
De-RISC: A Complete RISC-V Based
Space-Grade Platform

Nils-Johan Wessman§, Fabio Malatesta§, Stefano Ribes§, Jan Andersson§, Antonio Garcı́a-Vilanova¶,
Miguel Masmano¶, Vicente Nicolau¶, Paco Gomez¶, Jimmy Le Rhun⋆, Sergi Alcaide†,
Guillem Cabo†, Francisco Bas†,‡, Pedro Benedicte†, Fabio Mazzocchetti†, Jaume Abella†

§CAES Gaisler, Sweden ¶fentISS, Spain ⋆Thales Research and Technology, France
†Barcelona Supercomputing Center (BSC), Spain ‡Universitat Politecnica de Catalunya (UPC), Spain

Abstract—The H2020 EIC-FTI De-RISC project develops
a RISC-V space-grade platform to jointly respond to several
emerging, as well as longstanding needs in the space domain
such as: (1) higher performance than that of monocore and
basic multicore space-grade processors in the market; (2)
access to an increasingly rich software ecosystem rather than
sticking to the slowly fading SPARC and PowerPC-based
ones; (3) freedom (or drastic reduction) of export and license
restrictions imposed by commercial ISAs such as Arm; and
(4) improved support for the design and validation of safety-
related real-time applications, (5) being the platform with
software qualified and hardware designed per established
space industry standards.

De-RISC partners have set up the different layers of the
platform during the first phases of the project. However, they
have recently boosted integration and assessment activities.
This paper introduces the De-RISC space platform, presents
recent progress such as enabling virtualization and software
qualification, new MPSoC features, and use case deployment
and evaluation, including a comparison against other com-
mercial platforms. Finally, this paper introduces the ongoing
activities that will lead to the hardware and fully qualified
software platform at TRL8 on FPGA by September 2022.

I. INTRODUCTION

Increasing automation and autonomy of spacecraft de-
mands higher performance for safety and mission-critical
systems. Those systems must adhere to specific devel-
opment processes to reach qualification for the highest
integrity levels for space operation. So far, space industry
has focused on developing products based on SPARC,
Arm and PowerPC Instruction Set Architectures (ISAs).
However, those ISAs bring either a continuous decrease
in terms of software support, expensive licenses to design
MPSoCs implementing those ISAs, and/or export restric-
tions challenging commercialization.

H2020 EIC-FTI De-RISC project [10] tackles these
challenges holistically by developing a high-performance
RISC-V multicore platform for the space domain building
on the Xtratum New Generation (XNG) hypervisor and
LithOS real-time operating system (RTOS) by fentISS,
and the NOEL-V based MPSoC by CAES Gaisler, both
of them based on RISC-V ISA [16]. Those key building
blocks, which will be reaching TRL8 on FPGA by the
end of 2022, are complemented by a multicore interference
aware statistics unit by BSC, and key requirements and use
case evaluation by Thales, a principal space end user and
technology developer.

The De-RISC platform, which stands for Dependable
Real-time Infrastructure for Safety-critical Computer Sys-
tems, is, to the best of our knowledge, the first RISC-V

based space-grade hardware and qualified software platform
for space operation.

In this paper, we review the main features of the De-
RISC hardware and software components, whose full de-
tails can be found in [19], and introduce the latest advances,
which, when fully complete and validated, will allow the
H2020 De-RISC platform reach commercial maturity. In
particular, this paper introduces the following features:

• ECSS level B qualification of the XNG hypervisor;
• development kit for application design, integration and

debug on the De-RISC platform;
• a powerful and configurable MPSoC designed per

established space industry standards;
• extensions to the SafeSU statistics unit for multicore

interference management;
• an evaluation with a space use case including a com-

parison against the GR740 space-grade MPSoC.
The rest of the paper is as follows. Section II presents

relevant state-of-the-art. Section III introduces XNG and
LithOS, the progress towards ECSS qualification, and the
De-RISC development kit. Section IV presents the MPSoC
and its latest features, including the SafeSU extensions.
Section V introduces the use case and its evaluation.
Finally, Section VI summarizes this paper.

II. STATE OF THE ART

This section reviews the state-of-the-art on relevant MP-
SoCs and hypervisors/RTOSs.

A. MPSoCs
The main European MPSoC providers for deep space

missions – CAES Gaisler and Microchip (formerly Atmel)
– build on the SPARC ISA. Gaisler produced the popular
SPARC V7 ERC32 single core device. Atmel developed
the AT697F device building on a LEON2FT core, but it
lacked some key interfaces for the space domain such
as SpaceWire and MIL-STD-1553B. Gaisler’s GR712RC
device includes both, a dual-core LEON3FT processor [6]
more powerful than AT697F’s LEON2FT one, as well as
SpaceWire and MIL-STD-1553B interfaces. Later, Gaisler
introduced the GR740 device, which includes a quad-core
LEON4FT processor [7] and additional devices, hence
outperforming previous devices.

US space-grade devices generally build on the PowerPC
ISA such as BAE Systems RAD750 and RAD5545, and the
DDC/Maxwell SCS750 board. Some of those devices have
been used for the GAIA (Global Astrometric Interferometer
for Astrophysics) mission from the European Space Agency
(ESA). As shown in [9], the GR740 device also offers

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse 
of any copyrighted component of this work in other works. http://dx.doi.org/10.23919/DATE54114.2022.9774557



the performance needed by GAIA. The De-RISC MPSoC
inherits GR740 technology and improves it. Moreover,
differently to the other space devices, it is the first one
building on the RISC-V ISA.

There is a plethora of RISC-V cores available in the
RISC-V International web portal [16]. However, those are
not space-graded devices. The only relevant components
to our knowledge are the SiFive’s E76-MC embedded
processor [18] and Gaisler’s NOEL-V core [8]. The E76-
MC includes some safety features, but misses many safety
and reliability features needed for the space domain (e.g.
watchdogs, domain-specific interfaces, etc.). The NOEL-V
core, instead, is particularly devised for the space domain
and is the core integrated in the De-RISC MPSoC.

B. Hypervisors and RTOSs
European space missions often rely on fentISS’ XtratuM

hypervisor [11], which provides temporal and spatial isola-
tion, as needed for mixed-criticality applications in safety-
related real-time systems. For instance, XtratuM has already
been deployed in tens of satellites across different missions,
and is also considered for NewSpace missions [20], which
rely on hundreds or even thousands of light satellites,
as opposed to conventional missions. The Air hypervisor,
by GMV-Portugal has been proven adequate for space
SoCs [13], is expected to be deployed as part of the
INFANTE project, but there are no commercialization plans
as per today. Sysgo’s PikeOS [3], while also targeting the
space domain, has not been deployed in any space mission
so far to our knowledge.

US space missions may rely on LynxSecure hypervisor
by Lynx Software Technologies, Wind River’s hypervisor,
and Green Hill’s Integrity RTOS. Those hypervisors and
RTOSs meet the main safety and security requirements of
safety-related space applications.

However, only XtratuM has reached commercial maturity
on RISC-V as part of De-RISC and is currently undergoing
validation and qualification processes.

III. DE-RISC HYPERVISOR

Within the software stack of De-RISC, the XtratuM Next
Generation (XNG) hypervisor [11] and the ARINC-653
compatible LithOS run-time, both by fentISS, have been
ported successfully to the hardware RISC-V architecture.

Making use of the mechanisms provided by the hard-
ware, XNG provides time and space isolated execution
environments, also known as partitions, and minimizes the
interference between cores caused by the access to common
resources.

Currently, XNG is being ported to support full virtualiza-
tion, which replicates the underlying hardware behaviour
to the runtime environment. The purpose of this is, for
any operating system intended for stand-alone use, to
successfully run inside a partition without needing to be
modified. Implementation of full virtualization on XNG
intends to take advantage of RISC-V’s Hypervisor Standard
Extension (H extension), which virtualizes the supervisor-
level architecture to support the efficient hosting of guest
operating systems atop a type-1 or type-2 hypervisor.

A. XtratuM Next Generation
The XtratuM Next Generation building blocks provide

the services needed by safety-critical systems such as
hypervisor and partition management, support for normal

Fig. 1. XNG running on top of the De-RISC hardware platform.

and privileged partitions, resource virtualization through the
Partition Virtual Execution Environment (PVEE), temporal
partitioning, spatial partitioning, inter-partition communi-
cation (IPC) mechanisms, a Health Monitor (HM) service
which detects faults in the hardware and in XNG, observ-
ability of the system and the XNG Configuration Files
(XCF), which are a set of XML files to allow the system
integrator to configure the system.

Figure 1 shows a typical configuration with XNG run-
ning on top of the hardware platform. The block diagram
illustrates a XNG-based system architecture with three par-
titions running on it. Partition 1 contains the XNG Run-time
Environment (XRE), which allows the execution of bare
metal applications over XNG without the need of any guest
operating system, together with an application. The other
two partitions (2 & 3) are managed by their corresponding
guest operating systems (which can be LithOS or a third-
party OS), executing their respective application(s).

B. LithOS
LithOS is an RTOS designed specifically to be executed

inside an XNG partition in an IMA-based (Integrated
Modular Avionics) system supporting space flight functions
of a criticality classification of up to level B of ECSS.

Its purpose is to act as a guest OS providing services
compliant with the APEX API defined by the ARINC-653
specification [1] and a subset of [2]. In the terminology
used by the ARINC-653, LithOS and XNG should jointly
be considered as the core software of an integrated module
[1]. Some of the main LithOS features are:

• configuration of the maximum amount of resources
that will be allocated to support the services provided
by its ARINC-653 API;

• partition management services that aim at controlling
the internal state of its own partition or other partitions;

• execution threads (called processes) which execute
concurrently with other processes of the same partition
in a periodic or an aperiodic way;

• time control for process management by using of
the global time provided by the virtualization layer
(XNG);

• intra-partition communication and synchronization
mechanisms;

• inter-partition communication services;
• a Health Monitor (HM) service inspired in the

ARINC-653 HM;
• multiple module schedule as defined in [2];
• hardware interrupt management;
• and system management services.



C. Testing automation
Since both XNG and LithOS are feature-rich and offer

several functional capabilities, it is necessary to facilitate
the conduction of test campaigns. Therefore, a highly
automated validation environment has been developed for
both products in the scope of De-RISC. Such environment
provides several functionalities:

• compilation system with multi-architectural support;
• possibility of carrying out a multi-core execution

whenever it is supported by the architecture;
• scripts for automatically adapting the hypervisor con-

figurations for each target;
• scripts for automating the connection to debuggers and

managing execution, as well as exception handling;
• and test suites under development composed by com-

mon and architectural-specific tests that will allow
scalability to support further architectures in the future.

Several efforts are currently being made to implement
continuous integration (CI) on both XNG and LithOS,
thus facilitating the integration of source code changes by
detecting potential defects at an early stage thanks to such
automation of the software testing.

D. XNG development kit
An XNG development kit has also been ported to support

the De-RISC architecture. It is divided in software devel-
opment tools and integration tools. The development tools
include:

• xcparser: A configuration tool to translate the XCF
files containing the system resources description into
a C file, used for configuring the hypervisor at run-
time;

• elfbdr: A configuration tool for embedding multiple
binary images in a single ELF (Executable and Link-
able Format) file;

• xci: An observability tool for displaying the state of
the hypervisor and the partitions when the system is
suspended;

• xcon: An observability tool for displaying the contents
of the hypervisor’s console when a memory dump
file containing the hypervisor’s console data area is
obtained;

• and xtraceviewer: An observability tool to filter the
traces generated by the instrumented version of XNG
from the output of the hypervisor’s console and to
translate them into human-readable traces.

Regarding the integration tools:
• XtratuM Project Manager (XPM): A framework for

Eclipse that helps dealing with all the required files
to build the partitions as well as for creating the XCF
and the final system image;

• and Xoncrete: A tool to analyse the system schedula-
bility and produce feasible, static schedules.

E. ECSS qualification
XNG porting has been carried out following the ECSS

development process to ease the future space qualification
at ECSS level B (critical severity). This will make the
hypervisor ready for the aerospace market almost right after
the project completion.

The documentation required for the ECSS qualification
data package reflects the V-model development cycle that
is being followed. It begins with the software development

Fig. 2. De-RISC MPSoC

plan, followed by the software requirements and interfaces
definition, the architectural and detailed design, and the
software source code, which corresponds to the left side
of the V-model development cycle.

The right side starts with the unit testing –against the
source code–, the integration testing –against the design–
and the validation testing1 campaign – against software re-
quirements. Unit, integration and validation test suite source
code is also included in the qualification data package, as
well as the corresponding plans and reports.

In parallel to the development process, the associated
verification and quality assurance documents (plans and
reports) are also included. At the end of the development,
data package release information and a user manual to be
provided to the customer are also generated.

IV. DE-RISC MPSOC

The De-RISC MPSoC architecture has been designed
with a topology similar to system-on-chip architectures
found in the commercial domain. The architecture has
been defined to allow management of the MPSoC using
an off-the-shelf operating system to control all processor
clusters in the design. The architecture also allows parti-
tioning of software instances onto individual clusters and
separation of instances within one cluster. The intent is to
provide a solution for general purpose payload processing
applications and for centralized architectures where users
may apply the SoC with mixed-criticality workloads such
as platform functions, combined with a software GNSS
receiver, combined with sensor data processing.

Applications will apply software, such as the XNG
hypervisor, that runs in hypervisor mode on the processors.
The hypervisor will host guest operating systems that can
run on one or several processor cores and may also have a
schedule where different partitions are active on the system
over time. The controlling software will rely on hardware
support to enforce partitioning between software instances.
This hardware support consists of:

1Here, the term validation testing is used following ECSS terminology.



Fig. 3. De-RISC MPSoC

• Processor Physical Memory Protection registers – pro-
viding access control to memory areas without using
the full functionality of a Memory Management Unit.

• Processor Memory Management Unit – Providing a
virtual memory view to hypervisor guests and subpro-
cesses

• IO Memory Management Unit – Providing access
control and address translation for communication
controllers that are capable of direct memory access

The architecture is built up from several building blocks:
• GPP Elements, consisting of general purpose proces-

sors, the standard configuration is to have four general
purpose processing cores and system peripherals.

• IO subsystem, connecting bus interfaces of communi-
cation controllers that are capable of direct memory
access, and putting these under control of the IO
memory management unit.

• Memory subsystem, providing memory controllers be-
hind a larger cache controller.

The De-RISC MPSoC includes one General-Purpose
Processing (GPP) element, although the MPSoC is ready
to include additional GPP elements if logic resources on
the target technology allows for this. A GPP is a multicore
in itself and, in the case of the De-RISC MPSoC, its GPP
includes four NOEL-V RISC-V RV64GCH cores. Varying
the number of GPPs and cores per GPP is possible, and
ultimately the choice of the most efficient tradeoff depends
on the target technology and expected application needs.
The schematic of the De-RISC MPSoC is shown in Fig-
ure 2. Another application of the De-RISC SoC architecture
is the GR7xV development, Figure 3, that targets an ASIC
implementation, while the realization within the De-RISC
project targets FPGA implementations.

As shown, the GPP cluster includes, apart from the four
NOEL-V cores with their respective per-core caches (see
Section IV-A), a bus infrastructure interfacing cores with
components external to the cluster, such as the shared L2
cache and the IO subsystem (see Section IV-B).

Beyond the L2 cache, the De-RISC MPSoC includes a
high-speed interconnect offering quality-of-service (QoS)
support. This interconnect is intended to ease the extension
of the MPSoC by attaching further GPP clusters and
accelerators to it.

Finally, the aforementioned interconnect is attached to a
shared L3 cache which, in turn, is connected to the DDR

memory controller and to the boot memory controller.
Note that the MPSoC (mainly its peripherals) as well as

the NOEL-V cores inherit the fault-tolerance support from
the LEON processor family, thus allowing for seamless
correct operation despite faults by correcting errors by
hardware means. Such fault-tolerance support generally
includes error detection and correction capabilities for all
on-chip RAM memories, although specific details may be
sensitive and need being directly requested to Gaisler. Upon
the detection of an uncorrectable error, execution stops to
avoid propagating it beyond the actual component affected.

A. NOEL-V RV64 processor core
The NOEL-V processor core is a 64-bit processor im-

plementing the RISC-V ISA. Its pipeline is dual-issue in-
order, and includes floating point units (supporting floats
and doubles), four fully pipelined integer units (two of them
in late stages to minimize stalls), support for integer multi-
plications and divisions, support for atomics, a Memory
Management Unit (MMU), Physical Memory Protection
(PMP), advanced branch prediction units, return address
stack, and separate data (DL1) and instructions (IL1) first
level cache memories whose size is configurable.

The cache controller includes a store buffer allowing
back-to-back execution of store instructions, thus reaching
a sustained throughput of one store instruction per cycle.
The Advanced High-performance Bus (AHB) interface to
connect to the GPP bus supports wide data transactions to
allow for fast store data transmissions, and fast cache line
refill.

Note that, apart from being integrated as part of the
De-RISC MPSoC, the NOEL-V processor model is also
provided in the Gaisler IP library (GRLIB). The GRLIB is
an integrated set of IP cores that can be connected to the
on-chip bus with an appropriate plug&play method and is
available in a free open-source version.

B. Communication interfaces and peripherals
Usual peripherals such as timer units, system UARTs

and interrupt controllers are included in the De-RISC
MPSoC. Those follow standard specifications to guarantee
portability across SoCs and software compatibility with
drivers matching specifications.

The IO subsystem is architected in a modular way so that
the particular IO interfaces implemented can be tailored to
match application needs, thus varying the type and number
of interfaces integrated. Those include standard interfaces,
but also those specific for the space domain, and include
the following ones:

• High-Speed Serial Link support through SpaceFibre
controllers.

• SpaceWire communication links, connected to an on-
chip router.

• 10/100/1000 Mbit Ethernet interfaces.
• MIL-STD-1553B support.
• Controller Area Network Flexible Data-Rate (CAN-

FD) interface.
• UART interfaces with DMA support.
• SPI and I2C master/slave, and GPIO interface.
Note that, except the parallel PCI interface, the De-RISC

MPSoC includes all IO interfaces available in the GR740
microprocessor, including those that would be typically
implemented in an external FPGA. In the case of the De-
RISC MPSoC, all of them are included on-chip.



Finally, regarding the memory interface, the De-RISC
MPSoC supports DDR3 SDRAM with a strong Error
Detection and Correction (EDAC) code that tolerates even
failures of complete external memory components. NOR
and MRAM flash memory devices are supported for boot,
which is also possible through the SPI interface. Addition-
ally, NAND Flash memory is also supported as a means of
having non-volatile memory storage, which is of particular
importance in the space domain.

C. Extended SafeSU

The De-RISC MPSoC includes the SafeSU [4], a statis-
tics unit implementing several features related to multicore
interference validation, diagnostics and safety measures
support. The SafeSU is conceived as an AMBA AHB-
compatible module that, based on the signals observed
from the different masters and slaves, can determine what
master is using the shared interconnect and what others
are made to wait, hence experiencing multicore contention.
This information allows implementing features such as:

• Measuring the contention experienced by each master
due to each other master [14], as needed for diagnos-
tics in case of a deadline overrun.

• Measuring the maximum latency per request type [5],
as needed for Worst-Case Execution Time (WCET)
estimation.

• Setting multicore contention quotas [5], as needed to
implement safety measures to avoid mixed-criticality
concerns due to timing interference.

However, SafeSU’s features are effective as long as
contention occurs in the AHB bus. If the corresponding
slave accepts requests and those are delayed in internal
queues without keeping the AHB bus busy, then such
contention is not exposed to the SafeSU. This is the case
for part of the contention in the De-RISC MPSoC whenever
write requests keep DRAM memory busy delaying further
write requests. Hence, we are in the process of extending
the SafeSU to monitor the L2-to-DRAM bus connecting
the L2 cache with the DRAM controller, and detect when
a request takes longer than the minimum service time to be
served to report such interference.

V. USE CASES

The validation of the complete computing platform in-
volves multiple steps, focusing on successively larger sets
of features. Representative algorithms and applications are
used to apply typical workload, and exert the dependability-
oriented mechanisms notably for a space-grade context.

A. Performance Benchmarks

A first category of evaluations uses synthetic bench-
marks and compute kernels, in order to assess the basic
performance of the platform. Standard processor bench-
marks such as Dhrystone and EEMBC Coremark have been
ported on the NOEL-V core, providing figures of 2.82
DMIPS/MHz and 4.41 Coremark/MHz respectively. These
standard benchmarks are only useful to assess the core
performance, as they fit in the first level of cache memory.

Several compute kernels have also been ported in both
bare-metal and with XNG hypervisor using the simple XRE
execution environment. For example, the matrix multiplica-
tion benchmark will make use of the different levels of the
memory hierarchy depending on the size of the matrices.

The results are shown in the table below. Please note that
the current platform uses the area-efficient NanoFPU, and
a fully-pipelined FPU (currently in validation) is likely
to improve results on benchmarks such as FFT. Results
for an Arm A53 core have been included normalized to
the operating frequency of the Xilinx VCU118 FPGA
where the De-RISC MPSoC has been synthesized. Details
on matmul trends are currently under investigation (i.e.
significant execution time increase for matmul small and no
increase for matmul large). Our current hypotheses relate
to cache interference altering access ordering.

Execution time in ms
NOEL-V NOEL-V ARM A53

Kernel bare-metal XNG (normalized)
matmul small 3104 6930 2572
matmul large 83819 83668 79917
fft N/A 8522 1229
sort 7387 8015 7311
sha-1 1115 1775 1038

B. Command and Data Handling platform

This use-case is representative of an on-board satellite
subsystem with multiple communicating partitions. It is
derived from the application used in the ECSEL EMC2

project to evaluate the LEON4FT space-grade microproces-
sor together with XtratuM hypervisor [15]. The focus is on
the inter-partition communication in the XNG environment.
Telecommand and telemeasure messages are exchanged
between partitions, using a standard protocol, over Queu-
ing Ports provided by XNG. In addition, floating-point
computations representative of satellite attitude control are
executed, involving quaternion computation.

Preliminary results comparing NOEL-V with XNG and
LEON4 with XtratuM show a similar telecommand mes-
sage de-queueing time (with an average measurement of
57µs), whereas enqueuing took 30% shorter time on the De-
RISC platform. Further experiments are needed to obtain
better statistical significance, and assess the floating-point
computation.

C. Flight software

For higher level of validation, a more complete use-case
is currently being integrated. It is based on the LVCUGEN
framework and the CCSDS-123 hyperspectral compression
algorithm, forming a fully mixed-critical space system.

LVCUGEN (Logiciel de Vol Charge Utile GENérique,
or generic payload flight software) [12] is developed by
CNES, the French space agency, to facilitate the inte-
gration of payload software by providing time and space
partitioning based on XNG and LithOS, system services
such as IO server, mode management, data loading health
monitoring and a telemeasure/telecommand communication
library. This ensures a good representativeness of the use-
case, in terms of partitioning, resource usage, scheduling,
and space-grade coding practices.

As a representative data-intensive application, we chose
the most recent standard for space-grade image compres-
sion, CCSDS-123 [17]. This algorithm performs lossless
compression of hyper-spectral images, i.e. with a large
number of wavelength bands. The raw data can therefore be
quite large and with a three-dimensional organization. The
algorithm is optimized for this multi-dimensional locality



XtratuM NG

NOEL-V NOEL-V NOEL-V NOEL-V

MMDL
IO serverstressing

benchmark

CCSDS-123
application

LithOSLithOS

TM/TC 
application

PUS lib

LVCUGEN 
service

partitions

critical 
application
partition

best-effort 
application
partition

stress 
application
partition

IOSafeSU Partitionned L2 cache

Low-interference interconnect

Fig. 4. Flight Software use-case configuration

with a special adaptive predictor, and performs a propa-
gation of intermediate results. The data throughput of the
application scales with the image size, making it a good
candidate to exert the De-RISC platform with a typical
data-intensive workload.

Several deployments will be possible on the multi-core
platform, one example is illustrated in Figure 4. One
partition, based on LithOS, hosts a critical application,
sending and receiving telemeasures and telecommands. An-
other partition also based on LithOS hosts the CCSDS-123
algorithm, acting as a representative compute-intensive load
on the platform resources, including the memory hierarchy.
A system partition is dedicated to framework services such
as Mode Management and Data Loading (MMDL) and IO
server. In addition, supplementary stressing benchmarks can
be used in some configurations to put pressure on specific
resources.

To assess the effectiveness of time and space partitioning
and the associated interference-mitigation mechanisms, we
will measure the (lack of) effect of the compute-intensive
and stress partitions upon the behaviour of the critical
partition, using the capabilities of the SafeSU module.

VI. SUMMARY

The increasing need for performance, reconfigurability,
and a richer software ecosystem in the space domain
brings new opportunities for the development of appropriate
platforms. H2020 De-RISC tackles all those challenges
holistically by developing the first space-grade MPSoC
and qualified hypervisor based on the RISC-V ISA. In
particular, the De-RISC platform consists of (1) fentISS’
XNG ECSS level B qualified hypervisor and LithOS RTOS,
(2) a high-performance NOEL-V based MPSoC by CAES
Gaisler, (3) including a multicore interference aware statis-
tics unit (SafeSU) by BSC, being all of them designed
meeting (4) Thales requirements and use case KPIs.

In this paper, we have presented the latest progress,
which includes XNG qualification efforts, development kit
deployed, MPSoC features, SafeSU extensions, and use
case evaluation and comparison against other products in
the market. The completion of those items and their vali-
dation will allow reaching TRL8 by the end of 2022. The
hypervisor and MPSoC will be available under commercial

licenses. A number of MPSoC components will be part of
Gaisler’s GRLIB offered as open source under GPL license.
Finally, the SafeSU, which is already offered as open source
(MIT license), will be conveniently upgraded.

ACKNOWLEDGEMENTS

This project has received funding from the European
Union’s Horizon 2020 Research and Innovation programme
under Grant Agreement EIC-FTI 869945. BSC work has
also been partially supported by the Spanish Ministry of
Science and Innovation under grant PID2019-107255GB-
C21/AEI/10.13039/501100011033.

REFERENCES

[1] Aeronautic Radio, Inc. Avionics Application Software Standard
Interface. Part 1 - Required Services. ARINC Specification 653P1-3,
2010.

[2] Aeronautic Radio, Inc. Avionics Application Software Standard
Interface. Part 2 - Extended Services. ARINC Specification 653P2-2,
2010.

[3] J. Bredereke. A survey of time and space partitioning for space
avionics. Technical Report, City University of Applied Sciences
Bremen, 2017.

[4] G. Cabo, F. Bas, R. Lorenzo, D. Trilla, S. Alcaide, M. Moretó,
C. Hernández, and J. Abella. Safesu: an extended statistics unit
for multicore timing interference. In 2021 IEEE European Test
Symposium (ETS), 2021.

[5] J. Cardona, C. Hernandez, J. Abella, and F. J. Cazorla. Maximum-
contention control unit (mccu): Resource access count and con-
tention time enforcement. In 2019 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 710–715, March 2019.

[6] Cobham Gaisler. LEON3FT Fault-tolerant processor. https:
//www.gaisler.com/index.php/products/processors/leon3ft (accessed
Feb-2021).

[7] Cobham Gaisler. LEON4 processor. https://www.gaisler.com/index.
php/products/processors/leon4ft (accessed Feb-2021).

[8] Cobham Gaisler. NOEL-V processor. https://www.gaisler.com/
index.php/products/processors/noel-v (accessed Feb-2021).

[9] Cobham Gaisler. RTEMS SMP executive summary, development
environment for future leon multi-core. RTEMSSMP-
ES-001, 2, 2015. http://microelectronics.esa.int/gr740/
RTEMS-SMP-ExecSummary-CGAislerASD-OAR.pdf.

[10] De-RISC Consortium. De-RISC website, 2021. https://www.
derisc-project.eu/ (accessed Feb-2021).

[11] fentISS. XtratuM Hypervisor. https://fentiss.com/products/
hypervisor/ (accessed Feb-2021).

[12] J. Galizzi, P. Arberet, J.C. Damery, C. Guy, A. Crespo, M. Masmano,
and F. Roubert. LVCUGEN- Ready for Flight? In L. Ouwehand,
editor, DASIA 2015 - DAta Systems in Aerospace, volume 732 of
ESA Special Publication, September 2015.

[13] B. Gomes, D. Silveira, L. Gouveia, and L. Mendes. Air hypervisor
using RTEMS SMP. In European Workshop on On-Board Data
Processing (OBDP2019), ESTEC (ESA), 2019.

[14] J. Jalle et al. Contention-aware performance monitoring counter
support for real-time MPSoCs. In IEEE Symposium on Industrial
Embedded Systems (SIES), 2016.

[15] L. Pomante, D. Andreetti, F. Federici, V. Muttillo, and D. Pascucci.
Analysis and design of a command & data handling platform based
on the leon4 multicore processor and pikeos hypervisor. DAta
Systems In Aerospace (DASIA), 2017.

[16] RISC-V International. RISC-V International website. https://riscv.
org/.

[17] L. Santos, A. Gomez, and R. Sarmiento. Implementation of ccsds
standards for lossless multispectral and hyperspectral satellite image
compression. IEEE Transactions on Aerospace and Electronic
Systems, 07 2019.

[18] SiFive Inc. SiFive E76-MC Manual v19.08p0, 2019. https://sifive.
cdn.prismic.io/sifive%2F08e49813-ffcc-4a6c-9d70-ba2add7ebbe6
sifive+e76-mc+manual+v19.08.pdf (accessed Feb-2021).

[19] N.J. Wessman, F. Malatesta, J. Andersson, P. Gomez, M. Masmano,
V. Nicolau, J. Le Rhun, G. Cabo, F. Bas, R. Lorenzo, O. Sala,
D. Trilla, and J. Abella. De-risc: the first risc-v space-grade
platform for safety-critical systems. In 2021 IEEE Space Computing
Conference (SCC), 2021.

[20] Wikipedia. Small satellite, 2021. https://en.wikipedia.org/wiki/
Small satellite (accessed Feb-2021).


