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Abstract—A Reduced Ordered Binary Decision Diagram
(ROBDD) is a data structure widely used in an increasing number
of fields of Computer Science. In general, ROBDD representations
of Boolean functions have a tractable size, polynomial in the
number of input variables, for many practical applications.
However, the size of a ROBDD, and consequently the complexity
of its manipulation, strongly depends on the variable ordering:
depending on the initial ordering of the input variables, the size
of a ROBDD representation can grow from linear to exponential.
In this paper, we study the ROBDD representation of Boolean
functions that describe a special class of Boolean affine spaces,
which play an important role in some logic synthesis applications.
We first discuss how the ROBDD representations of these functions
are very sensitive to variable ordering, and then provide an
efficient linear time algorithm for computing an optimal variable
ordering that always guarantees a ROBDD of size linear in the
number of input variables.

Index Terms—Ordered Binary Decision Diagram, variable or-
dering, affine space representation.

I. INTRODUCTION

Reduced Ordered Binary Decision Diagrams (ROBDDs) are
a data structure for the symbolic representation and manip-
ulation of Boolean functions [6], [8], [13]–[16], [19]. Even
if ROBDDs have often a tractable size for many practical
applications, in the worst case, the ROBDD representing a
Boolean function can have an exponential size in the number
of input variables [6]. Moreover, several Boolean functions are
very sensitive to variable ordering, i.e., their ROBDD size can
range, depending on the fixed variable ordering, from linear to
exponential [6]. Some other functions, as for instance totally
symmetric functions, have ROBDDs of polynomial size for any
variable ordering. There are also functions with exponential
size ROBDDs for all possible variable orderings, e.g., integer
multiplication [8].

In general, the problem of finding the optimal variable
ordering for the ROBDD representation of a Boolean function
f is NP-hard, even when f is given as a ROBDD [5]. In
summary, in order to efficiently manipulate a ROBDD for a
given Boolean function, it is very important to identify a good
variable ordering, but the computation of the optimal variable
ordering can have exponential complexity. In the literature, sev-
eral classes of Boolean functions have been studied in order to
find, for them, an optimal ROBDD variable ordering. Consider,
for example, read-once functions, which are Boolean functions
that can be expressed with a formula in which each variable

occurs exactly once. An optimal variable ordering for read-once
functions can be computed in a time linear in the number of
input variables [20]. Moreover, methods to improve the quality
of ordering heuristics for partially symmetric functions have
been discussed in [21].

In this paper, we study the optimal variable ordering of
another class of Boolean functions, i.e., the characteristic
functions of affine spaces. Boolean affine spaces are translations
of Boolean vector spaces. Their algebraic representation is an
AND of XORs of literals, also called CEX expression. CEX
expressions are often exploited in logic synthesis for three
level logic minimization, e.g., for SPP and 2-SPP forms [1],
[9], [18], [23], [24]; or for handling regular functions, e.g.,
autosymmetric functions [2], [18]. In all these contexts, the
compact ROBDD representation of CEX expressions is crucial
for guaranteeing reduced synthesis times. In this paper, we
concentrate on 2-CEX expressions. A 2-CEX is an AND
of XOR factors that contain at most two literals, i.e., 2-
XOR. 2-CEXs are the CEX expressions that are much often
exploited in logic synthesis since, for technological reasons,
2-XOR gates are preferable to unbounded XOR gates. A
simple example of 2-CEX expression is given by the function
f = (x1 ⊕ x2)(x3 ⊕ x4) . . . (x2n−1 ⊕ x2n). In particular, 2-
CEX expressions are often encountered in the synthesis of
autosymmetric functions, which represent a significant fraction
of standard benchmark functions [2], [18]. Indeed, about 24%
of the functions in the classical ESPRESSO benchmark suite
have at least one truly (i.e., non degenerate) autosymmetric
output. Moreover, in the three level 2-SPP synthesis [1], the
minimization algorithms manipulate 2-CEX expressions.

The main result of this paper is that we can always compute
an optimal variable ordering for 2-CEX expressions in linear
time. Moreover, we show that the ROBDD, with optimal
variable ordering, has size linear in the number of variables. We
validate the proposed approach through a set of experiments.

II. PRELIMINARIES

A. Affine spaces and CEX representation

Consider the Boolean space {0, 1}n described by n variables
x1, x2, . . . , xn, where each point is described by a binary vector
of n components. Hereafter, we shall use the terms vector and
point with the same meaning. In the space {0, 1}n, a XOR
factor is a XOR (or modulo 2 sum), denoted by ⊕, of variables,



one of which possibly complemented (a XOR with just one
literal corresponds to the literal itself). We can extend the
symbol ⊕ to denote the elementwise XOR of two vectors.

Given a vector α ∈ {0, 1}n and a vector subspace V of
({0, 1}n,⊕), we can build an affine space A performing the
XOR between α and each point of V . Consider the vector
space V = {0000, 0110, 1010, 1100} and the vector α =
0010 ∈ {0, 1}4. The set A = α ⊕ V = 0010 ⊕ V = {0010,
0100, 1000, 1110} is an affine space over V .

An affine space A can be represented by an algebraic
expression involving AND and XOR operators, that can be
derived from a base for its unique vector space V as follows.
Consider a 2k × n matrix M whose rows correspond to the
points of a vector space of dimension k, and whose columns
correspond to the variables x1, x2, . . . , xn. Let the row indices
of M be numbered from 0 to 2k−1. We say that M is in binary
order if its rows are sorted as increasing binary numbers.

Definition 1 ( [3]): Let V be a vector space whose matrix is
sorted in binary order, with the rows indexed from 0 to 2k−1.
And let A = α ⊕ V be an affine space over V . The set of
points of V with indices 20, 21, . . . , 2k−1 will be called the
canonical basis BA of V (or, equivalently, of A). Moreover,
the k variables corresponding to the first 1-component from
left of each vector of BA are called canonical variables. The
variables that are not canonical are called non-canonical.
The canonical basis BA corresponds to the basis derived by a
matrix in reduced row echelon form [3], [4], [11], [17].

Definition 2 ( [3]): The canonical representation (αA, BA)
of an affine space A is given by the minimum point αA of A
in binary order together with the canonical basis BA.
Consider for example the affine space A = {0010, 0100, 1000,
1110} and its associated vector space V = {0000, 0110, 1010,
1100}, that can be represented in binary order by the following
matrix MV :

MV =

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 0

The canonical translation point αA is the vector 0010, and
the canonical basis BA is given by the second and the third row
of MV , i.e., BA = {0110, 1010}. The canonical variables are
x1 for vector 1010 and x2 for vector 0110. The non-canonical
variable are the remaining variables x3 and x4.

The canonical variables are the truly independent variables
in the affine space A, in the sense that they can assume all
possible combinations of 0-1 values. On the contrary, on A
the non-canonical variables are not independent because they
can be defined as XORs of the canonical ones: their values are
uniquely defined by the values of the canonical variables, or
are constant. For instance, in our running example, while the
two variables x1 and x2 assume all possible 0-1 combinations
on A and on the associated vector space V , x3 is always equal
to x1⊕x2⊕ 1 on A, and always equal to x1⊕x2 on V , while
x4 is always equal to 0, both on A and on V .

This fact is expressed by the characteristic function of an
affine space, that can be derived from the canonical represen-
tation of A. Indeed, an affine space of dimension k can be
represented by a canonical expression called CEX [10], defined
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Fig. 1. ROBDD of the function f = (x1 ⊕ x2)(x3 ⊕ x4)(x5 ⊕ x6)
(x7 ⊕ x8)(x9 ⊕ x10) with optimal variable ordering x1, x2, x3, x4, x5,
x6, x7, x8, x9, x10.

as the AND of n − k XOR factors, where each XOR factor:
1) contains exactly one different non-canonical variable, which
is complemented if and only if its corresponding component
in αA is 0; 2) expresses the dependence of the non-canonical
variable on the canonical ones.

Now, observe that the CEX actually corresponds to a system
of linear equations, whose solutions are exactly all vectors of
the space described by the CEX. Indeed, since the CEX is a
conjunction of XOR factors, it assumes the value 1 only on
the vectors of {0, 1}n that satisfy each single XOR factor. For
instance, the CEX of the affine space A in our running example
is simply given by (x1 ⊕ x2 ⊕ x3)x4, that is satisfied by all
vectors whose components x1, x2, x3, and x4 are such that{

x1 ⊕ x2 ⊕ x3 = 1
x4 = 1 .

Note that these equations can be rewritten as x3 = x1 ⊕
x2⊕1 and x4 = 0, which are precisely the linear combinations
that defines the non-canonical variables x3 and x4 on A. Also,
noticed that the non-canonical variable x3 is not complemented
as the third component of αA is 1, while x4 is complemented
since the fourth component of αA is 0.

We now turn our attention to the special case of affine spaces
whose CEX contains XOR factors of at most two literals:

Definition 3: A 2-CEX is an AND of XOR factors that
contain at most two variables: a non-canonical variable and
possibly a canonical one.
For example, the CEX (x1 ⊕ x2)(x1 ⊕ x5)x6(x3 ⊕ x7)x8 in
{0, 1}9 is a 2-CEX. When the 2-CEX is actually a simple
product of literals, the system contains only the non-canonical
variables. In this case, the CEX describes an affine space where
all non-canonical variables assume a constant 0 or 1 value.

B. Binary Decision Diagrams

A Binary Decision Diagram (BDD) over a set of Boolean
variables X = {x1, x2, . . . , xn} is a rooted, connected direct
acyclic graph, where each non-terminal (internal) node N is
labeled by a Boolean variable xi and has exactly two outgoing
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Fig. 2. ROBDD of the function f = (x1 ⊕ x2)(x3 ⊕ x4)(x5 ⊕ x6)(x7 ⊕ x8)(x9 ⊕ x10) with non-optimal variable ordering x1, x3, x5, x7, x9, x2,
x4, x6, x8, x10. The corresponding ROBDD with optimal variable ordering is depicted in Figure 1.

edges, the 0-edge and the 1-edge, pointing to two nodes called
the 0-child and the 1-child of node N , respectively. Terminal
nodes (leaves) are labeled 0 or 1. For example, consider the
BDD in Figure 1 with variables x1, ..., x10. Each pointer to
a 1-child is depicted with a solid line, while each pointer to
a 0-child is depicted with a dashed line. Binary decision dia-
grams are typically used to efficiently represent and manipulate
Boolean functions [6], [7].

A BDD is ordered if there exists a total order < over the set
X of variables such that if an internal node is labeled by xi,
and its 0-child and 1-child have labels xi0 and xi1 , respectively,
then xi < xi0 and xi < xi1 . A BDD is reduced if there exist
no nodes whose 1-child is equal to the 0-child and there not
exist two distinct nodes that are roots of isomorphic subgraphs.
A reduced and ordered BDD is called ROBDD.

ROBDDs are usually quite compact, but there are functions
whose ROBDD representation has a size, i.e., number of
nodes, exponential in the number of input variables. Moreover,
depending on the variable ordering, the size of the ROBDD
representing a function can drastically change, from linear
to exponential in the number of the input variables. It is
therefore very important to properly select the variable ordering
when applying ROBDDs in practice. However, the problem of
finding the best variable ordering is NP-hard [5]. Note that the
representation of Boolean functions with ROBDDs allows to
perform operations that do not depend on the number of inputs
that are equal to 1 or 0; for this reason, algorithms based on
ROBDDs are usually defined implicit algorithms.

III. VARIABLE ORDERING FOR AFFINE SPACES

In this section we show how to derive a variable ordering for
the optimal ROBDD representation of Boolean affine spaces
represented by 2-CEX algebraic expressions. We first give
several definitions in order to better describe the proposed
solution. In a Boolean space {0, 1}n described by n variables
x1, . . ., xn, let a 2-XOR be a XOR with at most 2 input
variables, one of which possibly complemented. Given two
distinct Boolean variables xi, xj , all the possible 2-XORs are
essentially xi, xi, xj , xj , (xi⊕xj) and (xi⊕xj). (Notice that
xi⊕xj = xi⊕xj , and xi⊕xj = xi⊕xj .) For sake of clarity,
we now consider 2-CEX expressions without complemented

variables in the 2-XORs (all results can be extended to general
2-CEXs, as it will be shown in the full version of the paper).

We consider affine spaces whose CEX expressions contain
only 2-XORs (i.e., 2-CEX). This choice enables the definition
of a simple partition of the input variables that can be exploited
to determine an optimal variable ordering for the ROBDD
construction. Recall that each 2-CEX corresponds to a linear
system as described in Section II-A. Any linear system S,
corresponding to a 2-CEX C with non-canonical variables
{xl1 , . . . , xlm , xj1 , . . . , xjk}, can be rewritten in the form of
an equality system E, as follows:

S =



xl1 = 1
...

xlm = 1
xi1 ⊕ xj1 = 1

...
xik ⊕ xjk = 1 .

E =



1 = xl1
...

1 = xlm
xi1 = xj1

...
xik = xjk .

(1)

Note that the systems S and E are equivalent since xi⊕xj =
1 if and only if xi = xj .

Definition 4: Let E be the equality system in the Boolean
space described by the set of variables {x1, x2, . . . , xn} in
Equation (1) where xih , xjh ∈ {x1, x2, . . . , xn} for 1 ≤ h ≤ k
and xlh ∈ {x1, x2, . . . , xn} for 1 ≤ h ≤ m. The partition
derived from E is the partition P of the set {x1, x2, . . . , xn}
where, for any x and y in {x1, x2, . . . , xn}, x and y are in the
same subset of the partition if and only if the equality x = y
can be derived from the system E.

Example 1: Consider the following 2-CEX containing 2-
XORs only: x1(x2 ⊕ x4)(x3 ⊕ x5)x6(x3 ⊕ x7). In this 2-CEX
the non-canonical variables are x1, x4, x5, x6 and x7, and the
canonical variables are x2 and x3. The 2-CEX corresponds to
the following linear and equality systems:

x1 = 1
x2 ⊕ x4 = 1
x3 ⊕ x5 = 1

x6 = 1
x3 ⊕ x7 = 1

=


1 = x1

x2 = x4

x3 = x5

1 = x6

x3 = x7

=


1 = x1

1 = x6

x2 = x4

x3 = x5

x3 = x7

From these systems we can derive the following variable
equalities: 1 = x1 = x6; x2 = x4; x3 = x5 = x7 .

In particular, x1 and x6 must be always equal to 1,
x2 and x4 must have complemented values, and x3, x5,
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Fig. 3. ROBDD of (x1 ⊕ x2)(x1 ⊕ x4)(x3 ⊕ x5)(x1 ⊕ x6)x7 with optimal
variable ordering x7, x1, x2, x4, x6, x3, x5.

and x7 must have the same value. These equalities im-
ply the following partition of the set {x1, x2, . . . , x7}:
{{x1}, {x6}, {x2, x4}, {x3, x5, x7}}. Notice that x1 and x6 are
in separate subsets of the partition because their value does not
depend on a canonical variable (i.e., it is fixed to 1).

A. Optimal Variable Ordering

We now show how we can derive a variable ordering for
a ROBDD of a 2-CEX starting from the linear systems and
the corresponding partitioning of Boolean variables. From the
partition in Definition 4 we can describe the following variable
ordering:

Definition 5: Let P be a partition derived from an equality
system E such that P = {p1, p2, . . . , ps} and each pi (1 ≤
i ≤ s) is a subset of {x1, x2, . . . , xn}. An ordering O derived
from P is v1, v2, . . . , vs where each vi (1 ≤ i ≤ s) contains
the variables of pi in any order.

The overall algorithm for deriving a minimal variable order-
ing is then:

1) derive the equality system corresponding to the 2-CEX
expression;

2) order the equalities with respect to the canonical variables
and the constant 1 (consider the constant 1 first in the
ordering; or, alternatively, last in the ordering);

3) perform a partition P = {p1, p2, . . . , ps} of the set
{x1, x2, . . . , xn}, such that in each subset pi (1 ≤ i ≤ s)
we have all the variables that are equal to the same
canonical variable in the equality system;

4) output a variable ordering O derived from P .
Note that Step 2) requires a sorting phase. Since the indices

of the variables are in a finite set of n elements, we can use the
Counting Sort algorithm, which requires linear computational
time [12]. It is simple to see that all other steps of the algorithm
are also linear. It follows that the time complexity of this
algorithm is in O(n).

Example 1 shows the first three steps of the algorithm. The
computed partition is {{x1}, {x6}, {x2, x4}, {x3, x5, x7}} .

The last step of the algorithm gives us the variable ordering:
x1, x6, x2, x4, x3, x5, x7 . The variable ordering described in
Definition 5 is indeed an optimal variable ordering for the
ROBDD representation of the corresponding 2-CEX, as we
show in the sequel of this section. We first give the intuition
of this optimality starting from the following example, which
shows that even ROBDDs representing strong regular structures
as affine spaces, are very sensitive to variable ordering.

Example 2: Consider, for instance, the 2-CEX expression
(x1 ⊕ x2)(x3 ⊕ x4)(x5 ⊕ x6)(x7 ⊕ x8)(x9 ⊕ x10) . The corre-
sponding equality system is:

x1 = x2

x3 = x4

x5 = x6

x7 = x8

x9 = x10 .

Therefore, the partition is P = {{x1, x2}, {x3, x4},
{x5, x6}, {x7, x8}, {x9, x10}} and the variable ordering is
O = x1, x2, x3, x4, x5, x6, x7, x8, x9, x10. Figure 1 shows
the ROBDD with this variable ordering, while Figure 2
shows the ROBDD with a different variable ordering O′ =
x1, x3, x5, x7, x9, x2, x4, x6, x8, x10. We can notice that the
variable ordering in Figure 1 guarantees a linear ROBDD, while
the ROBDD in Figure 2 has an exponential behavior.

More precisely, the ROBDD in Figure 1 contains three nodes
for each subset {x2i−1, x2i} (with 1 ≤ i ≤ 5) of the partition
P . Intuitively, this is due to the fact that each non-canonical
variable (i.e., x2i) must have a complemented valued with
respect to the corresponding canonical variable (i.e., x2i−1).
Therefore, if the variables in the same subset of P are all near
each other in the ordering, the ROBDD returns 0 if the non-
canonical variables have the same value of the canonical one,
and it evaluates the next subset of variables, otherwise.

On the contrary if we put the variables, contained in the same
subset of P , very distant in the ordering, the ROBDD increases
in size. This is due to the fact that the value of each x2i depends
on the value of x2i−1. Thus, if we put the variables x2i and
x2i−1 distant in the ROBDD ordering, in each path from the
root, we have to keep trace of the value of the first variable
till we reach the node containing the other. For this reason, the
top part of the ROBDD in Figure 2 is a complete binary tree
composed by all the variables with odd indices. This tree has
an exponential size.

The former considerations imply the following theorem (a
complete proof will be given in the full version of the paper).

Theorem 1: Let C be a 2-CEX expression on the Boolean
variables X = {x1, x2, . . . , xn}, and let P = {p1, p2, . . . , pm}
the partition of X with respect to C. The corresponding
ordering O is an optimal ordering for the ROBDD of C (BC),
which contains |BC | = 2 + Σm

i=1(2|pi| − 1) nodes, where |pi|
is the number of variables in the subset pi (1 ≤ i ≤ m).

For example, let us consider the 2-CEX expression (x1 ⊕
x2)(x1⊕x4)(x3⊕x5)(x1⊕x6)x7. The corresponding partition
of {x1, x2, . . . , x7} is P = {{x7}, {x1, x2, x4, x6}, {x3, x5}}.
An optimal ordering is then O = x7, x1, x2, x4, x6, x3, x5,
as shown in Figure 3. In this example, consider the subset
{x1, x2, x4, x6}. Once the value of x1 (i.e., 0 or 1) is fixed, all



TABLE I
ROBDD SIZE GAP AND SYNTHESIS TIMES FOR EXPONENTIAL AND OUR OPTIMAL VARIABLE ORDERING ALGORITHMS. THE NUMBER OF CONSIDERED

VARIABLES IS ONLY UP TO 8, DUE TO THE HIGH COMPUTATIONAL COST OF THE EXPONENTIAL ALGORITHM.

Number of nodes Computational time (s)
2-CEX Minimum Maximum Exponential Our algorithm

(x1 ⊕ x5)(x1 ⊕ x4)(x0 ⊕ x7)(x1 ⊕ x3)(x0 ⊕ x6)(x1 ⊕ x2) 16 27 258.71146 0.00471
(x0 ⊕ x7)(x2 ⊕ x6)(x1 ⊕ x5)(x2 ⊕ x3)(x0 ⊕ x4) 15 39 233.03524 0.00463
(x0 ⊕ x1)(x2 ⊕ x3)(x4 ⊕ x5)(x6 ⊕ x7) 14 47 223.15385 0.00451
(x2 ⊕ x7)x4(x0 ⊕ x5)(x1 ⊕ x6)x3 13 39 183.21888 0.00402
(x0 ⊕ x3)x6x2x7x5x1x4 11 17 145.53098 0.00116
(x1 ⊕ x4)(x0 ⊕ x5)(x0 ⊕ x7)(x1 ⊕ x6)(x1 ⊕ x3) 14 23 18.12630 0.00156
(x0 ⊕ x7)(x2 ⊕ x6)(x2 ⊕ x4)x3(x2 ⊕ x5) 13 23 15.82440 0.00246
x6(x1 ⊕ x5)(x3 ⊕ x7)(x2 ⊕ x4) 12 31 14.27452 0.00258
x5(x1 ⊕ x7)x3(x2 ⊕ x6)(x2 ⊕ x4) 12 23 13.59286 0.00266
(x2 ⊕ x5)x7(x2 ⊕ x6)(x3 ⊕ x4) 11 19 1.27687 0.00167
(x1 ⊕ x3)(x1 ⊕ x7)x5(x1 ⊕ x6)x4 11 13 1.24278 0.00406
(x0 ⊕ x5)x6x7x4(x0 ⊕ x3) 10 13 1.08048 0.00163
x5(x2 ⊕ x7)(x1 ⊕ x6) 9 15 0.12989 0.00108
x5x6x7(x2 ⊕ x4) 8 11 0.11211 0.00103
x6x3x5x4x7 7 7 0.10327 0.00106
x6(x3 ⊕ x7)x5 7 9 0.02324 0.00073
Total average (on the entire set of 1000 2-CEXs tested) 11 18 68.21228 0.00251

the other variables in the subset must have the complemented
value (i.e., 1 or 0, respectively). Figure 3 shows the two chains
with root x1. One is pointed by the 0-edge of x1 and it is
composed by the nodes containing the variables x2, x4, and
x6, which point to 0 with their 0-edge because x2, x4, and x6
must have value 1 (since x1 has value 0). The second chain is
pointed by the 1-edge of x1 and it is analogously composed by
the nodes containing the variables x2, x4, and x6, pointing
to 0 with their 1-edge. Notice that the unique requirement
for the optimality is that the variables in the same subset of
the partition are next to each other in the ordering. Therefore,
we can have several optimal ordering, each one corresponding
to a different ROBDD with the same minimum number of
nodes. In our example, O′ = x7, x3, x5, x1, x2, x4, x6 and
O′′ = x7, x6, x1, x2, x4, x3, x5 are optimal. The ROBDDs
contain 2 + (2 ∗ 1 − 1) + (2 ∗ 4 − 1) + (2 ∗ 2 − 1) = 13
nodes.

The ROBDD with the optimal ordering, described by Theo-
rem 1, contains a number of nodes that is linear in the number
of variables, as stated by the following corollary.

Corollary 1: Let C be a 2-CEX expression on the Boolean
variables X = {x1, x2, . . . , xn}, and let P = {p1, p2, . . . , pm}
be the partition of X induced by C. The corresponding optimal
ordering O contains a number of nodes |BC | ≤ 2n + 2 (i.e.,
|BC | ∈ O(n)).
We finally mention that optimal variable ordering does not
depend on variable negations (the proof will be given in the
extended version of the paper).

IV. EXPERIMENTAL RESULTS

In this section we report the experimental results related
to the algorithm for deriving a minimal variable ordering for
ROBDDs of 2-CEXs. The experiments have been run on a
MacOS Apple M1 Chip with 16 GB of main memory. The
Optimal Variable Ordering is computed with Python with BDD
Interface of PBL Interface [22].

The theoretical results show that we can derive an optimal
variable ordering, starting from a 2-CEX expression of an
affine space, in linear time. The aim of our experiments is
then twofold: 1) first, we are interested in understanding if the
ROBDD with optimal variable ordering is much more compact
than the one with worst variable ordering; 2) second, we are
interested in evaluating the gain in computational time with
respect to an exhaustive algorithm that computes the number
of nodes of the ROBDD, for any variable ordering.

In order to conduct these experiments, we implement a naive
strategy that generates all the possible variable orderings, which
are exponential in number, and computes the corresponding
ROBDDs. This exhaustive strategy is obviously exponential
and cannot handle 2-CEX expressions with more than 8 distinct
variables. Therefore, we concentrate our first set of experiments
on this subset of 2-CEXs. We then compare the exponential
algorithm with our linear algorithm described in Section III-A.
Obviously, the linear algorithm can handle 2-CEXs with an
extremely higher number of variables (as shown in the follow-
ing), but for these 2-CEXs we would not be able to make a
comparison with respect to the exhaustive algorithm.

In order to compare our strategy with the exhaustive one,
we randomly generate 1000 2-CEX Boolean expressions with
up to 8 variables. These 2-CEXs are then used as inputs to
the exponential algorithm where the minimum and maximum
number of nodes for each 2-CEX are computed. The same
2-CEXs are then used as input for our algorithm, which
calculates the minimum number of nodes, in order to compare
the execution times. The ROBDDs build using our strategy are
always composed by the minimum number of nodes (validating
the theoretical result in Section III-A).

Table I reports a subset of the experimental results showing
the gap in size of the best and worst ordering for 2-CEX expres-
sions. The first column reports the input 2-CEXs, the second
(resp., third) column shows the minimum (resp., maximum)
number of nodes. The last two columns show the execution
times, reported in seconds, for the exponential and for our linear
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Fig. 4. Execution times for computing the optimal variable ordering for the
2-CEX f = (x1 ⊕ x2)(x3 ⊕ x4) . . . (x2n−1 ⊕ x2n) up to 105 variables (in
logarithmic scale).

algorithm. Finally, the last row of the table reports the average
values for all the 1000 2-CEXs in the experiment.

We observe that the difference in execution time between the
exhaustive and the proposed linear algorithm is up to 5 orders
of magnitude. We can also note that several 2-CEXs show a
high difference between minimum and maximum number of
nodes (e.g., (x0⊕x1)(x2⊕x3)(x4⊕x5)(x6⊕x7) as discussed
in Section III-A), while others have always the same number
of nodes in any variable ordering (e.g., x6x3x5x4x7). In aver-
age, for our random experiments, the worst variable ordering
increases the ROBDD dimension of about 64%. Moreover, the
proposed method provides a speedup of about 27,000x with
respect to the exhaustive approach.

In order to test the scalability of our approach, we fi-
nally considered the specific 2-CEX: f = (x1 ⊕ x2)(x3 ⊕
x4) . . . (x2n−1 ⊕ x2n). We computed this 2-CEX expression
for increasing number of variables. Figure 4 reports the results
up to 105 variables in logarithmic scale. The blue solid line
represents the computational time (in seconds) of the proposed
algorithm and the red dashed line reports the times for the
exhaustive approach. Note that the exhaustive algorithm can
handle up to 8 variables. This set of experiments shows that
the proposed method has a high scalability, thanks to the linear
complexity of the optimization algorithm.

V. CONCLUSION

In this paper we have proposed a linear time algorithm
for computing an optimal variable ordering for the ROBDD
representations of Boolean functions representing affine spaces
whose characteristic function only involves XOR factors of
at most two literals. As formally proved, and experimentally
evaluated, this ordering always guarantees a ROBDD of size
linear in the number of input variables.

Future work includes the analysis of the implicit representa-
tion of general affine subspaces, starting from those described

by functions involving XOR factors of at most k literals,
for k ≥ 3. In this regard, our first impression is that the
complexity of the problem of finding the best variable ordering
may increase already going from 2-XOR to 3-XOR factors.

REFERENCES

[1] A. Bernasconi, V. Ciriani, R. Drechsler, and T. Villa, “Logic Minimization
and Testability of 2-SPP Networks,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 27, no. 7, pp. 1190–1202, 2008.

[2] A. Bernasconi, S. Cimato, V. Ciriani, and M. C. Molteni, “Multiplicative
complexity of autosymmetric functions: Theory and applications to
security,” in 57th ACM/IEEE Design Automation Conference, DAC 2020,
San Francisco, CA, USA, July 20-24, 2020. IEEE, 2020.

[3] A. Bernasconi and V. Ciriani, “Dimension-reducible boolean functions
based on affine spaces,” ACM Trans. Design Autom. Electr. Syst., vol. 16,
no. 2, p. 13, 2011.

[4] A. Bernasconi, V. Ciriani, F. Luccio, and L. Pagli, “Synthesis of au-
tosymmetric functions in a new three-level form,” Theory Comput. Syst.,
vol. 42, no. 4, pp. 450–464, 2008.

[5] B. Bollig and I. Wegener, “Improving the variable ordering of obdds
is np-complete,” IEEE Transactions on Computers, vol. 45, no. 9, pp.
993–1002, 1996.

[6] R. Bryant, “Graph Based Algorithm for Boolean Function Manipulation,”
IEEE Transactions on Computers, vol. 35, no. 9, pp. 667–691, 1986.

[7] ——, “Symbolic Boolean Manipulation with Ordered Binary-Decision
Diagrams,” ACM Computing Surveys, vol. 24, no. 3, pp. 293–318, 1992.

[8] R. E. Bryant, “Binary decision diagrams,” in Handbook of Model Check-
ing, E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds.
Springer, 2018, pp. 191–217.

[9] D. Buchfuhrer, “The complexity of SPP formula minimization,” in Al-
gorithms and Computation, 19th International Symposium, ISAAC 2008,
Gold Coast, Australia, December 15-17, 2008. Proceedings, ser. Lecture
Notes in Computer Science, S. Hong, H. Nagamochi, and T. Fukunaga,
Eds., vol. 5369. Springer, 2008, pp. 580–591.

[10] V. Ciriani, “Synthesis of SPP Three-Level Logic Networks using Affine
Spaces,” IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 22,
no. 10, pp. 1310–1323, 2003.

[11] P. Cohn, Algebra Vol. 1. John Wiley & Sons, 1981.
[12] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to

Algorithms, Third Edition. MIT Press, 2009.
[13] R. Drechsler and B. Becker, Binary Decision Diagrams - Theory and

Implementation. Springer, 1998.
[14] R. Ebendt, G. Fey, and R. Drechsler, Advanced BDD optimization.

Springer, 2005.
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