
Is Approximation Universally Defensive Against
Adversarial Attacks in Deep Neural Networks?

Ayesha Siddique, Khaza Anuarul Hoque
Department of Electrical Engineering and Computer Science

University of Missouri, Columbia, MO, USA
ayesha.siddique@mail.missouri.edu, hoquek@missouri.edu

Abstract—Approximate computing is known for its effectiveness
in improvising the energy efficiency of deep neural network (DNN)
accelerators at the cost of slight accuracy loss. Very recently, the
inexact nature of approximate components, such as approximate
multipliers have also been reported successful in defending
adversarial attacks on DNNs models. Since the approximation
errors traverse through the DNN layers as masked or unmasked,
this raises a key research question—can approximate computing
always offer a defense against adversarial attacks in DNNs, i.e., are
they universally defensive? Towards this, we present an extensive
adversarial robustness analysis of different approximate DNN
accelerators (AxDNNs) using the state-of-the-art approximate
multipliers. In particular, we evaluate the impact of ten adversarial
attacks on different AxDNNs using the MNIST and CIFAR-10
datasets. Our results demonstrate that adversarial attacks on
AxDNNs can cause 53% accuracy loss whereas the same attack
may lead to almost no accuracy loss (as low as 0.06%) in the
accurate DNN. Thus, approximate computing cannot be referred
to as a universal defense strategy against adversarial attacks.

Index Terms—Adversarial Attacks, Adversarial Robustness,
Approximate Computing, Deep Neural Networks

I. INTRODUCTION

Approximate computing in deep neural networks (DNNs)
has recently gained prominence in exploring the accuracy and
energy trade-offs for big-data automation [1]. Approximate
deep neural networks (AxDNN) accelerators employ inexact
full adders [2], truncated carry chains [3], etc., which
induce approximation errors in them. Unfortunately, DNNs
are susceptible to adversarial attacks [4] and AxDNNs are no
exception [5]. This limits their deployment in the safety-critical
applications since the adversary may use partial information
about the model to craft adversarial examples and exploit
transferability property of DNNs [6] [7] to attack AxDNNs.
Recent works in defending adversarial attacks are targeted
mostly for accurate DNNs [8] [4] and thus, the robustness and
defense of AxDNNs is vastly under-explored [9].

Very recently, Guesmi et al. presented approximate
computing as an effective structural defense strategy against
adversarial attacks by incorporating an array multiplier, with
approximate mirror adders instead of exact full adders, in the
AxDNN inference phase [5]. Even though this solution opens
up a new dimension of research, such defensive behavior
of approximate computing cannot be generalized with one
AxDNN. This is due to the fact that approximation errors
traverse through the AxDNN layers as masked and un-masked
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Figure 1: Impact of adversarial attacks on accurate and
approximate versions of FFNN and Lenet-5. The accurate and
approximate DNNs contain accurate 1JFF and approximate
L1G multipliers, respectively, from Evoapprox8b [11] library.

and hence, may render their structural defense inconsistent in
an adversarial environment. Hence, there is a pent-up need
to explore the adversarial robustness of AxDNNs extensively
which also includes investigating the impact of adversarial
attacks with different perturbation budgets under different
attack scenarios. Additionally, it is also required to explore
if quantization is supportive towards adversarial defense in
AxDNNs since quantization can also improve the robustness
in accurate DNNs [10]. Towards this, the research questions
that need to be investigated are as follows:

(Q1) Does approximate computing in AxDNNs provide
universal defense against adversarial attacks? How does the
adversarial robustness of AxDNNs vary with the change in the
perturbation budget?
(Q2) Are adversarial attacks transferable from accurate DNNs
to AxDNNs irrespective of their difference in exactness and
model structure?
(Q3) How does approximate computing react to quantization
in AxDNNs under adversarial attacks? Are they supportive or
antagonistic to each other?

A. Motivational Case Study and Key Observations

Prior to extensively analyzing the adversarial robustness
of AxDNNs, we first present a motivational case study to
demonstrate their both defensive and perturbing nature towards
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adversarial attacks. We trained a 5-layered convolutional neural
network, i.e., Lenet-5, and feed-forward neural network (FFNN)
on the MNIST [12] dataset. We replaced their accurate
multipliers with approximate counterparts, using Evoapprox8b
[11] library, to build two different AxDNNs. We compared the
classification accuracy of each resulting AxDNN with its exact
counterpart under the l∞ norm-based projected gradient descent
(PGD) and l2 norm-based contrast reduction (CR) attacks. As
shown in Fig. 1, we observe that the accuracy of both AxDNNs
is higher than the accurate DNNs in the case of former attack
(see label L1 and L2). However, the same approximate FFNN
exhibits an opposite behavior in the case of later attack i.e.,
its accuracy decreases with an increase in the strength of the
attack (see label L3). Moreover, a clear drop in accuracy of
more than 75% is observed around perturbation budget (ε) of
0.5 in the case of approximate Lenet-5 (AxL5) with the later
attack (see Label L4). After this value, the accuracy of AxL5
decreases sharply. Such conflicting observations motivated us
to extensively analyze the adversarial robustness of AxDNNs.

B. Novel Contributions

This paper makes the following novel contributions:
1) An extensive adversarial approximation analysis to expose

the perturbing nature of approximation noise in different
adversarial settings with varying perturbation budgets.
[Section IV.B]

2) A transferability analysis to determine whether the
adversarial attacks are transferable from accurate DNNs
to AxDNNs irrespective of their difference in exactness
and model structure. [Section IV.C]

3) An adversarial quantization analysis to determine whether
quantization and approximate computing are supportive or
antagonistic to each other. [Section IV.D]

Since the multipliers consume more energy as compared to
other arithmetic units (e.g., adders) [13]; therefore, we employ
the state-of-the-art approximate multipliers [11] in AxDNNs.
In particular, we explore the impact of 10 different adversarial
attacks on approximate Lenet-5 (AxL5) and Alexnet (AxAlx).
We use the MNIST [12] and CIFAR-10 [14] datasets for
the adversarial robustness analysis. Our results demonstrate
that an adversarial attack on AxDNNs may lead to 53%
accuracy loss. Conversely, the same attack may lead to almost
no accuracy loss (as low as 0.06%) in accurate DNNs. This
behavior contradicts the observations in [5]. Our analysis
reveals that AxDNNs are not universally defensive towards
the adversarial attacks. Furthermore, the adversarial attacks
are transferable from accurate DNNs to AxDNNs irrespective
of their difference in exactness and model structure. We also
observe that approximate computing acts antagonistically to
quantization.

The remainder of this paper is structured as follows: Section
II and Section III present a threat model and methodology
for analyzing the adversarial robustness of AxDNNs. Section
IV presents the results for adversarial robustness analysis of

AxDNNs in comparison with accurate DNNs. Finally, Section
V concludes the paper.

II. THREAT MODEL

In this section, a threat model is presented for exploring the
adversarial robustness of AxDNNs.

A. Adversary’s Knowledge

We assume that the adversary uses an accurate classifier
model for generating the adversarial examples. The adversary
has either (i) partial knowledge about the AxDNN i.e., the
model structure is known but inexactness is not known, or (ii)
no knowledge about the AxDNN i.e., both model structure and
inexactness are not known (see Fig. 2). Since the adversary
lacks the information about the inexactness of AxDNNs only
in the former case; therefore, it is considered as a special case of
transferability. This attack scenario is similar to the black-box
attacks in [5].
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Figure 2: Attack scenario with both model structure and
inexactness not known to the adversary

B. Attack Generation

In this paper, the adversary is assumed to be exploratory.
The adversary can evade the AxDNN by tampering with the
test images, during the inference phase, without influencing the
training data. The adversary seeks to craft adversarial examples
by finding the perturbation that maximizes the loss of a model
on a given sample while keeping the perturbation magnitude
lower than a given budget [16]. Table I enlists the gradient and
decision-based attacks and the distance metrics used in this
paper. The distance metrics such as, l0, l2, and l∞ norms help
in approximating the human perception of visual difference.
The l0 norm counts the number of pixels with different values
at corresponding positions in the original and perturbed images.
The l2 norm measures the Euclidean distance between two

Table I: Adversarial Attacks [15], Types, and Distance Metrics

Attack Name Attack Distance
Type Measure

Fast Gradient Method (FGM) gradient l2, l∞ norm
Basic Iterative Method (BIM) gradient l2, l∞ norm
Projected Gradient Descent (PGD) gradient l2, l∞ norm
Contrast Reduction Attack (CR) decision l2 norm
Repeated Additive Gaussian (RAG) decision l2 norm
Repeated Additive Uniform Noise (RAU) decision l2 , l∞ norm



images. The l∞ norm measures the maximum difference for
all pixels at corresponding positions in two images.

III. EVALUATION METHODOLOGY

Fig. 3 shows the overview of our methodology for AxDNN’s
robustness evaluation. It consists of four main steps: accurate
DNN training, adversarial examples generation, attacks on
AxDNN inference, and percentage robustness. Algorithm 1
delineates these steps. Line 1 and 2 train the accurate DNN
with accurate multipliers and check whether the accuracy of
the trained model is above the user-defined threshold. In this
paper, we consider baseline accuracy as a threshold value. The
adversarial robustness analysis of accurate DNN and AxDNNs
starts from Line 6. First, the accurate multiplier and different
adversarial attacks, with multiple perturbation budgets (ranging
from 0 to p, where p is a set of integers) are used for generating
the adversarial examples. Higher is the perturbation budget,
the higher is the strength of the adversarial attack. Then,
the quantized accurate DNN and AxDNNs with accurate and
approximate multipliers, respectively, are evaluated against the
adversarial examples. Line 8 verifies if the adversary succeeded
in misclassification i.e., forcing the output to an arbitrary
false label. If the goal of the adversary is achieved then, the
counter of successful attack generation is incremented. Lastly,
the robustness is evaluated in Line 15, for every perturbation
budget, as the percentage rate of attacks for which the adversary
fails to generate an effective adversarial example that fools the
victim accurate DNN or AxDNN.

Algorithm 1: Robustness Evaluation
Inputs : Type of multipliers: mults ={ACC, JV3, ...};

Type of adversarial attack: attack = BIM or PGD, etc.
Perturbation budget: eps = [0, p];
Labelled test set: D = (Xt, Lt);
Quantization level: Qlevel;
Accuracy threshold: Ath

Outputs: Percentage Robustness: Rlevels
1: model = ExactDNNtrain (mults(1))

// Train DNN with accurate multiplier
2: if Accuracy(model) ≥ Ath then
3: for j = 1 : length(eps) do
4: adv = 0;
5: for k = 1 : size(D) do
6: (Xt∗

k , Lt∗
k ) = AdvExGen (model, mults(1), eps(j), attack, Xt

k)
// Adv. examples generation with accurate multiplier

7: Qmdl = FixedPointQuantization (model, Qlevel)
// Apply fixed point quantization on inference model

8: (Xq
k , Lq

k) = AdvAttackOnQuanModel (Qmdl, mults eps(j),
attack, Xt∗

k , Lt∗
k )

// Adv. attacks on accurate DNN and AxDNNs
9: if Lq

k 6= Lt
k then

10: adv++;
11: else
12: NOP;
13: end if
14: end for
15: Rlevels (eps(j)) = (1 - Adv/ size(D)) * 100;
16: end for
17: end if
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Figure 3: Methodology for analyzing the adversarial robustness
of approximate deep neural networks (AxDNNs)

IV. RESULTS AND DISCUSSIONS

This section discusses the experimental setup and the
impact of adversarial attacks and quantization on AxDNNs
under different adversarial settings (adversarial approximation
and adversarial quantization analysis) and transferability of
adversarial attacks from accurate DNNs to AxDNNs.

A. Experimental Setup

In this paper, accurate Lenet-5 (AccL5) and Alexnet
(AccAlx) architectures are used with their baseline accuracy
as 98% and 81%, respectively. The LeNet-5 architecture
is comprised of two sets of convolutional and average
pooling layers, followed by a flattening convolutional layer,
two fully-connected layers, and finally a softmax classifier.
The Alexnet architecture contains five convolutional layers,
three average pooling layers, and two fully connected layers.
For approximate counterparts of these accurate DNNs, the
accurate multipliers in the convolutional layers are replaced
with approximate unsigned multipliers using Evoapprox8b [11]
library. The approximate multipliers are employed in AxL5
and AxAlx according to their error resilience towards the
MNIST [12] and CIFAR-10 [14] classification, respectively. For
example, the approximate multipliers having accuracy less than
90% in AxL5 and 75% in AxAlx are discarded. The adversarial
examples are generated using the Foolbox library [15].

B. Adversarial Approximation Analysis

To investigate the adversarial robustness of AxDNNs, this
section discusses the impact of both gradient and decision-based
attacks with reference to the first attack scenario in Section II-A.

1) Approximate DNNs under Gradient-Based Attacks: In
AxDNNs, both approximation noise and adversarial robustness
can be quantified in terms of the mean average error (MAE) of
the approximate multipliers. The lower the MAE is, the higher
is the actual inference accuracy of AxDNNs (in the absence
of adversarial attacks) and hence, higher is their adversarial
robustness. For example, Fig. 4 shows that M8-based (MAE
= 1.54%) AxL5 exhibits 6% inference accuracy lower than
M7-based (MAE = 1.12%) AxL5 in absence of any adversarial
attack. Hence, it undergoes 11% more accuracy loss under l∞
norm-based BIM attack with ε = 0.2. It is also observed that
two AxDNNs, having the same inference accuracy, behave in
a similar fashion under adversarial attacks. For instance, M2
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Figure 4: Adversarial robustness of accurate and approximate LeNet-5 under BIM and FGM attacks with the MNIST [12]
dataset. The labels M1 to M9 refer to the 1JFF (Accurate), 96D, 12N4, 17KS, 1AGV, FTA, JQQ, L40 and JV3 multipliers in
EvoApprox8b [11] library.
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Figure 5: Adversarial robustness of accurate and approximate LeNet-5 under PGD and RAU attacks with the MNIST [12]
dataset. The labels M1 to M9 refer to the 1JFF (Accurate), 96D, 12N4, 17KS, 1AGV, FTA, JQQ, L40 and JV3 multipliers in
EvoApprox8b [11] library.

and M3-based AxL5 perform close to AccL5 under adversarial
attacks due to their same inference accuracy.

The adversarial robustness analysis in Fig. 4 reveals that
the accuracy and hence, adversarial robustness of AxDNNs
decreases with an increase in the strength of the adversarial
attacks, even if the adversary is unaware of the inexact inference
engine. For example, l∞ norm-based BIM attack, with ε =
0.2, on AccL5 leads to 44% accuracy loss. However, the same
strength of the attack results in 67% accuracy loss in M8-based
AxL5 (see Fig. 4a). The same trend is observed with other
gradient-based attacks.

It is also observed that AxDNNs, similar to accurate DNNs,
exhibit more adversarial robustness under l2 norm-based attacks
as compared to their l∞-norm based counterparts. This trend
is noticeable with all adversarial attacks. For example, l∞
norm-based FGM attack, with ε = 0.25, leads to 37% and
49% accuracy loss in AccL5 and M8-based AxL5, respectively
(see Fig. 4c). On the other hand, l2 norm-based FGM attack,
with ε = 0.25, causes almost no accuracy loss in both AccL5
and M9-based AxL5 initially (see Fig. 4d). Later, the accuracy

of M9-based AxL5 increases with higher values of ε e.g.,
around 0.2 but then, drops again to 65% with ε = 2. This
small deviating defensive behavior is exceptional and very
often observed in AxDNNs due to data-dependent discontinuity
of their approximation-induced errors [5]. Such discontinuity
can be referred to masking and non-masking of erroneous
approximation bits which can traverse through AxDNN layers.

Interestingly, Fig. 4d shows a 28% accuracy loss in M9-based
AxL5 but only 9% accuracy loss in AccL5 is observed under
l2 norm-based FGM attack with ε = 2. Likewise, Fig. 5a shows
a 36% accuracy loss in M9-based AxL5 but 17% accuracy loss
only in AccL5 is observed under the l2 norm-based PGD attack
with ε = 2. Such a trend is also observed with small perturbation
budgets. For example, Fig. 5b illustrate that l∞ norm-based
PGD attack with even ε = 0.05 leads to 23% accuracy loss
in M9-based AxL5 but only 1% accuracy loss in AccL5.
This identifies the non-defensive nature of AxDNNs under
adversarial attacks. This observation contradicts the defensive
approximation in [5], where approximate computing was
rendered defensive with such adversarial attacks. Furthermore,



(a) l2-based CR Attack
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(b) l2-based RAG Attack
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Figure 6: Adversarial robustness of accurate and approximate
LeNet-5 under CR and RAG attacks with the MNIST [12]
dataset. The labels M1 to M9 refer to the 1JFF (Accurate),
96D, 12N4, 17KS, 1AGV, FTA, JQQ, L40 and JV3 multipliers
in EvoApprox8b [11] library.

the BIM (see Fig. 4a and Fig. 4b) and PGD attacks (see
Fig. 5a and Fig. 5b) seem to have more impact on the
adversarial robustness of both AccL5 and AxL5 in comparison
to the FGM attacks. In the case of AxAlx, the CIFAR-10
[14] classification under gradient-based attacks shows that their
adversarial robustness is very close to AccAlx. Therefore, these
results are excluded from the paper.

2) Approximate DNNs under Decision-based Attacks: The
decision-based attacks affect the adversarial robustness of both
AxDNNs and accurate DNNs. For example, Fig. 5d shows
that l∞ norm-based RAU attack, with ε = 1, leads to 50%
accuracy loss in AccL5. However, the same attack leads to 75%
accuracy loss in M8-based AxL5. The same trend is observed
in the case of other decision-based attacks. It is also noticed
that l2 norm-based decision-based attacks are comparatively
less perturbing. However, their impact on the accuracy of
AxDNNs is higher with an increase in the approximation
noise in AxDNNs. Interestingly, l2-based CR attack in Fig. 6a
undergoes almost no accuracy loss (as low as 0.06%) in AccL5
in spite of high perturbation budget i.e., ε = 1.5. The same attack
has 53% accuracy loss in M8-based AxL5. Small deviations
in these trends are observed with decision-based attacks as
well but they do not cause significant changes in the accuracy.
Moreover, a similar adversarial robustness trend is observed
with CIFAR-10 [14] classification in the case of decision-based
attacks on Alexnet as shown in Fig. 7. AxAlx performs close
to AccAlx but the impact of decision-based attacks is more
noticeable in l∞ norm-based RAU attack (see Fig. 7d).

C. Transferability Analysis

Adversarial examples are known for their transferability [17],
which means that they are transferable from one model to
another model. This also refers to the fact that it is possible to
attack models to which the attacker does not have access [7].
Therefore, for further analyzing the adversarial robustness of
AxDNNs, we craft the adversarial examples using accurate

Table II: Transferability Analysis with l∞ norm-based BIM
attack (ε = 0.05). X/Y represents accuracy before/after attack

MNIST [12] CIFAR-10 [14]DNN
Models AxL5 AxAlx AxL5 AxAlx
AccL5 98/97 67/43 54/9 53/4
AxAlx 98/9 67/11 54/20 53/10

DNN models (second attack scenario discussed in Section II-A)
and evaluate their impact on AxDNNs with different model
structures. Our results show that the adversarial attacks are more
transferable if the adversary is not aware of both the inexactness
and type of DNN model used in the inference engine. For
example, Table II shows that l∞ norm-based BIM attack (ε =
0.05), strongest attack in previous section, is more transferable
from AccL5 to AxAlx when compared to AxL5, and AccAlx
to AxL5 when compared to AxAlx. The same trend is observed
with both MNIST [12] and CIFAR-10 [14] datasets.

D. Adversarial Quantization and Approximation

Fig. 4 - Fig. 7 present AxDNNs which employ approximate
computing along-with quantization. From their comparison
with 8-bit quantized accurate DNNs in Fig. 8, we observe
that quantization improves the adversarial robustness [10].
However, approximate computing does not support this
behavior. The classification accuracy of AxDNNs decreases
with an increase in the strength of the adversarial attacks
in spite of employing quantization. For example, under l∞
norm-based PGD attack (ε = 0.2), the quantization increases
the accuracy of non-quantized AccL5 by 58% in Fig. 8 (see
label L5). Conversely, approximate computing decreases the
accuracy of quantized AccL5 by 35% in M8-based AxL5 under
the same attack in Fig. 5b. The self-error-inducing nature of
approximate computing degrades the performance of quantized
DNN models and hence, leads to successful adversarial
attacks. Thus, approximate computing acts antagonistically to
quantization under the adversarial attacks.

Summary. Most state-of-the-art AxDNNs employ approximate
multipliers for reducing their energy consumption [2] [13] [18].
These approximate multipliers either have approximate partial
products generation or addition. However, approximation error
in both cases depends on the specific input bit combinations
[19]. Recent work of Gusemi et al. [5] exploited such
approximation behavior in AxDNN for the defense against
the fixed strength of the adversarial attacks. However, such
defensive nature of AxDNNs is not always observable as shown
by our experimental results in Section IV. In a real-world
scenario, the adversary can vary the perturbation budget which
may lead to successful misclassification. Interestingly, AxDNNs
are not only vulnerable to higher perturbation budgets but also
to very small perturbations budgets in some cases, such as ε
=0.05 as shown in our experimental results. Note, an attack with
such a small perturbations budget can be stealthy enough to
bypass the attack detection techniques and remain imperceptible
to the human eye.
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Multipliers

M1 M2 M3 M4 M5 M6 M7 M8

80 80 80 79 80 78 80 79

80 80 80 79 80 78 80 79

79 80 80 79 80 78 80 79

79 80 80 79 80 78 80 79

79 80 80 79 80 78 80 79

79 80 80 79 80 78 80 79

79 79 80 79 80 78 80 79

79 77 78 79 79 78 79 77

79 75 76 78 77 77 77 76

73 73 74 76 75 76 76 75

(c) l2-based RAU Attack
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Figure 7: Adversarial robustness of accurate and approximate Alexnet under CR, RAG and RAU attacks with the CIFAR-10
[14] dataset. The labels M1 to M9 refer to the 1JFF (Accurate), 2P7, KEM, 150Q, 14VP, QJD, 1446 and GS2 multipliers in
EvoApprox8b [11] library.
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Figure 8: Adversarial robustness of quantized (qL5) and
non-quantized accurate Lenet-5 (L5) using the MNIST [12]

V. CONCLUSION

In this paper, we explored the adversarial robustness of
AxDNNs, using the state-of-the-art unsigned approximate
multipliers, with the MNIST and CIFAR10 datasets. We
empirically show that an adversarial attack on AxDNN leads
to 53% accuracy loss. Conversely, the same attack leads
to almost no accuracy loss (as low as 0.06%) in accurate
DNNs. We observe that approximate computing can reduce the
adversarial robustness in spite of quantization in AxDNNs and
partial knowledge of the adversary about the model structure.
In summary, this work answers three research questions in
Section I as follows:

(A1) Though AxDNNs often exhibit mere defensive behavior;
this trend is not universal (or consistent). Their adversarial
robustness decreases with an increase in the perturbation budget
and occasionally, surpasses the accurate DNNs. They are not
universally defensive in nature towards the adversarial attacks.
(A2) The adversarial attacks are transferable from accurate
DNNs to AxDNNs even if the adversary has partial knowledge
about their inexactness and model structure.
(A3) The quantization and approximate computing act
antagonistic to each other in an adversarial environment.
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