
ar
X

iv
:2

11
1.

07
58

4v
1

 [
cs

.A
R

]
 1

5
N

ov
 2

02
1

Design and Evaluation Frameworks for Advanced

RISC-based Ternary Processor

Dongyun Kam, Jung Gyu Min, Jongho Yoon, Sunmean Kim, Seokhyeong Kang and Youngjoo Lee

Department of Electrical Engineering

Pohang University of Science and Technology, Pohang, South Korea

{rkaehddbs,mjg1104,yoonjongho99,sunmean,shkang,youngjoo.lee}@postech.ac.kr

Abstract—In this paper, we introduce the design and veri-
fication frameworks for developing a fully-functional emerging
ternary processor. Based on the existing compiling environments
for binary processors, for the given ternary instructions, the
software-level framework provides an efficient way to convert the
given programs to the ternary assembly codes. We also present a
hardware-level framework to rapidly evaluate the performance of
a ternary processor implemented in arbitrary design technology.
As a case study, the fully-functional 9-trit advanced RISC-based
ternary (ART-9) core is newly developed by using the proposed
frameworks. Utilizing 24 custom ternary instructions, the 5-stage
ART-9 prototype architecture is successfully verified by a number
of test programs including dhrystone benchmark in a ternary
domain, achieving the processing efficiency of 57.8 DMIPS/W and
3.06× 106 DMIPS/W in the FPGA-level ternary-logic emulations
and the emerging CNTFET ternary gates, respectively.

Index Terms—Ternary processor, Instruction set architecture,
RISC, Emerging computer design, Multi-valued logic circuits

I. INTRODUCTION

The dimensional down-scaling of CMOS technology has

been continuously focused on increasing hardware efficiency

of digital circuits [1]. However, the performance improve-

ment from the recent down-scaling is now expected to meet

the potential limitation especially caused by the increased

interconnecting/routing overheads [2]. Among the different

solutions to address this limitation, the multi-valued logic

(MVL) circuits have been recently gaining great popularity

due to their attractive potential for reducing the circuit-level

complexity as well as the routing burden even at the aggressive

down-scaling technology [3]. For the practical implementation

of the ternary-based system, which is a starting point of MVL

solutions, numerous technologies have been proposed to solve

the stability issue of each voltage/current level with emerging

devices including carbon nanotube FETs (CNTFETs) [4],

graphene barristors [5], and CMOS-based ternary transistors

[6]. In general, the prior studies on ternary circuits mainly

present the potential expectations of gate-level performances

[7], [8]. For circuit-level studies, some digital building blocks

such as adder, multiplier, and flip-flop have been also investi-

gated to extend the concept of gate-level evaluation in ternary

domains [9]–[11]. Due to the lack of systematic design-

level strategies, on the other hand, the system- or processor-

level explorations for ternary-based digital solutions are rarely

reported in the open literature with few details [12].

Identify applicable funding agency here. If none, delete this.

In this work, we introduce advanced design and evaluation

frameworks to realizing ternary processors, measuring actual

performances with the practical benchmark programs. In con-

trast that the previous studies only present limited concepts to

only test processing blocks in ternary number systems [13],

[14], we develop a 9-trit advanced RISC-based ternary (ART-

9) core by adopting the proposed frameworks, presenting the

fully-functional top-level ternary microprocessor. Based on

the 9-trit instruction-set architecture (ISA) with 24 custom

ternary instructions, more precisely, the proposed software-

level framework provides an efficient way to convert the

existing binary programs to the ternary codes, even reducing

the program size compared to the baseline codes with RV-

32I ISA [15]. The hardware-level framework offers the cycle-

accurate simulator and the technology mapper, providing the

quantitative evaluations of the pipelined ART-9 architecture for

arbitrary design technology. Targeting the specialized 5-stage

pipelined architecture, as a case study, the proposed ART-

9 core achieves the processing efficiency of 57.8 DMIPs/W

and 3.06 × 106 DMIPs/W when we use the FPGA-level

ternary-logic emulations and the emerging CNTFET-based

ternary gates [7], [8], respectively, reporting the first full-level

evaluations of ternary processors.

II. BACKGROUND

A. Ternary Number Systems

Based on the integrated ternary gates using three voltage

levels such as GND, VDD/2 and VDD, the ternary circuits

are dedicated to the arithmetic operations in a ternary number

system. Like the binary case, there are in general two types

of ternary fixed-point number systems: unsigned and signed

systems. For an n-trit number X = (xn−1, xn−2, ..., x0)3,

where xi ∈ {0, 1, 2}, the unsigned ternary number only

represents positive integers from 0 to 3n − 1 by interpreting

an n-trit sequence into a decimal value Yunsigned as follows.

Yunsigned =

n−1∑

k=0

xk3
k. (1)

Although the unsigned number system is useful for denoting

indices of general-purposed ternary registers (GPTR) and ad-

dresses of ternary instruction/data memories (TIM/TDM), it is

obviously required to support the signed arithmetic operations

for performing the general data processing. Therefore, the

http://arxiv.org/abs/2111.07584v1

Fig. 1. Truth tables of ternary logic operations.

singed ternary number system is considered to interpret the

given n-trit sequence into the negative value. Among different

ways to develop the ternary signed numbers [13], in this work,

we adopt the balanced signed number system, where each trit

is now an element from the balanced set, i.e, xi ∈ {−1, 0, 1}
[13]. Then, a numerical value Ysigned of n-trit ternary number

X is still calculated in the same way as the unsigned represen-

tation shown in (1). Compared to the unbalanced approaches

in [13], it is reported that the arithmetic operations in balanced

ternary numbers can be simplified according to the conversion-

based negation property [8], [14]. To develop the proposed

frameworks for general-purposed ternary processors, therefore,

the balanced representation is definitely suitable by requiring

fewer ternary gates for the practical realization [8].

B. Ternary-based Arithmetic and Logical Operations

Similar to basic operations of RISC-based binary processors

[15], the ternary processor should support logic and arithmetic

operations to perform the general user-level programs. As

reported in [13], the balanced ternary logic operations include

AND, OR, XOR, standard ternary inverting (STI), negative

ternary inverting (NTI) and positive ternary inverting (PTI),

where the detailed truth tables are exemplified in Fig. 1.

Compared to the familiar two-input logic gates such as AND,

OR, and XOR, note that the inverting operation consists of

three fundamental functions (denoted as STI, NTI, PTI in

Fig. 1), considering as the most important processing in the

balanced ternary number system [13]. It is also possible to

define the proper two-input arithmetic operations, which are

comparable to the well-established functions in the binary

processor [15]. For example, the fundamental functions includ-

ing ternary addition, comparison, multiplication, and division,

have been extensively studied for the next-generation computer

arithmetic [9], [10], [16]. Utilizing the negation operations

in Fig. 1, it is also possible to simply utilize the ternary

subtraction based on the pre-designed ternary adder [16].

III. PROPOSED FRAMEWORKS FOR TERNARY PROCESSORS

A. Software-Level Compiling Framework

For the full-level ternary processor implementation, based

on a given ternary ISA, it is important to prepare ternary-based

assembly (or executable) programs in an easy way. With the

Fig. 2. The proposed software-level compiling framework.

assistance of the existing RISC-V tool chains in open-source

domains [17], in this work, we first develop a software-level

compiling framework supporting instruction mapping, operand

conversion, and redundancy checking, which can efficiently

generate the ternary assembly benchmarks for arbitrary C-

based source codes. Fig. 2 conceptually illustrates the process-

ing steps of the proposed software-level framework. Note that

the input C-level program is firstly handled by an open-source

compiler for RV-32I ISA, obtaining an assembly sequence

of 32-bit instructions. Then, the instruction mapping step is

activated to translate the 32-bit instructions into pre-defined

ternary instructions. For a binary instruction that cannot be

directly converted with a ternary version, we utilize several

primitive sequences of ternary instructions, still offering valid

mapping results by allowing a few more instructions. After

mapping ternary instructions, the operand conversion step

is followed to find the ternary representations of immediate

values in the baseline binary instructions. Depending on the

definition of ternary instructions, it might be required to add

more instructions to construct the large-sized operands in

ternary number systems. Note that the operand conversion step

also supports the register renaming when the given ternary

ISA uses fewer general-purposed registers than the baseline

binary processor. As the mapping and conversion steps may

utilize additional instructions, the final redundancy checking

phase finds the meaningless instructions by investigating the

duplicated operations, removing them to minimize the overall

code size. During the elimination of redundant instructions, the

proposed framework also re-calculates the branch target ad-

dresses to ensure the correct results. As the proposed software-

level framework is based on the well-established compiling

environments for binary processors, we can purely focus on

increasing the mapping quality in the ternary domain by deeply

considering the characteristics of ternary instructions, relaxing

the development efforts of ISA-dependent processor-design

frameworks. Targeting the proposed ART-9 ISA, as a case

study, the proposed software-level framework easily generates

various ternary codes with reduced memory requirements,

even saving the program size of dhrystone benchmark by 54%

compared to the baseline processor of RV-32I ISA [15].

Fig. 3. The proposed hardware-level evaluation frameworks.

B. Hardware-Level Evaluation Framework

Using ternary assembly codes, which can be obtained by the

proposed software-level compiling framework, we develop the

hardware-level evaluation framework allowing an efficient way

to develop the prototype of ternary processor. As illustrated in

Fig. 3, the hardware-level framework includes a cycle-accurate

simulator, a gate-level analyzer, and a performance estimator.

The cycle-accurate simulator accepts the high-level description

of the pipelined ternary processor, and provides the required

processing cycles for performing the input ternary assembly

codes. With the synthesizable RTL design corresponding to

the high-level architecture description, the proposed gate-

level analyzer can estimate the critical delay as well as the

power consumption of ternary processor. Note that we define

the property description of the design technology as another

input of gate-level analyzer, which includes delay and power

characteristics of primitive building blocks, enabling more

accurate analysis results depending on the target technology.

As depicted in Fig. 3, the performance estimator gathers all

the outputs from prior steps, and finally generates the overall

evaluation information of the ternary processor implemented

in certain design technology. By utilizing multiple evaluation

steps and even considering the technology-oriented informa-

tion, before starting the actual implementation phase with pre-

designed peripherals, we can remarkably reduce the design

efforts of the custom ternary processor with the proposed

hardware-level evaluation framework.

IV. ART-9 CORE DESIGN FOR PROPOSED FRAMEWORKS

A. ART-9 Instruction Set Architecture

Based on the balanced ternary number systems, the pro-

posed ART-9 processor defines 9-trit-length ISA following the

properties of contemporary RISC-type binary processors [15].

Table I summarizes 24 ART-9 ternary instructions processing

9-trit data values, which are the essential inputs at the proposed

software-level compiling framework. By matching the word

length of both instruction and data, we can allow the regular

structure for realizing TIM and TDM. To fetch an instruction

by accessing the TIM, we use a special-purposed 9-trit register,

i.e., the program counter (PC) register containing the instruc-

tion address. In order to store the intermediate data, like the

TABLE I
SUMMARY OF ART-9 TERNARY INSTRUCTIONS

Type 9-trit instructions Operation

R

MV Ta,Tb TRF[Ta] = TRF[Tb]

PTI Ta,Tb TRF[Ta] = PTI(TRF[Tb])

NTI Ta,Tb TRF[Ta] = NTI(TRF[Tb])

STI Ta,Tb TRF[Ta] = STI(TRF[Tb])

AND Ta,Tb TRF[Ta] = TRF[Ta] & TRF[Tb]

OR Ta,Tb TRF[Ta] = TRF[Ta] | TRF[Tb]

XOR Ta,Tb TRF[Ta] = TRF[Ta] ⊕ TRF[Tb]

ADD Ta,Tb TRF[Ta] = TRF[Ta] + TRF[Tb]

SUB Ta,Tb TRF[Ta] = TRF[Ta] − TRF[Tb]

SR Ta,Tb TRF[Ta] = TRF[Ta] ≫ TRF[Tb][1:0]

SL Ta,Tb TRF[Ta] = TRF[Ta] ≪ TRF[Tb][1:0]

COMP Ta,Tb TRF[Ta] = compare(TRF[Ta],TRF[Tb])

I

ANDI Ta,imm TRF[Ta] = TRF[Ta] & imm[2:0]

ADDI Ta,imm TRF[Ta] = TRF[Ta] + imm[2:0]

SRI Ta,imm TRF[Ta] = TRF[Ta] ≫ imm[1:0]

SLI Ta,imm TRF[Ta] = TRF[Ta] ≪ imm[1:0]

LUI Ta,imm TRF[Ta] = {imm[3:0],00000}

LI Ta,imm TRF[Ta] = {TRF[Ta][8:5],imm[4:0]}

B

BEQ Ta,B,imm PC = PC + imm[3:0] if TRF[Tb][0] == B

BNE Ta,B,imm PC = PC + imm[3:0] if TRF[Tb][0] != B

JAL Ta,imm TRF[Ta] = PC+1, PC = PC + imm[4:0]

JALR Ta,Tb,imm TRF[Ta] = PC+1, PC = TRF[Tb]+imm[2:0]

M
LOAD Ta,Tb,imm TRF[Ta] = TDM[TRF[Tb]+imm[2:0]

STORE Ta,Tb,imm TDM[TRF[Tb]+imm[2:0]] = TRF[Ta]

modern processor architectures [15], [18], the ART-9 core also

includes a ternary registerfile (TRF) including nine general-

purposed registers, each of which is accessed by using a 2-

trit value. Utilizing the load-store architecture used for typical

RISC processors [19], there are four instruction categories in

ART-9 ISA; R-type, I-type, B-type, and M-type.

For the R-type instructions, considering the recent studies

[20], we select essential 12 logical/arithmetic functions as

depicted in Table I. In fact, most R-type instructions are typical

two-address instructions, which fetch two 9-trit operands in

TRF, whose 2-trit indices are denoted as Ta and Tb, and

then overwrite a 9-trit result to the register TRF[Ta]. Note

that some R-type instructions specialized for inversion and

data-movement operations use only one source operand from

Tb, where the destination operand is still Ta to have the

regular encoding patterns, relaxing the complexity to decode

the fetched instruction. In addition, we also realize an R-type

comparison instruction (COMP), where the least significant

trit (LST) of the destination register TRF[Ta] denotes the

comparison result of two input operands with the dedicated

function compare() in Table I. More specifically, the LST of

TRF[Ta] is set to be zero when the two inputs are the same,

otherwise it becomes +1 (or −1) if TRF[Ta] > TRF[Tb]

(or TRF[Ta] < TRF[Tb]). This COMP instruction plays an

important role to improve the code density by allowing the

conditional execution of the following branch instructions.

Fig. 4. 5-stage pipelined architecture of the proposed ART-9 processor.

In order to reduce the generation complexity of constant

values, the technique to encode immediate values into the

instruction is generally used for reducing the size of user-

level programs [15], [18]. The proposed ART-9 processor also

supports immediate-based processing with I-type instructions.

As described in Table I, unlike the R-type instructions offering

various functions, we only allow immediate values at addition,

AND logic, and shift functions, which are known to be the

most common operations in practice [20]. Due to the limited

trit-width for denoting an embedded immediate, there could be

extra overheads to realizing full-length (9-trit) constant values.

Instead of utilizing a series of the shift-and-addition process to

store a 5-trit immediate value initialized by a load immediate

(LI) instruction, we adopt a special I-type instruction named

load upper immediate (LUI), which is introduced at the RISC-

type processors for making a large-sized constant value [15],

[18]. As a result, the ART-9 ISA offers an acceptable flexibility

to use wide ranges of immediate values, suitable for the

resource-limited processing environments.

Besides the logical/arithmetic instructions, it is also required

to define the branch-related instructions changing the PC

value, which is denoted as B-type instructions in Table I. In the

proposed ART-9 cores, we introduce four B-type instructions

including two conditional branch operations associated with

the PC-relative addressing, which are referred to as BEQ

and BNE as shown in Table I. To utilize these conditional

operations, as described earlier, we preset the LST of TRF[Tb]

in BEQ or BNE by using a COMP instruction, so that a 1-trit B

value in BEQ or BNE is compared to check the branch-taken

condition. In addition, we define two unconditional jump-and-

link instructions (JAL and JALR), which are mainly used

for the subroutine calls. Adopting the PC-relative addressing,

similar to the conditional branches, the JAL instruction uses

the PC value as a base address added by a 5-trit immediate.

On the other hand, by using the JALR instruction, we can use

the stored 9-trit value in TRF to set the base address with a

small-sized 3-trit immediate, allowing more long-range jumps.

As depicted in Table I, note that this base-register addressing is

also used to access TDM with M-type load/store instructions,

reducing the hardware complexity with the shared datapath.

B. 5-stage Pipelined ART-9 Architecture

To support the proposed ART-9 ISA efficiently, we develop

in this work a simple but efficient pipelined architecture, which

is used for input descriptions of the proposed hardware-level

evaluation framework. As shown in Fig. 4, similar to the

lightweight RISC-type designs [19], there are five stages for

fetching the instruction from TIM (IF), decoding the fetched

instruction (ID), executing the arithmetic/logical operations

(EX), accessing the TDM (MEM), and updating the result

to TRF (WB). The ternary pipelined registers are newly

developed to keep the results from each stage, making a bal-

anced pipelined processing. We also introduce the synchronous

single-port TIM and TDM designs for reducing the memory-

accessing latency, where the TRF in this work supports two

asynchronous read ports and one synchronous write port. The

ternary arithmetic logic unit (TALU) in EX stage is specialized

to perform various operations depending on the control signals

from main decoder in ID stage. In the pipelined ART-9 core,

the hazard detection unit (HDU) in ID stage compares the

adjacent instructions to determine the generation of hardware-

level stall controls at the run time. For reducing the number

Fig. 5. The number of memory cells for storing benchmark programs.

of unwanted stalls as many as possible, we actively apply

the forwarding multiplexers to get the correct 9-trit inputs

at TALU, solving ALU-use data hazards. To minimize the

number of stalls from B-type instructions causing control

hazards, the pipelined ART-9 processor utilizes the dedicated

branch-target calculator as well as the condition checker in

ID stage, directly forwarding the calculated address to update

the PC register. For checking the branch-taken conditions, in

addition, forwarding one-trit values successfully mitigates the

long and complex datapath starting from TRF, still allowing

one-cycle stall after B-type instructions without increasing

the overall critical delay. As a result, we only observe the

hardware-inserted stall cycles when there exist load-use data

hazards and taken branches. After detecting the stall insertion

case, the main decoder at ID stage generates a stall control

signal, which will be used for selecting the no-operation

(NOP) at the next ID stage as shown in Fig. 4. Without

introducing a dedicated NOP encoding, note that the proposed

ART-9 ISA uses an ADDI instruction to denote the NOP

operation with a zero-valued immediate.

V. EVALUATION AND IMPLEMENTATION RESULTS

A. Benchmark Evaluations

By using the proposed compiling framework, targeting the

ART-9 ISA shown in Table I, we designed several ternary

benchmark programs including the general computing algo-

rithms; bubble sort, general matrix multiplication (GEMM),

and sobel filter [21], [22]. In addition, for the first time,

a dhrystone benchmark is also described with the ternary

instructions by converting the existing dhrystone code of

the RV-32I ISA, which is popularly used for evaluating the

computing performance of general-purposed CPU cores [23].

Fig. 5 depicts the effectiveness of the proposed ART-9 ISA

by evaluating the required memory size for storing each

benchmark program, showing that the proposed software-

level framework offers acceptable assembly codes compared

to the binary versions. Note that we counted the number of

memory cells for this comparison, as the ternary instructions

necessitate the dedicated ternary memory where a storing

cell can keep up to three different charge distributions [11].

TABLE II
SIMULATION RESULTS OF DHRYSTONE BENCHMARK

This work VexRiscv [24] PicoRV32 [25]

ISA Architecture ART-9 ISA RV-32I RV-32IM

of instructions 24 40 48

Pipelined stages 5 5 1

Multiplier X O O

DMIPS/MHz 0.42 0.65 0.31

of memory-cells 11.6K trits 25.4K bits 23.7K bits

TABLE III
PROCESSING CYCLES FOR DIFFERENT TEST PROGRAMS

Bubble sort GEMM Sobel filter Dhrystone

This work 2,432 10,748 7,822 134,200

PicoRV32 [25] 9,227 11,290 18,250 186,607

Although we developed a simple 9-trit ISA including only

24 instructions, it is clear that the proposed ART-9 processor

requires a much smaller memory size when compared to the

binary counterparts; RV-32I using 32-bit instructions [15] and

ARMv6M with 16-bit instructions [18]. If we consider imple-

mentation results of dhrystone codes, due to the short-length

ternary instructions associated with the efficient software-level

framework, for example, our ART-9 core reduces the number

of required memory cells by 54% and 17% when compared to

the RV-32I [15] and ARMv6M [18] processors, respectively.

In other words, there exist reasonable benefits of exploiting

the ternary number systems, which can reduce the memory

overheads while providing a similar amount of flexibility to

binary ISAs with long-length instructions.

B. Hardware-level Evaluation Results

Table II precisely shows evaluation results of the cycle-

accurate simulator of different RISC-based processors running

the dhrystone benchmark. Note that our ART-9 core achieves

0.42 DMIPS/MHz by utilizing only 24 instructions, whereas

the fully-optimized VexRiscv [24] and PicoRV32 [25] proces-

sor provides 0.65 and 0.31 DMIPS/MHz with more instruc-

tions and the dedicated multiplier, respectively. Utilizing the

optimized codes from the proposed compiling frameworks, the

prototype ART-9 core can be designed with the comparable

processing speed and much smaller size of memory cells. In

addition, Table III also shows that the proposed compiling

framework efficiently optimizes the number of instructions for

the other benchmarks. As it is considered that the memory in

general dominates the overall system complexity, the prototype

ART-9 core offers the low-complexity computing platform

even compared to the recent lightweight PicoRV32 processor

with non-pipelined architecture. In other words, the optimized

ART-9 ISA and processor, which utilize the proposed frame-

works, successfully offer a reasonable solution achieving both

the fast computing and the low hardware-cost, presenting the

fully-functional processor design in the ternary domain.

TABLE IV
IMPLEMENTATION RESULTS USING CNTFET TERNARY GATES

Voltage Total gates Power DMIPS/W

0.9V 652 42.7 µW 3.06 × 106

TABLE V
IMPLEMENTATION RESULTS USING FPGA-BASED TERNARY LOGICS

Voltage Frequency ALMs Registers RAM Power

0.9V 150MHz 803 339 9,216 bits 1.09W

Using the proposed gate-level analyzer, we finally present

implementation results of ART-9 prototypes. For the simplified

32nm CNTFET ternary models without considering the para-

sitic capacitance [8], we first estimated the gate-level costs

of the 5-stage pipelined core as shown in Table IV. The

datapath of ART-9 core only required 652 standard ternary

gates, consuming 42.7 µW when the operating voltage is set to

0.9 V. According to the dhrystone result shown in Table II, the

CNTFET-based ART-9 core achieves 3.06 × 106 DMIPS/W,

showing that the emerging ternary device leads to the low-

power microprocessor, even superior to the near-threshold

ARM Cortex-M3 design requiring 3.9× 103 DMIPS/W [26].

In order to validate the proposed ternary processor, we

also implemented the ART-9 core in the FPGA-based ver-

ification platform. For the practical implementation, all the

ternary-based building blocks are emulated with the binary

modules, adopting the binary-encoded ternary number system

[27]. Table V summarizes the implementation results of the

binary-encoded ART-9 core, which utilizes only few hardware

resources of Intel Stratix-V FPGA at the operating frequency

of 150 MHz. Targeting the dhrystone benchmark, the FPGA-

based ART-9 core achieves 57.8 DMIPS/W by consuming

1.09W including two binary-encoded ternary memories. As

a result, the proposed frameworks successfully opens the

preliminary results for realizing the ternary-based processor,

which can be easily mapped to the future emerging ternary

devices for allowing the extreme-low-power computing.

VI. CONCLUSION

In this paper, we have proposed several designs and eval-

uation frameworks for developing ternary microprocessors,

which are verified by the lightweight RISC-based ternary

processor with 9-trit datapath. Based on the balanced ternary

number system, the proposed software-level framework effi-

ciently supports a systematic way to construct assembly codes

for the given ternary ISA. Accepting the architecture-aware

descriptions as well as the target technology information, the

hardware-level framework is then followed to estimate several

implementation-aware metrics, reducing the overall design

overheads in the ternary number system. Based on the pro-

posed frameworks, the fully-functional ART-9 microprocessor

is developed and verified at different emerging technologies,

offering attractive design methods for ternary processors.

REFERENCES

[1] G. Yeap, “Smart mobile SoCs driving the semiconductor industry:
Technology trend, challenges and opportunities,” in IEDM Tech. Dig.,
Dec. 2013, pp. 1–3.

[2] N. Magen, A. Kolodny, U. Weiser, and N. Shamir, “Interconnect-power
dissipation in a microprocessor,” in Proc. Int. Workshop Syst, Level

Interconnect Predict., 2004, pp. 7–13.
[3] V. Gaudet, “A survey and tutorial on contemporary aspects of multiple-

valued logic and its application to microelectronic circuits,” IEEE J.

Emerg. Sel. Topics Circuits Syst., vol. 6, no. 1, pp. 5–12, 2016.
[4] S. Lin, Y.-B. Kim, and F. Lombardi, “A novel CNTFET-based ternary

logic gate design,” in Proc. IEEE Int. Midwest Symp. Circuits Syst., Aug.
2009, pp. 435–438.

[5] H. Yang et al., “Graphene barristor, a triode device with a gate-controlled
schottky barrier,” Science, vol. 336, no. 6085, pp. 1140–1143, 2012.

[6] S. Shin, E. Jang, J. W. Jeong, B.-G. Park, and K. R. Kim, “Compact
design of low power standard ternary inverter based on OFF-state cur-
rent mechanism using nano-CMOS technology,” IEEE Trans. Electron

Devices, vol. 62, no. 8, pp. 2396–2403, 2015.
[7] S. Kim, T. Lim, and S. Kang, “An optimal gate design for the synthesis

of ternary logic circuits,” in Proc. 23rd Asia South Pacific Design

Automat. Conf. (ASP-DAC), Jan. 2018, pp. 476–481.
[8] S. Kim, S.-Y. Lee, S. Park, K. R. Kim, and S. Kang, “A logic synthesis

methodology for low-power ternary logic circuits,” IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 67, no. 9, pp. 3138–3151, 2020.
[9] S. Heo et al., “Ternary full adder using multi-threshold voltage graphene

barristors,” IEEE Electron Device Lett., vol. 39, no. 12, pp. 1948–1951,
Dec. 2018.

[10] Y. Kang et al., “A novel ternary multiplier based on ternary cmos
compact model,” in Proc. IEEE 47th Int. Symp. Multiple-Valued Log.

(ISMVL), May. 2017, pp. 25–30.
[11] Y. Choi, S. Kim, K. Lee, and S. Kang, “Design and Analysis of a Low-

Power Ternary SRAM,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
Apr. 2021, pp. 1–4.

[12] “Ternary computer system,” Accessed on: Sep. 17, 2021. [Online].
Available: https://www.ternary-computing.com

[13] “The trillium architecture,” Accessed on: Sep. 17, 2021. [Online]. Avail-
able: https://homepage.divms.uiowa.edu/~jones/ternary/trillium.shtml

[14] S. Narkhede, G. Kharate, and B. Chaudhari, “Design and implementation
of an efficient instruction set for ternary processor,” International

Journal of Computer Applications, vol. 83, no. 16, 2013.
[15] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The RISC-V

Instruction Set Manual, Volume I: User-Level ISA, Version 2.1,” 2016.
[Online]. Available: https://riscv.org/specifications/

[16] B. Parhami and M. McKeown, “Arithmetic with binary-encoded bal-
anced ternary numbers,” in Proc. Asilomar Conf. Signals, Systems and

Computers, 2013, pp. 1130–1133.
[17] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini, “Design

and Evaluation of Small Float SIMD extensions to the RISC-V ISA,”
in Proc. of the Design, Automat. Test Eur. (DATE), 2019, pp. 654–657.

[18] J. Yiu, The Definitive Guide to ARM Cortex-M0 and Cortex-M0+

Processors. 2nd ed. Boca Raton, FL, USA: Academic, 2015.
[19] F. Schuiki et al., “Stream semantic registers: A lightweight RISC-V ISA

extension achieving full compute utilization in single-issue cores,” IEEE

Trans. Comput., vol. 70, no. 2, pp. 212–227, 2020.
[20] P. Li, “Reduce Static Code Size and Improve RISC-V Compression,”

Master’s thesis. EECS Department, Univ. of California, Berkeley, 2019.
[21] Y. Wang et al., “A compression-based area-efficient recovery architecture

for nonvolatile processors,” in Proc. of the Design, Automat. Test Eur.

(DATE), 2012, pp. 1519–1524.
[22] A. Zulehner and R. Wille, “Matrix-vector vs. Matrix-matrix multipli-

cation: Potential in DD-based simulation of quantum computations,” in
Proc. of the Design, Automat. Test Eur. (DATE), 2019, pp. 90–95.

[23] R. York, “Benchmarking in context: Dhrystone,” ARM, March, 2002.
[24] “Vexriscv,” Accessed on: Sep. 17, 2021. [Online]. Available:

https://github.com/SpinalHDL/VexRiscv
[25] “Picorv32,” Accessed on: Sep. 17, 2021. [Online]. Available:

https://github.com/cliffordwolf/picorv32
[26] R. G. Dreslinski et al., “Centip3de: A 64-core, 3d stacked near-threshold

system,” IEEE Micro, vol. 33, no. 2, pp. 8–16, 2013.
[27] G. Frieder and C. Luk, “Algorithms for binary coded balanced and

ordinary ternary operations,” IEEE Trans. Comput., vol. 100, no. 2, pp.
212–215, 1975.

