is delayed, thus breaking
the staggering of 0 cycles. However, even if staggering is
zero sporadically, in most of the cases there is some diversity
because either instructions are made some different progress
in the pipeline, or simply because some of the values operated
differ given that redundant threads are created by software, and
hence have different address spaces. Therefore, whenever an
address is read and/or operated, even if the same operation is
performed simultaneously in the other core, the actual address
read and/or operated differs, hence bringing some diversity.

TABLE II: Classification of non-lockstepped redundant execu-
tion techniques for CPUs.

Diversity unaware Diversity enforced Diversity monitored
(intrusive) (non-intrusive)

[9], [9]–[11], [17], [19], [20] [3], [4] Our work
[23], [24], [26]–[30]

Note also that, with the help of Modelsim, we have visually
inspected the contents of the pipelines of the cores in multiple
cases with staggering and diversity, without staggering but with
diversity, and with neither staggering or diversity, to validate
that SafeDM behaved as specified.

While SafeDM is agnostic to whether some staggering is
imposed or not at software level, we have evaluated scenarios
with increasing initial staggering to observe the impact in the
results. As shown, generally, when increasing initial stagger-
ing, the cycles with zero staggering and no diversity quickly
decrease and tend to vanish. There is only one exception: pm
(pattern matching) benchmark with 1,000 nops staggering. This
program experiences a so-called timing anomaly where, by
delaying the start of the program, it ends up executing faster.
In particular, the core ahead starts sending its store misses to
L2 cache. Eventually, the delayed core attempts to do the same
but its store operations are kept in its core-local store buffer
awaiting for the bus to become idle. However, this allows that
multiple stores to the same cache line that would otherwise
be sent in multiple transactions, are grouped into a single
transaction in the store buffer, hence reducing the latency to
write all data. Eventually, and due to the lack of system level
effects such as interrupts, for instance, or other tasks scheduled
before that could alter the initial state of branch predictors
and caches, both pm benchmarks, each one in one core, get
unluckily synchronized for a while, and only accessing core-
local resources (e.g. L1 caches), hence with zero staggering.
However, since addresses accessed differ, and pipelines are not
fully synchronized (they may hold the same instructions but
many times in different stages), there is diversity despite the
null staggering.

Overall, we see that SafeDM is an effective module to
detect lack of diversity in a non-intrusive manner with program
execution, and can be used to build a safety concept on top
where, upon lack of diversity – which SafeDM detects as
needed – corrective actions are taken.

D. SafeDM Overheads
We have measured the cost of SafeDM in the FPGA. In terms

of area, SafeDM, as it would be implemented in a deployment
scenario (what is described in Section IV without accounting
for the History module that is just added for results gathering),
requires 4,000 LUTs, hence a 3.4% overhead only for such a
simple MPSoC. Note that such cost would decrease in relative
terms for larger MPSoCs including, for instance, accelerators,
additional cache levels, etc. The average power used by the
module is even smaller, adding less than 1% of extra power
consumption (0.019W on top of over 2W that the baseline
MPSoC consumes.)

VI. RELATED WORK

Apart from DCLS, already discussed in Section I, redun-
dancy has been the subject of investigation of many works,
mostly considering transient faults in the context of redundant
multi-threading [23], [26], or considering both, transient and
permanent faults with cross-core redundancy [10], [17], [19]. In
some cases, even partial redundancy has been considered [9],
[18]. However, none of those works mitigates CCF since no
diversity is guaranteed (e.g. due to using the same components

in a core, or due to lack of staggering across cores). Diversity
is effectively enforced with the solution presented in [4].
Software-only counterparts have also been investigated [11],
[20], [24], [27]–[30], yet without guaranteeing diversity. Only a
recent work enforces diversity via software [3]. Both, hardware
and software-only solutions enforcing diversity are intrusive
with the execution of software enforcing some specific stag-
gering. However, as shown in [22], diversity is expected to
exist anyway. Hence, SafeDM, our diversity monitor, suffices
to provide evidence of existing diversity without being intrusive
with execution, as summarized in Table II.

Other works have focused on providing redundancy (without
diversity) for GPUs, either with [16], [21], [32], [33] or
without [6], [15], [33] hardware support. GPU diversity has
also been achieved with [1] and without [2] hardware support.
However, GPU solutions cannot be directly ported to CPUs.

Finally, some authors [25] have focused on the recovery
opportunities for dual diverse redundant designs rather than on
how to guarantee the existence of diversity.

VII. CONCLUSIONS

The safety concept for high-integrity systems requires re-
dundant execution with diversity for the most critical tasks.
However, lockstepped processors require coupled cores so that
half of them are not visible (and usable) at user level. Hence,
designs with independent cores that can be used for lockstepped
execution opportunistically only when needed are needed for
efficiency reasons. Some solutions have been proposed based
on software redundancy, and enforcing execution staggering
either by software or hardware means. However, those solutions
are intrusive with program execution, and pose a number of
constraints to the execution since redundant programs must
execute identical instruction streams, which is challenging, for
instance, for parallel applications where redundant threads may
behave differently due to synchronization effects.

To tackle these challenges, this paper presents SafeDM, a
hardware Diversity Monitor. SafeDM detects lack of diversity
in any cycle so that the safety concept can build on top of
SafeDM to deploy corrective actions if diversity is lost. We
have integrated SafeDM in a commercial FPGA-based space
MPSoC, and shown that SafeDM effectively detects lack of
diversity. To allow interested users getting access to SafeDM,
it is available as an open-source component in [5].

ACKNOWLEDGEMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement no. 871467 and by the Spanish Ministry
of Science and Innovation under grant PID2019-107255GB-
C21/AEI/10.13039/501100011033.

REFERENCES

[1] S. Alcaide et al. High-integrity gpu designs for critical real-time
automotive systems. In DATE, 2019.

[2] S. Alcaide et al. Software-only Diverse Redundancy on GPUs for
Autonomous Driving Platforms. In IOLTS, 2019.

[3] S. Alcaide et al. Software-only based diverse redundancy for asil-d
automotive applications on embedded hpc platforms. In DFT, 2020.

[4] F. Bas et al. SafeDE: a flexible diversity enforcement hardware module
for light-lockstepping. In IOLTS, 2021.

[5] BSC - CAOS. SafeDM. https://bsccaos.github.io.
[6] M. Dimitrov et al. Understanding software approaches for gpgpu

reliability. 2009.
[7] European Committee for Electrotechnical Standardization. EN 50126-1.

Railway Applications - The Specification and Demonstration of Reliabil-
ity, Availability, Maintainability and Safety (RAMS), 2017.

[8] H. Falk et al. TACLeBench: A benchmark collection to support worst-
case execution time research. In WCET Workshop, 2016.

[9] J. Fu et al. On-demand thread-level fault detection in a concurrent
programming environment. In SAMOS, 2013.

[10] M Gomaa et al. Transient-fault recovery for chip multiprocessors. In
ISCA, 2003.

[11] F. Haas et al. Fault-tolerant execution on cots multi-core processors with
hardware transactional memory support. In ARCS, 2017.

[12] IEC. IEC 61508. Functional Safety of Electri-
cal/Electronic/Programmable Electronic Safety-related Systems, 2010.

[13] Infineon. AURIX Multicore 32-bit Microcontroller Family to Meet Safety
and Powertrain Requirements of Upcoming Vehicle Generations, 2012.

[14] International Standards Organization. ISO/DIS 26262. Road Vehicles –
Functional Safety, 2009.

[15] S. Jain et al. Fractional GPUs: Software-based compute and memory
bandwidth reservation for GPUs. In RTAS, 2019.

[16] H. Jeon et al. Warped-DMR: Light-weight error detection for GPGPU.
In MICRO, 2012.

[17] C. LaFrieda et al. Utilizing dynamically coupled cores to form a resilient
chip multiprocessor. In DSN, 2007.

[18] B. H. Meyer et al. Cost-effective safety and fault localization using
distributed temporal redundancy. In CASES, 2011.

[19] S. S. Mukherjee et al. Detailed design and evaluation of redundant
multithreading alternatives. In ISCA, 2002.

[20] H. Mushtaq et al. Efficient software-based fault tolerance approach on
multicore platforms. In DATE, 2013.

[21] R. Nathan et al. Argus-G: Comprehensive, low-cost error detection for
GPGPU cores. IEEE Computer Architecture Letters, 2015.

[22] P. Okech et al. Inherent diversity in replicated architectures. CoRR,
abs/1510.02086, 2015.

[23] S. K. Reinhardt et al. Transient fault detection via simultaneous multi-
threading. In ISCA, 2000.

[24] G. A. Reis et al. SWIFT: Software implemented fault tolerance. In CGO,
2005.

[25] P. Reviriego et al. Diverse double modular redundancy: A new direction
for soft-error detection and correction. IEEE Design Test, 2013.

[26] E. Rotenberg. AR-SMT: a microarchitectural approach to fault tolerance
in microprocessors. FTC, 1999.

[27] J. D. Scales et al. The design of a practical system for fault-tolerant
virtual machines. Operating Systems Review (ACM), 2010.

[28] A Shye et al. Using process-level redundancy to exploit multiple cores
for transient fault tolerance. In DSN, 2007.

[29] A. Shye et al. PLR: A software approach to transient fault tolerance for
multicore architectures. IEEE Transactions on Dependable and Secure
Computing, 2009.

[30] H. So et al. Expert: Effective and flexible error protection by redundant
multithreading. DATE, 2018.

[31] STMicroelectronics. SPC570Sx - 32-bit Power Architecture MCU for
Automotive Chassis and Safety Applications, 2018.

[32] M. B. Sullivan et al. Swapcodes: Error codes for hardware-software
cooperative gpu pipeline error detection. In MICRO, 2018.

[33] J. Wadden et al. Real-world design and evaluation of compiler-managed
gpu redundant multithreading. In ISCA, 2014.

[34] G. Wessman et al. De-RISC: the first RISC-V space-grade platform for
safety-critical systems. In Space Computing Conference (SCC), 2021.

