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Abstract—Faithfully representing small gate delay variations
caused by input switchings on different inputs in close temporal
proximity is a very challenging task for digital delay models.
In this paper, we use the example of a 2-input NOR gate
to show that a simple hybrid model leads to a surprisingly
accurate digital delay model. Our model utilizes simple first-order
ordinary differential equations (ODEs) in all modes, resulting
from considering transistors as ideal switches in a simple RC
model of the gate. By analytically solving the resulting ODEs,
we derive expressions for the gate delays, as well as formulas
that facilitate model parametrization. It turns out that our model
almost faithfully captures the Charlie effect, except in just one
specific situation. In addition, we experimentally compare our
model’s predictions both to SPICE simulations, using some 15 nm
technology, and to some existing delay models. Our results show
a significant improvement of the achievable modeling accuracy.

Index Terms—multi input switching, delay model

I. INTRODUCTION

Digital circuit design relies heavily on fast digital timing
analysis techniques, since they are orders of magnitude faster
than analog simulations, e.g., in SPICE. In contrast to static
approaches, dynamic digital timing analysis predicts the prop-
agation of arbitrary signal traces throughout a circuit. Going
beyond the popular pure (= constant input-to-output delay)
and inertial delay (= constant delay + too short pulses being
removed) models [1], single-history delay models [2], [3]
achieve an improved behavioral coverage. Indeed, as proved
in [4], it is inevitable for any faithful delay model that a gate’s
input-to-output delay δ(T ), for a given transition, depends on
a parameter like the previous-output-to-input delay T .

The involution delay model (IDM) proposed in [3] con-
sists of zero-time boolean gates, which are interconnected
by single-input single-output involution delay channels. IDM
channels are characterized by a delay function δ(T ), which
is a negative involution, in the sense that −δ(−δ(T )) = T .
Unlike all other existing delay models, the IDM faithfully
models glitch propagation in the simple short-pulse filtration
problem, and is hence the only candidate for a faithful delay
model known so far.

Moreover, the IDM comes with a publicly available timing
analysis framework (the Involution Tool [5]), which is based
on an industrial simulation suite. The Involution Tool allows
to randomly generate input traces for a given circuit, and to

This research was partially funded by the Austrian Science Fund (FWF)
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evaluate the accuracy of IDM predictions compared to SPICE-
generated transition times and/or other digital models like
inertial delays.

Whereas the accuracy of IDM predictions for single-input,
single-output circuits like inverter chains or clock trees re-
ported in [5] is impressive, this is less so for circuits involving
multi-input gates. We conjecture that this is mainly due to
the inherent lack of properly covering output delay variations
caused by multiple input switching (MIS) in close temporal
proximity [6], also known as the Charlie effect (named after
Charles Molnar, who identified its causes in the 70th of the last
century). Compared to the single input switching (SIS) case,
the output transition is sped up/slowed down with decreasing
transition separation time on different inputs here. Single-
input, single-output IDM delay channels obviously cannot
exhibit such a behavior.

Multiple approaches have been proposed to cover MIS
effects in literature, ranging from linear [7] or quadratic
fitting [8] over higher-dimensional model representation [9]
to recent machine learning methods [10]. However, none of
these naturally generalizes to multi-input involution channels.

In order to define a 2-input IDM channel, we thus generalize
the simple analog first-order model matching a classic IDM
channel (which can be viewed as a hybrid model with only
two modes)1 to a four-mode hybrid model: For each state of
the inputs (A,B) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, a system of
first-order ordinary differential equations (ODEs) is derived,
which governs the analog trajectory of the gate’s output
in the respective mode. At an input change, the mode is
instantaneously switched, in a way that guarantees continuity
of the output signal. Whereas similar approaches have been
advocated in [11], [12], these rely on analog fitting or extrac-
tion of unique switching waveforms.

Main contributions: (1)We introduce a simple hybrid
ODE model of a 2-input CMOS NOR gate, which results
from replacing transistors in a simple RC model of the circuit
by ideal switches that are switched on/off at the respective
input threshold voltage Vth = VDD/2 crossing times. We
analytically solve the ODE systems for every mode, and derive
expressions for the resulting MIS gate delay δ(∆), defined by
the time when the output waveform crosses Vth; the parameter
∆ = tB − tA denotes the switching time separation of the

1One mode for generating a rising transition switching waveform, and one
for the falling one.
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Fig. 1: Transistor level implementation of the NOR gate.

inputs. It turns our that the resulting delay model captures all
MIS effects very well, except for one case (∆ < 0 for rising
output transitions).

(2) We develop expressions to ease the parametrization of
our ODE model, given the characteristic SIS delay values
δ(−∞) and δ(∞) as well as the MIS value δ(0). Since
it turned out that it is impossible to simultaneously match
all three values for a real circuit simultaneously, we had to
add an additional pure delay (supported by the IDM) to our
parametrization.

(3) We use an appropriately extended version of the Invo-
lution Tool to compare the average modeling accuracy of our
hybrid model to other analog/digital simulations. To that end,
we evaluate random traces for one of the circuits studied in [5],
using some empirically optimal parametrization of our hybrid
model. Whereas the latter outperforms the original IDM, as
well as standard models like inertial delays, its deficiency
in fully capturing all MIS effects also somewhat impairs its
average accuracy.

In a nutshell, our results show that describing multi-input
gates with hybrid models is beneficial, albeit our instanta-
neously switching transistor abstraction is slightly too sim-
plistic to fully cover all MIS effects.

Paper organization: In Section II, we explain the causes
for MIS delay variations and determine characteristic values
for a NOR gate. In Section III, we present our simple hybrid
ODE model and explore in Section IV its ability to capture
MIS effects. Section V provides formulas for parametrizing
the model, and Section VI quantifies the average modeling
accuracy. Some conclusions and directions of future research
close the paper in Section VII.

II. MULTIPLE INPUT SWITCHING (MIS)

In this section, we will provide some basic explanations
for MIS effects and quantify those by conducting analog
simulations using Spectre (version 19.1) and the Nangate Open
Cell Library featuring FreePDK15TM FinFET models [13].
The investigated CMOS NOR gate is among the simplest multi-
input gates and hence a natural target for our analysis. Its
transistor-level implementation, with the parasitic capacitance
CN and the output load capacitance CO , is shown in Fig. 1.
As we will explore later, the transistor arrangement plays

a decisive role in explaining the observed delay variations:
While the pMOS (T1 and T2) are connected in series towards
VDD, the nMOS (T3 and T4) provide parallel paths towards
GND.

In the sequel, we apply the rising/falling input waveforms
f↑/↓(t−tA) on input A resp. f↑/↓(t−tB) on input B, whereat
tA resp. tB denote the point in time the discretization threshold
voltage Vth = VDD/2 is crossed. In the same spirit, tO denotes
the time when the output voltage VO crosses VDD/2. Varying
tA and tB allows us to represent the gate delay by tO − tA
resp. tO − tB (depending on the particular output state) over
the relative input separation time ∆ = tB − tA.

We first consider the case of a falling output transition.
In a nutshell, either transistor T3 or T4 starts to conduct
(is closed), while one of the two pMOS transistors in series
stops conducting (is opened). Consequently, the output is
drained and VO starts to decrease. It is easy to see that it
makes a difference whether only one or both nMOS transistors
are closed, i.e., only a single or both inputs switch, as it
takes, at least theoretically, only half the time to drain the
output in parallel. So the MIS causes a speed-up here, whose
effect is clearly visible in the analog waveforms shown in
Fig. 2a: When both transistors start to conduct, the output
slope changes notably, leading to a reduction of the gate delay.

As the first rising input transition already induces an out-
put transition, the relevant gate delay is δ↓S(∆) = tO −
min(tA, tB), i.e., the time difference between the threshold
crossing of the output and the earlier input (see Fig. 2b). As
predicted, the delay is the smallest for simultaneous transitions
(∆ = 0), whereat the change in delay is around 30%. Note that
δ↓S(−∞) 6= δ↓S(∞) is mainly caused by transistor T2, which
is closed in one case, connecting nodes N and O, while in the
other it is open (see Section III). Although the absolute values
differ, our results fit very well2 to previous investigations in
other technologies [7], [8], [9].

A less visible phenomenon of the speed-up MIS effect
deserve to be mentioned here: Simulations for an older 65 nm
technology and results reported in the literature (e.g. in
[7], [8]) reveal local delay maxima for medium-sized |∆|.
We conjecture these to be caused by input-output coupling
capacitances, which introduce a current working against the
intended behavior of the gate. If the input transitions are far
apart (|∆| � 0), the second one appears way after tO, such
that the introduced current has no impact. For decreasing |∆|,
however, the second transition will eventually occur when VO
is about to cross the threshold. Since the additional current
has to be compensated by the driving transistor, the output
slope decreases and thus the delay increases. Further reducing
∆ first amplifies this effect until the closing of the second
transistor leads to an increased conductivity that, overall, is
able to make up for the added delay, causing it to finally drop
again.

For rising output transitions, the behavior of the NOR is

2We ran our simulations with an older technology library (65 nm) as well,
which confirmed the delay values reported in the literature.
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Fig. 2: Analog simulation results for the CMOS NOR gate.

quite different. First and foremost, the gate only switches after
both inputs have changed (see Fig. 2c), resulting in the gate
delay δ↑S(∆) = tO − max(tA, tB). At the transistor level,
each falling input transition causes one of the nMOS to stop
conducting while simultaneously one of the pMOS gets closed.
We emphasize that the shape of the output signal in Fig. 2c is
essentially independent of ∆, only the position in time varies.
This is in accordance with the fact that there is only a single
path connecting the output to VDD.

The SIS delays δ↑S(∞) and δ↑S(−∞) again differ (see
Fig. 2d), i.e., the gate delay depends on the order of the
input transitions. Taking a closer look at the schematics in
Fig. 1 reveals that an early transition on A closes the topmost
transistor and thus causes the internal node N between the
pMOS to be charged to VDD. By contrast, an early transition
on B causes N to be fully discharged, which obviously
prolongs the transition time.

In any case, the gate delay for |∆| → 0 increases, i.e.,
the MIS effect is a slow-down here. The causes are, once
again, coupling capacitances, this time between N and the
input: If both inputs switch at the same time, the parasitic
current (dis)charges CN , possibly below GND, since both
adjacent transistors are still open. After they start to conduct,
the additional charge has to be compensated, which explains
the increased delay. Naturally, the delay variations depend on
the initial value of VN and thus on the switching history of
the gate. Note that we used the worst case (VN = GND) in
all our simulations.

III. SIMPLE HYBRID ODE MODEL

In our attempt to analytically express the gate delays of a
NOR gate, we replace the transistors by zero-time switches:
Depending on whether the appropriate input is above (logical
1) resp. below (logical 0) Vth = VDD/2, an nMOS transistor
is replaced by a fixed resistor R < ∞ or removed (R = ∞),
while a pMOS is handled in the opposite way. Note that this is
similar to the approach used in [14], with the main difference
that we added a capacitance at the internal node in the p-stack
(CN ) and one at the output (CO ) (cf. Fig. 1). Thus, we end
up with a system of coupled first-order differential equations.

A. General solution

We briefly recall the general solution of first-order ODE
systems first. Let V : R → Rn and V ′ = d

dtV , and
consider a homogeneous system of ordinary differential equa-
tions (ODEs) with constant coefficients V ′(t) = A · V (t);
A = [aij ]

n×n ∈ Rn×n and initial values V (0). For a
diagonizable matrix A, this system has a general solution

V (t) = c1 · ε1 · eλ1t + . . .+ cn · εn · eλnt = c · φ(t)

where {(λi, εi)}ni=1 is a set of pairs consisting of n eigenvalues
and the corresponding eigenvectors of A. c = [c1, . . . , cn]T is
made up of arbitrary real constants determined by V (0), and
φ(t) = [ε1e

λ1t, . . . , εne
λnt] is the fundamental matrix solution

of the homogeneous system. Moreover, the general solution to
the non-homogeneous system V ′(t) = A · V (t) + g(t), for
a continuous function g : R → Rn, is given by the sum
of the general solution of the corresponding homogeneous
system V (t)′ = A ·V (t) plus a particular solution to the non-
homogeneous one. To be more precise, V (t) = φ(t) ·c+φ(t) ·∫
φ−1(s) · g(s)ds. We refer the interested reader to standard

textbooks such as [15] for more information.
Since there are four different states (0, 0), (0, 1), (1, 0) and

(1, 1) of the inputs (A,B), interpreted as binary signals, we
need to consider 4 different RC circuits and their correspond-
ing ODE systems V ′(t) = A · V (t) + g(t). V (t) ∈ R2 is a
two-element vector, representing the voltage VN at the internal
node N in Fig. 1, and the gate output voltage VO, i.e.,

V (t) =

(
VN
VO

)
,

while the non-homogeneous term g(t) is either identically zero
or a constant. In the sequel, we will evaluate V (t) for each
input combination individually.

B. System (1, 1): VA = VDD, VB = VDD

If inputs A and B are above the threshold, both nMOS
transistors are conducting and thus replaced by resistors (see
Fig. 3a), causing the output O to be discharged in parallel.
By contrast, N is completely isolated and keeps its value.
Formally, we obtain
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Fig. 3: First order RC approximations.

CN · d

dt
VN = 0,

CO · d

dt
VO = IO = −I3 − I4 = −VO ·

(
1

R3
+

1

R4

)
.

This homogeneous system can be rewritten in matrix form(
d
dtVN
d
dtVO

)
=

(
0 0
0 −( 1

COR3
+ 1

COR4
)

)
·
(
VN
VO

)
,

which leads to the general solution(
VN
VO

)
= c1

(
1
0

)
+ c2

(
0
1

)
· e−

(
1

COR3
+ 1

COR4

)
t
.

C. System (1, 0): VA = VDD, VB = GND

Since T1 and T4 are open (see Fig. 3b), node N is connected
to O, and O to GND. Note that both capacitances have to be
discharged over resistor R3, resulting in less current that is
available for discharging CO . More specifically, we observe
IO = −I3 − IN and hence obtain

CN · d

dt
VN = IN = −VN − VO

R2
,

CO · d

dt
VO = IO = −I3 − IN = −VO

R3
+
VN − VO

R2
.

The matrix form of this homogeneous system is(
d
dtVN
d
dtVO

)
=

(
− 1
CNR2

1
CNR2

1
COR2

−( 1
COR2

+ 1
COR3

)

)
·
(
VN
VO

)
which has the general solution(

VN
VO

)
=c1 ·

( 1
CNR2

α+ β

)
eλ1t + c2 ·

( 1
CNR2

α− β

)
eλ2t,

where

α =
COR3 − CN (R2 +R3)

2COCNR2R3
, (1)

β =

√
(COR3 + CN (R2 +R3))2 − 4COCNR2R3

2COCNR2R3
, (2)

λ1,2 = −COR3 + CN (R2 +R3)

2COCNR2R3
± β. (3)

D. System (0, 1): VA = GND, VB = VDD

Opening transistors T2 and T3, as shown in Fig. 3c, decou-
ples the nodes N and O once again. We thus get the non-
homogeneous system of ODEs

CN · d

dt
VN = IN =

VDD − VN

R1
,

CO · d

dt
VO = IO = −VO

R4
,

which is in matrix representation(
d
dtVN
d
dtVO

)
=

(
− 1
CNR1

0

0 − 1
COR4

)
·
(
VN
VO

)

+

(
VDD

CNR1

0

)
.

It is easy to check that the fundamental matrix solution to
the corresponding homogeneous system is

φ(t) =

(
e
− t

C
N

R1 0

0 e
− t

COR4

)
leading to the general non-homogeneous solution(

VN
VO

)
=

(
c1 · e−

t
C
N

R1 + VDD

c2 · e−
t

COR4

)
.

E. System (0, 0): VA = GND, VB = GND
Closing both pMOS transistors, as shown in Fig. 3d, causes

both capacitances to be charged over the same resistor R1,
similarly to system (1,0). Since IO = I1−IN , the ODE system
describing the behavior is

CO · d

dt
VO = IO =

VN − VO

R2
,

CN · d

dt
VN = IN = I1 − IO =

VDD − VN

R1
− VN − VO

R2
,

which is a non-homogeneous system, with the matrix form(
d
dtVN
d
dtVO

)
=

(
−( 1

CNR1
+ 1

CNR2
) 1

CNR2
1

COR2
− 1
COR2

)
·

(
VN
VO

)
+

(
VDD

CNR1

0

)
.
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By straightforward but tedious calculations, it follows that the
fundamental matrix solution of the homogeneous system is

φ(t) =

( 1
CNR2

· eλ1t 1
CNR2

· eλ2t

(α+ β) · eλ1t (α− β) · eλ2t

)
,

where

α =
CO(R1 +R2)− CNR1

2COCNR1R2
, (4)

β =

√
(CNR1 + CO(R1 +R2))2 − 4COCNR1R2

2COCNR1R2
, (5)

γ = −CNR1 + CO(R1 +R2)

2COCNR1R2
, (6)

λ1,2 = γ ± β. (7)

The general solution of the non-homogeneous system is(
VN
VO

)
=

( c1
CNR2

eλ1t + c2
CNR2

eλ2t + VDD

c1 · (α+ β)eλ1t + c2 · (α− β)eλ2t + VDD

)
.

F. Trajectory Comparison

Fig. 4 depicts the signals VN/O(n,m)(t) over time t in sys-
tem (n,m). The initial values were set to VN (0) = VO(0) =
VDD, with the exception of VN (0, 0)(0) = VO(0, 0)(0) =
GND and VN (1, 1)(0) = VDD/2. Compared to the cases
where only one nMOS is closed, the output trajectory of
system (1, 1) is much steeper. Note that this is in line with
the considerations for the speed-up MIS effect in Section II.

IV. MODELING MIS EFFECTS

In this section, we will investigate how well our simple
hybrid ODE model is capable of faithfully representing the
MIS effects described in Section II. It turns out that the speed-
up is modeled appropriately, whereas the slow-down is only
partially covered. Note that also the approaches presented
in [11], [12] struggled with this effect, such that the authors
finally resorted to fitting the delays for these cases.

For our analysis, we computed the delay as a function of
the input separation time ∆ = tB − tA for falling and rising

TABLE I: Empirically obtained parameter values

Parameter Value
R1 37.088 × 103 Ω

R2 44.926 × 103 Ω

R3 45.150 × 103 Ω

R4 48.761 × 103 Ω

CN 59.486 × 10−18 F

CO 617.259 × 10−18 F

output transitions, and compared it with our analog simulation
results (cf. Fig. 2b and Fig. 2d). Similar to Section II, we start
with a falling output transition. To compute the delay for a
given ∆, we need to combine two solutions:

1): Starting in the system (0, 0) initially, which models
a gate whose inputs have been 0 for a very long time, we
switch to (1, 0) resp. (0, 1) at time t = 0 and compute the
corresponding trajectory.

2): When in the mode entered in 1), we switch to system
(1, 1) at time ts, and determine tO where VO(tO) = VDD/2.
The delay is extracted as tO − min(tA, tB) = tO, since the
earlier of the two inputs triggers the output transition. Starting
in system (1, 0) results in ∆ = ts, whereat for system (0, 1)
we get ∆ = −ts, which accounts for the reversed order of the
input transitions.

The calculation of the rising output delay is carried out
analogously, with the exception that we start in the system
(1, 1) initially and switch to (1, 0) (∆ < 0) resp. (0, 1) (∆ >
0) at t = 0, before turning to (0, 0) at ts. The sought delay is
now equal to tO−max(tA, tB) = tO−ts, since it is the later of
the two inputs that initiates the output change. Note carefully,
however, that it is unfortunately not clear which initial value
to use for VN in the system (1, 1) here: As the latter does not
change the value of VN (t) at all, the proper initial value would
be the actual value of VN in the state (m,n) the system was
in before/at the switch to (1, 1) occurred.

For a quantitative comparison, we parameterized the resis-
tances and capacitances in our model using a least square
fitting approach, with the goal to match the output threshold
crossing times δ↑S(±∞) and δ↑S(0) resp. δ↓S(±∞) and δ↓S(0)
shown in Fig. 2. Interestingly, simultaneous fitting of all three
data points turned out to be impossible, even for the “well-
behaved” case of falling output transitions. To understand why,
we derived analytic expressions for the values

δ↓(−∞) ≈ ln(2) · COR4 and δ↓(0) =
ln(2) · COR3R4

R3 +R4

(as well as for δ↓(∞), δ↑(−∞), δ↑(0) and δ↑(∞)), by
inverting the explicit formulas of our trajectories. Unfortu-
nately, necessary simplifications that enabled these calcula-
tions induced some approximation errors, which made a direct
computation of the desired parameters impossible.

Nevertheless, important insights could be gained. More
specifically, since R3 and R4 are the on-resistors of the two
nMOS transistors and should hence be roughly the same,
we obtain δ↓(−∞)

δ↓(0)
≈ R3+R4

R3
≈ 2. Since the desired ratio
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according to our simulations (see Fig. 2) is δ↓S(−∞)

δ↓S(0)
≈ 38 ps

28 ps ,
however, we could not even simultaneously fit these two values
with reasonable choices for R3 and R4.

We solved the problem by adding (that is, subtracting) a
pure delay δmin = 18 ps, also present in the original IDM,
which defers the switching to the new state upon an input
transition. This results in an effective ratio of 20 ps

10 ps = 2, which
could finally be matched by least squares fitting, leading to the
parameter values presented in Table I. To also accommodate
δmin in the MIS delay computations, we just need to transform
tO − min(tA, tB) = tO to δ↓M (∆) = tO + δmin and,
correspondingly, δ↑M (∆) = tO− ts+ δmin. Note that the same
δmin = 18 ps was also used for rising output transitions.

Utilizing the found parameters, we can finally visualize the
delay predictions of our model. Fig. 5 shows the very good fit
of δ↓M (∆) for a falling output transition compared to the ana-
log simulation results presented in Section II. Unfortunately,
a comparable coverage of the MIS effects for rising output
transitions cannot be achieved (see Fig. 6): For none of the
initial values VN ∈ {GND, VDD/2, VDD}, the computed delay
δ↑M (∆) = tO−ts+δmin reasonably matches δ↑S(∆) obtained in
our analog simulations. More specifically, for VN = VDD and
VN = VDD/2, our simple ODE model fails to correctly predict
the case of ∆ < 0, i.e., switching to system (1, 0) at t = 0
and then to (0, 0) at time t = ∆. In the case of VN = GND,
which reasonably matches δ↑S(±∞) and δ↓S(±∞) and thus has
been used in Section VI, it fails to model the MIS peak around
∆ = 0 in Fig. 2d for small negative and positive ∆.

We conclude that our simple ODE model perfectly captures
the MIS effects caused by the parallel transistors, but not for
the ones caused by transitors arranged in series.

V. PARAMETRIZATION

In order to apply our hybrid model in practice, in particular,
for digital timing simulations using the Involution Tool, one
needs to compute the input-to-output delay functions for all
possible state transitions, including the ones shown in Fig. 5
and Fig. 6. This, in turn, requires a proper parametriza-
tion of our model, i.e., the determination of the parameters
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Fig. 6: Computed MIS delays for rising output transitions.

R1, . . . , R4, C
,
NCO that cause our model to match the actual

delays of a given NOR gate in a circuit as good as possible.
There is no unique and possibly even optimal parametriza-

tion approach, but it is natural to match Fig. 5 and Fig. 6
(for ∆ > 0) to Fig. 2b and Fig. 2d as close as possible. For
this purpose, it is sufficient to match the characteristic Charlie
delay values δ↓(−∞), δ↓(0), δ↓(∞) in Fig. 2b (falling out-
put transition) and the corresponding values δ↑(−∞), δ↑(0),
δ↑(∞) in Fig. 2d.

Below, we provide exact or approximate3 analytic formulas4

for the characteristic Charlie delay values in Fig. 5 and Fig. 6
in terms of the parameters (R1-R4, CN , and CO ). These
expressions will allow us to understand which parameters
affect the which value, and could even be used for explicit
parametrization of a circuit with given characteristic Charlie
delays.

For falling output transitions (Fig. 5, ∆ = 0), an exact
formula for δ↓(0) is

δ↓(0) =
− ln(0.5)
1

COR3
+ 1

COR4

(8)

For falling output transitions (Fig. 5, ∆ = −∞) an exact
formula for computing δ↓(−2× 10−10) ≈ δ↓(−∞) is

δ↓(−2× 10−10) = − ln(0.5) · COR4 (9)

For falling output transitions (Fig. 5, ∆ =∞), an approxi-
mation to compute d = δ↓(2× 10−10) ≈ δ↓(∞) is

d ≈ 0.6− [c1(α+ β)eλ1w(1− λ1w) + c2(α− β)eλ2w(1− λ2w)]

c1(α+ β)λ1eλ1w + c2(α− β)λ2eλ2w
,

(10)

3Note that all the errors related to the approximations we describe in this
section is in O(t2), where t is very small (t ≤ 2 × 10−10). The error is
hence so small that it can be ignored in practice.

4It is worth noting that in parallel with obtaining these equations, we
used built-in MATLAB software functions (e.g. the non-linear optimization
function fminbnd) to validate the equations.



where α, β, λ1,2 are given in (1), (2), and (3), respectively,
and

w = 10−10,

c2 =
0.6[((α+ β)CNR2)− 1]

β
,

c1 = (VDDCNR2)− c2.

For rising output transitions (Fig. 6, δ↑(∆) for any ∆ ≥ 0

and initial value V (
N 0) = X), an approximation for d = δ↑(∆)

is

d ≈ 0.6− l − c∆1 · (α+ β)eλ1w(1− λ1w)

c∆1 · (α+ β)λ1eλ1w + c∆2 · (α− β)λ2eλ2w
(11)

− c∆2 · (α− β)eλ2w(1− λ2w)

c∆1 · (α+ β)λ1eλ1w + c∆2 · (α− β)λ2eλ2w
−∆,

where α, β, γ, and λ1,2 are respectively equal to (4), (5), (6),
and (7). Moreover, we have

w = 2× 10−10,

l =
VDD(−α2 + β2)R2

R1(γ2 − β2)
,

c∆2 =
([(α+ β)V

(0,1)
N (∆)] + a+ b)CNR2

2βeλ2∆
,

c∆1 =
[(α+ β)V

(0,1)
N (∆)− c2 α+β

CNR2
eλ2∆ + a]CNR2

(α+ β)eλ1∆
,

a =
VDD(α+ γ)(α+ β)

CNR1(γ2 − β2)
,

b =
VDD(−α2 + β2)

CNR1(γ2 − β2)
,

V
(0,1)
N (∆) = VDD + (X − VDD)e

−∆
C
N

R1 .

Recall that one does not usually have information about the
initial value V (0,1)

N (0) = X; Fig. 6 shows X = 0, X = VDD/2
and X = VDD.

For rising output transitions (Fig. 6, δ↑(∆) for any ∆ < 0

and initial value V (
N 0) = X), an approximation for d = δ↑(∆)

is

d ≈ 0.6− l − c∆1 · (α+ β)eλ1w(1− λ1w)

c∆1 · (α+ β)λ1eλ1w + c∆2 · (α− β)λ2eλ2w
(12)

− c∆2 · (α− β)eλ2w(1− λ2w)

c∆1 · (α+ β)λ1eλ1w + c∆2 · (α− β)λ2eλ2w
− |∆|,

where l, α, β, γ, λ1,2, a, and b, are as same as Case 4 and

w = 10−10,

c∆2 =
([(α+ β)V

(1,0)
N (∆)− V

(1,0)
O (∆)

CNR2
] + a+ b)CNR2

2βeλ2∆
,

c∆1 =
[(α+ β)V

(1,0)
N (∆)− c2 α+β

CNR2
eλ2∆ + a]CNR2

(α+ β)eλ1∆
,

V
(1,0)
N (∆) =

g1

CNR2
e(z+y)∆ +

g2

CNR2
e(z−y)∆,

V
(1,0)
O (∆) = g1(x+ y)e(z+y)∆ + g2(x− y)e(z−y)∆,

z = −COR3 +D(R2 +R3)

2COCNR2R3
,

with x = α and y = β given by (1) and (2) and g1 = (y−x)g2

x+y .

Again, since the initial value of X = V
(1,0)
N (0) is usually

unknown, we consider only the cases X = 0, X = VDD/2
and X = VDD shown in Fig. 6, which lead to
• if X = 0, then g2 = 0,
• If X = VDD, then g2 = 0.6(x+y)DR2

y ,
• If X = VDD/2, then g2 = 0.3(x+y)DR2

y .
It is apparent from (8)–(10) that the characteristic Charlie

delays in Fig. 5 are not affected by R1 at all. To be more
precise, δ↓(0) is determined by CO , R3, and R4, while
δ↓(−∞) is determined by CO and R4 only; δ↓(∞) is affected
by CN , CO , R2, and R3. On the other hand, the characteristic
Charlie delays δ↑(0) and δ↑(∞) in Fig. 6, which seems to
match Fig. 2d best, are only affected by CN , CO , R1, and R2

according to (11). Finally, (12) reveals that δ↑(−∞) does not
depend on R4.

One immediate consequence of this is that R3 and R4 are
fixed already by matching δ↓(0) and δ↓(−∞). To simultane-
ously match δ↓(∞), in theory, CN and R2 were still available,
but since their influence on δ↓(∞) is very small, this is not
always effective. Even worse, according to (8) and (9), it may
even be impossible to find a parametrization for R3 and R4

that allows to match even the two characteristic Charlie delay
values δ↓(0) and δ↓(−∞) simultaneously, which happens in
the case of too large a ratio of δ↓(−∞)/δ↓(0). And indeed,
as already mentioned, a pure delay of δmin = 18 ps had to be
subtracted from all these delay values in order to be able to
determine a matching set of parameters.

We conclude this section by noting that relying on the
characteristic Charlie delays from Fig. 6 for VN = X = 0
for parametrization makes sense, since the system (0, 0) starts,
at time ∆, from VDD in this case, i.e., a value not affected
by X . This is in accordance with the fact that our model
does reasonably capture the Charlie-effect in Fig. 2d for the
case ∆ ≥ 0 (that is, for X = 0). It is apparent, though,
that the parasitic capacitance CN has a substantial influence
on the characteristic Charlie delays, as it is a factor in the
denominator of δ↑(0) and δ↑(∞). Like the invariance of VN
in the system (1, 1), which has already been identified in
Section IV as the main cause for our model’s inability to fully
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Fig. 7: Accuracy of inertial delay, Exp-Channel and hybrid
model compared to analog simulations of a NOR gate. Lower
bars indicate better results.

cover the Charlie effect, this is an unwanted artefact of our
simplistic modeling.

VI. MODELING ACCURACY

In this section, we will compare our hybrid model to inertial
delays and the IDM. To be able to do so, we added our
model to the publicly available Involution Tool [5]. Previously,
all channel implementations had to be written in VHDL.
However, since this approach was already rather tedious for
a SumExp-Channel, where the inverse of the trajectory had
to be numerically approximated, we decided to come up with
a new way of implementing channels: Using the QuestaSim
Foreign Language Interface (FLI) [16] allowed us to escape the
Involution Tool’s standard VHDL environment and to execute
C code. In a second step, Python code was called from C,
which finally implemented our hybrid channels. This approach
enabled us to utilize the complete Python ecosystem, which
reduces the effort the hybrid channel implementation itself
drastically.

For the evaluation, we again used the 15 nm Nangate Open
Cell Library featuring FreePDK15TM FinFET models [13]
(VDD = 0.8 V). Based on a Verilog description of a NOR gate,
we utilized the Cadence tools Genus and Innovus (version
19.11) to perform optimization, placement and routing. Fi-
nally, we extracted the parasitic networks from the final layout
to obtain SPICE models, which we used as golden reference
in analog Spectre (version 19.1) simulations.

Using the parameter set introduced in Table I, we performed
simulations for various waveform configurations, ranging from
very short to broad pulses. Each simulation consisted of 500
transitions, except for the last simulation, where we generated
250 transitions. The simulations have been repeated 20 times,
and the averaged results are presented in Fig. 7. The waveform
configuration 100/50 - LOCAL describes the case where tran-
sitions are created individually for each input, according to a
normal distribution, with µ = 100 ps and σ = 50 ps. GLOBAL
indicates that the transitions are not calculated separately for
each input but rather for all inputs together. This option allows
to test how accurately the delay models perform for large
absolute values of ∆, since concurrent transitions are unlikely
with this configuration.

The results are compared in terms of the deviation area,
which is calculated as follows: The digitized SPICE traces are
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Fig. 8: Matching of the hybrid model with and without pure
delay for falling output transitions.

subtracted from the corresponding traces of the digital delay
model and the absolute area is summed up. Since absolute
values are meaningless, the results are normalized with the
inertial delay as baseline.

For short pulses (µ = 100 ps, µ = 200 ps), the superiority
of the hybrid model with δmin can be clearly seen. The
deviation area is less than half that of the inertial delays.
Moreover, it also outperforms the Exp-Channel, which we
chose as representation for the IDM in the Involution Tool,
with δmin = 20 ps. Note that we had to determine the latter
empirically, since there is no proper parametrization of IDM
channels representing multi-input gates available. The hybrid
model without pure delay performs worse, which is primarily
due to the imperfect delay matching, which can be seen in
Fig. 8. Note that the pure delay shows no effect for rising
input transitions. We should also emphasize that, for the first
two waveform configurations, a lot of transitions are happening
within a range of ∆ = [−40 ps, 40 ps], where the hybrid model
without pure delay has deficiencies.

For broader pulses (µ = 2 ns, µ = 5 ns), which are covered
by the last two waveform configurations, it can be seen that
the hybrid model and the inertial delay model perform similar.
This is due to the fact that |∆| � 100 ps, where the matching
is nearly perfect. The Exp-Channel shows deficiencies for
broad pulses, which is caused by placing the delay channel
at the output and the consequential inability to determine
which input caused the transition. Since δ↑S(∞) and δ↑S(−∞)
differ, (cf. Fig. 5 and Fig. 6) the Exp-Channel simply delays
the transition by their average, which explains the observed
inaccuracies.

In terms of simulation runtime, our simple experiments
reveal a minor overhead of the hybrid model compared to the
simple inertial delay model or the Exp-Channel of 6 %, which
seems acceptable in view of the increased modeling accuracy.
For more robust numbers, more extensive simulation runs are
necessary, which we are planning to execute in the near future.

VII. CONCLUSIONS

We introduced a simple hybrid ODE model for a two-
input NOR gate, which naturally generalizes the hybrid analog



model corresponding to standard single-input, single-output
involution channels. The ODEs governing the switching wave-
forms of the output, based on the state of the inputs, have
been obtained by replacing transistors with ideal switches in
a simple RC model of the circuit. By analytically solving
the resulting ODE systems, we obtained a digital gate delay
model that faithfully reproduces all MIS effects, except in one
particular situation. We also incorporated our hybrid model in
the Involution Tool for digital timing analysis and compared
the average accuracy for random traces in a custom circuit
for different channel models. Our results show that our new
hybrid model outperforms both classic involution channels
and standard inertial delay channels with respect to modeling
accuracy.

Future work will be devoted to the question of whether our
multi-input digital delay channels are continuous with respect
a certain metric, and therefore lead to a faithful model. In
addition, we will look out for alternative models that fully
capture all MIS effects.
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[3] M. Függer, R. Najvirt, T. Nowak, and U. Schmid, “A faithful binary
circuit model,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 39, no. 10, pp. 2784–2797, 2020.
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