A Resource-efficient Spiking Neural Network
Accelerator Supporting Emerging Neural Encoding

Daniel Gerlinghofff, Zhehui Wang!, Xiaozhe Guf, Rick Siow Mong Goh', Tao Luo!
tInstitute of High Performance Computing, Agency for Science, Technology and Research, Singapore
YFuture Network of Intelligence Institute, Chinese University of Hong Kong, Shenzhen, China

Abstract—Spiking neural networks (SNNs) recently gained
momentum due to their low-power multiplication-free computing
and the closer resemblance of biological processes in the nervous
system of humans. However, SNNs require very long spike trains
(up to 1000) to reach an accuracy similar to their artificial neural
network (ANN) counterparts for large models, which offsets
efficiency and inhibits its application to low-power systems for

N real-world use cases. To alleviate this problem, emerging neural
N encoding schemes are proposed to shorten the spike train while
) maintaining the high accuracy. However, current accelerators
AN for SNN cannot well support the emerging encoding schemes.
C In this work, we present a novel hardware architecture that
—5 can efficiently support SNN with emerging neural encoding. Our
™) implementation features energy and area efficient processing units
© with increased parallelism and reduced memory accesses. We
verified the accelerator on FPGA and achieve 25% and 90%
improvement over previous work in power consumption and
latency, respectively. At the same time, high area efficiency allows
us to scale for large neural network models. To the best of our
< knowledge, this is the first work to deploy the large neural network
y model VGG on physical FPGA-based neuromorphic hardware.
() Index Terms—Spiking Neural Network, FPGA Accelerator,
——INeural Encoding

I. INTRODUCTION

Spiking neural networks (SNNs) are a promising alternative
to conventional artificial neural networks (ANNSs) in terms of
energy efficiency. While their architectures are similar, the
SNN neuron model and its information transmission resemble
a biological brain more closely. In SNN, input data are encoded
into spike trains, which are sequences of events represented in
(\J a binary format. The length of the sequence is equal to the
O\l total number of time steps, during which spikes may occur.

5 With the spike train being of binary nature, the neuron model
*== can be implemented in hardware using adders and multiplexers
only. The lack of expensive multiplication operations enables
the design of low-power devices for machine learning on the
edge [1]-[4]. However, for quite a time, SNNs suffered from
lower accuracy compared to their ANN counterparts. A lot of
research efforts are devoted to enhance the accuracy of SNNs.
Recent studies show that the accuracy of large SNNs could be
pushed to a level comparable with their ANN counterparts with
ANN-to-SNN conversion and very long spike trains [5[]. High
spike train lengths, however, deteriorate the latency and energy
efficiency achieved by the multiplication-free computation.

6.02495v1

This work was supported by the Singapore Government’s Research, Inno-
vation and Enterprise 2020 Plan (Advanced Manufacturing and Engineering
domain) under Grant A1687b0033.

Correspondence to Tao Luo (leto.luo@gmail.com)

Generating spike trains from floating-point numbers is often
done using rate-encoding, which relates the spike frequency to
the magnitude of the real value. In contrast, radix encoding is
an emerging neural encoding scheme that optimizes spike train
length while maintaining high accuracy [6]. As it considers
the order of the input spikes, traditional SNN accelerators
cannot support radix-encoded models. Therefore, we propose
a novel hardware architecture, which supports a wide variety
of network structures and, for the first time, shows the scala-
bility necessary to deploy large networks on real FPGA-based
neuromorphic hardware. The contribution of this work can be
summarized as follows:

e A novel hardware architecture with an efficient data flow
that minimizes memory accesses and resource require-
ments for operations on radix-encoded spike trains.

e Scalable design that can support large neural network
model (VGG) on FPGA-based neuromorphic hardware.

II. RELATED WORK

Hardware implementations have been used to simulate the
behavior of neuromorphic systems, prioritizing biological plau-
sibility over computing efficiency [7], [8]]. On the contrary, there
are low-power FPGA implementations, whose event-driven
architectures updates the neuron state only at the occurrence
of an input spike [9]], [[10]. While this leads to a high energy
efficiency, they are applied to linear layers only.

Recent works show the deployment of convolutional neural
networks on SNN hardware. Fang et al. [[11] present an SNN
using the spike response model where neurons are interpreted
as infinite impulse response filters, implemented on DSP slices
in FPGAs. Ju et al. [[12]] propose an architecture which reduces
data movement of convolution and max-pooling operations
by reusing the values of the input feature maps for multiple
output values. S2N2 [[13] uses a single-instruction-multiple-data
architecture for classification of time series data, as well as
image inputs. The use of binarized weights, however, cannot
generalize well.

III. HARDWARE ARCHITECTURE

Our accelerator is able to process a wide variety of user-
defined SNN structures. An overview of the architecture is
given in Fig. [I] consisting of three main components: pro-
cessing units, weight memory, and ping-pong buffers for ac-
tivations. For each layer, activations and weights are loaded
from the respective memory blocks into the processing units,
where the neural network operations are applied. The results are

FPGA Device

Controller
Kernel BRAM 2D Activation
; : BRAM
Conv. Layer 1 | ==y | Convolution Units
nd e — ‘ p—) & Ping
~|_| Partial Sum BRAM
Conv. Layer Lc‘ > Pong
Pooling Unit
Weight BRAM 1D Activation
BRAM
Lin. Layer 1 ‘
= — » Ping
Lin. Layer L, ‘ » Pong
DDR4 SDRAM

Fig. 1. Overview of the accelerator consisting of multiple convolution units,
a pooling unit and linear unit (yellow). Model parameters of Lo convolution
layers and L, linear layers are stored in internal block RAM (green) or loaded
from external DRAM if internal memory is not sufficient. Activations are stored
alternatingly in buffers ping or pong after each layer (blue). There are separate
buffers for 2-dimensional and 1-dimensional activations.

written back to the unused activation memory. This execution
is managed by a controller.

A. Convolution Unit

The efficiency of spiking neural networks is rooted in
the binarized format of spike trains, obviating the need for
multipliers. We propose a novel adder-based architecture for
the convolution of radix-encoded spike trains. Adders have a
smaller area footprint and power consumption, compared to
multipliers and DSP slices. Our data flow allows the reuse of
activations and kernels. That minimizes the number of memory
accesses and further reduces the power consumption.

Our convolution units implement a row-based execution, i.e.,
all values in a feature map row are processed in parallel. This
is reflected in the loop hierarchy by unrolling the activation
column loop (see Alg. [I] line 7). The kernel row loop is
pipelined, with every row being a separate pipeline stage
(line 5). To maximize the utilization of the available resources
in the hardware, multiple output channels can share a single
convolution unit, if their size permits. A convolution unit is
instantiated for one specific kernel size and reused for all layers
with the same kernel size. Multiple convolution units with the
same kernel size can be created to increase the parallelism with
respect to the output channel dimension (line 1).

The unrolling and pipelining of loops is realized in hardware
by a two-dimensional array of adders (see Fig. [2). The number
of rows Y corresponds to the kernel rows K,, which are
computed in parallel. Choosing the number of columns X to
be greater or equal than the maximum output channel size can
avoid tiling of the feature maps. This does not only help to
reduce memory accesses for kernel values, but also reduces the
complexity of the control mechanism. The input logic fetches
one row of a binary input feature map and writes it into a
shift register, which spans the whole length of the row (blue).

m X

13 ey ey e

r Py g
O*Fﬁa] o oi»g:t v
T e

Output Logic

Partial Sum Memory

Fig. 2. Exemplary components of a convolution unit with kernel rows K, =
Y = 3 and output size X = 3. Activations are stored in a shift register in the
input logic (blue). Connections to the adder array are established according to
stride str = 4. Every adder row holds the values of the respective kernel row
(green). Partial sums are streamed through the adder array from top to bottom
(yellow). Input channels and time steps are accumulated by the output logic,
where < is the left-shift operation.

Algorithm 1 Convolution Loop Hierarchy

1: for all output channels do

> unroll partially

2: for all time steps do

3: for all input channels do

4: for all activation rows do

5: for all kernel rows do > pipeline
6: for all kernel columns do

7: for all activation columns do > unroll
8: accumulate

9: shift input by one column

10: load next kernel row value

11: accumulate on previous input channels

12: shift sum to the left

13: apply ReLU and requantize

A connection to the adder array is established for every strth
value of the input shift register, where str is the kernel stride.
For the accumulation along a kernel row, the input array is
shifted K. times, where K. is the number of kernel columns.
This exposes all activation values of the respective kernel
windows to the corresponding adders in the adder array.
Coinciding with the shift of the input row, the adder logic
loads the new kernel values in the respective kernel row (green).
Each adder row y € [0,Y — 1] iterates through the respective
kernel row consisting of values K (y,0) to K(y, K. —1). This
ensures the correct alignment between activation and kernel
values during every iteration. The accumulation of kernel values
takes place in the adders, if an input spike has occurred. Without
the input spike, a multiplexer (gray trapezoid) switches the

respective adder input to zero.

After the completion of one kernel row, the partial sums
(yellow) are propagated to the next row of adders. The process
repeats K, times. After the partial sum completes the last row,
all K, = K. kernel values have been applied to each of the X
output values.

The result is handed over to the output logic for accumulation
with the convolution results of previous input channels and time
steps. With radix encoding, a spike at time step ¢ is scaled by
a factor of 2717, while spikes the following at the following
time steps are weighted 27—1=(*+1) with T being the spike
train length. To account for this difference, the results computed
at t are shifted left by one bit before accumulation with the
results at £ + 1 (see Alg. |1} line 12). Partial sums are stored at
full integer precision.

B. Pooling and Linear Units

Pooling units work with the same kind of two-dimensional
input data as convolution units and therefore use row-based
execution with a similar structure as shown in Fig. [2| Pooling
units have a small area footprint, as no kernel values need to
be supplied to the adders. Since pooling layers do not involve
accumulation over input channels, no dedicated output logic is
necessary.

Fully-connected layers use matrix multiplications with a
large number of accumulate operations, each requiring an
individual weight. To maximize the performance, new weights
are fetched at every clock cycle and passed to a row of adders
for accumulation over input neurons and time steps. The length
of the adder row equals the number of parallel output channels,
which is proportional to the available memory bandwidth.

C. Memory Management

Activations are purely stored in on-chip memory. Two mem-
ory blocks exist for two-dimensional and one-dimensional acti-
vations, respectively. Convolution and pooling layers load/store
their activations using a pair of two-dimensional block RAMs
in an alternating manner, also referred to as ping-pong buffer
(see Fig. [1} blue blocks). The width and height of the buffers
are determined in a way that minimizes their size while
allowing the activations of all relevant layers to fit. Before the
computation of the first fully-connected layer, the feature maps
are flattened and transferred to the one-dimensional buffers. The
the alternation process repeats for all fully-connected layers.

Based on the available on-chip memory resources, there
are two available memory options for convolution kernels and
weights. If all parameters can be stored in on-chip resources,
only on-chip memories are used for every convolution and
fully-connected layer. Else, parameters are fetched from off-
chip DRAM before the computation of each layer.

IV. EXPERIMENTS

A. Experiment Setup

To verify the accelerator’s functionality and evaluate its
performance, we deployed it on a Xilinx Virtex UltraScale+
XCVUI13P FPGA. As there is no need for multipliers, the
arithmetic was implemented in the carry logic and lookup tables

TABLE I
ACCURACY & LATENCY
VERSUS TIME STEPS

TABLE II
LATENCY, POWER & RESOURCES
VERSUS CONVOLUTION UNITS

Time | Acc. Lat. Conv. | Lat. Pow. Resources

Steps | [%] [us] Units | [pus] [W] LUTs FF
3 98.57 648 1 1063 3.07 11k 10k
4 99.09 856 2 648 3.09 15k 14k
5 99.21 1063 4 450 3.17 24k 23k
6 99.26 1271 8 370 3.28 42k 39k

of the FPGA fabric, opposed to DSP slices. SystemVerilog was
used to describe the hardware, which was directly synthesized
and implemented by the Vivado toolchain using default settings.

We evaluate our design with the MNIST dataset on LeNet-5,
which has the following architecture: 32x32x1 — 6C5 — P2
— 16C5 — P2 — 120C5 — 120 — 84 — 10. SNN models are
obtained by the ANN-to-SNN conversion method, which trains
an equivalent ANN and transfers the network parameters to an
SNN model [14]. The resolution of the network parameters is
set to 3 bits. We set (X,Y") = (30, 5) for convolution units and
(X,Y) = (14,2) for pooling units, according to the network
configuration. The two experiments in Sec. and run
at a clock frequency of 100 MHz.

In Section we compare our system performance with
previous works by deploying the convolutional SNN model of
Fang et al. [11]] on our accelerator. Additionally, LeNet and
VGG-11 are used to evaluate the scalability for different model
sizes. For the small LeNet, four time steps are required to
reach acceptable accuracy. We chose four convolution units as
they yielded one of the best latency-power-resource ratio in the
experiment in Section The accelerator is run at a clock
speed of 200 MHz. VGG-11 is a convolutional neural network
(CNN), which has 28.5 million parameters and consists of 11
convolution, pooling, or fully-connected layers. It is used for
the classification of 100 different objects in the CIFAR-100
dataset. Due to the increased complexity, six time steps are
needed to maintain the accuracy while eight convolution units
are used to reduce the processing time. The accelerator is
clocked at 115 MHz.

B. Length of Spike Train

A common trade-off for SNN hardware is between spike train
length and accuracy. As the encoding error decreases with an
increasing number of time steps, we expect the classification
accuracy to improve. Since that affects the execution time, we
additionally observe the latency with two parallel convolution
units.

In Table [I} the benefits of radix encoding become clear, as
with six time steps, the state-of-the-art accuracy can be reached.
Fang et al. [|[11] required approximately ten time steps to reach
the same accuracy. Hence, a potential efficiency improvement
of around 40% can be achieved by the neural encoding scheme
alone. Using more than six time steps lead to no significant
improvement of the accuracy. The latency scales linearly with
the length of the spike train since almost all computations are
replicated for each time step.

TABLE III
EFFICIENCY AND PERFORMANCE OF SNN HARDWARE ACCELERATORS

Platform Dataset Network Accuracy | Frequency Latency Throughput Power LUTs/FF
[%] [MHz] [ps] [fps] W]

Ju et al. [12] MNIST CNNT 98.9 150 6110 164 4.6 107k / 67k

Fang et al. [11] MNIST CNNZ 99.2 125 7530 2124 4.5 156k / 233k

This work MNIST CNNZ 99.3 200 409 2445 3.6 41K /36K

This work MNIST LeNet-5 99.1 200 294 3380 34 27k / 24k

This work CIFAR-100 VGG-11 60.1 115 210k 4.7 49 88k / 84k

1 28x28 — 64C5 — 2P — 64C5 — 2P — 128 — 10, 2 28x28 — 32C3 — P2 — 32C3 — P2 — 256 — 10

C. Number of Convolution Units

The execution time can be reduced by duplicating convolu-
tion units at the expense of silicon area and power consumption.
The classification result is unaffected by the number of convo-
lution units as the operations are identical. We use a spike train
length of T' = 3.

Table [II| shows an improvement in latency with an increasing
number of convolution units. However, doubling the convolu-
tion units does not lead to reduction of latency by 50%. This
is due to a growing portion of the execution time being used
to access activations and kernels. The second reason for the
convergence of latency is that the pooling and linear units are
not duplicated, since they are already largely constrained by
memory bandwidth. On the contrary, hardware resources scale
almost linear with the number of convolution units.

D. Hardware Performance and Scalability

The results and a comparison with previous state-of-the-art
implementations are given in Table To allow for a fair
comparison, we deployed the convolutional SNN of Fang et
al. [11] on our accelerator. In their paper, they proposed a
framework for the generation of SNN hardware which is based
on a high-level synthesis flow. This comes at the expense
of hardware resources, using up almost 4x of lookup tables
(LUTs) and 6x of flip-flops (FF) compared to our work.
Despite reaching a lower accuracy, they exceed our latency
18-fold and the power consumption by 25%. Ju et al. [12]
implemented their SNN engine in the programmable logic of
a Xilinx Zynq FPGA. We improved the throughput by 15x,
while only consuming 75% of power and less than half of their
hardware resources.

On LeNet, we achieve a high classification accuracy of
99.09% at only 294 s of latency and a throughput of over 3300
frames per second. Thanks to the emerging neural encoding,
our design has high scalability in terms of power, latency and
resources, which also makes us the first work that deploys the
large SNN model VGG-11 on physical neuromorphic hardware.
Due to its network size, accesses to the external DRAM
are necessary, which contributes to an increase in power and
hardware utilization. Furthermore, a total of 4.5 MB of internal
BRAM are required to store the intermediate feature maps.
Nevertheless, a throughput of more than four images per second
can be achieved.

V. CONCLUSION

In our work, we proposed a novel hardware architecture
for convolutional spiking neural networks, which use radix
encoding to shorten spike trains while maintaining state-of-the-
art accuracy. We adopted a row-based architecture that heavily
reduces the number of memory accesses to load kernels and
activations. The parallel execution within and between process-
ing units enables low resource usage and high performance.
The experiments and comparison demonstrated its versatility
and advantages over previous convolutional SNN accelerators
in terms of all metrics. Our design achieved high scalability,
which allows us to deploy the large VGG model on the physical
FPGA-based neuromorphic hardware.

REFERENCES

[1] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha,
“Backpropagation for energy-efficient neuromorphic computing,” Adv.
Neural Inf. Process. Syst., vol. 28, pp. 1117-1125, 2015.

[2] E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S.-C. Liu, and S. Furber,
“Scalable energy-efficient, low-latency implementations of trained spiking
deep belief networks on spinnaker,” in IJJCNN. IEEE, 2015, pp. 1-8.

[3] T. Luo, X. Wang, C. Qu, M. K. F. Lee, W. T. Tang, W.-F. Wong, and
R. S. M. Goh, “An fpga-based hardware emulator for neuromorphic chip
with rram,” IEEE TCAD, vol. 39, no. 2, pp. 438-450, 2018.

[4] T. Luo, L. Yang, H. Zhang, C. Qu, X. Wang, Y. Cui, W.-F. Wong,

and R. S. M. Goh, “Nc-net: Efficient neuromorphic computing using

aggregated sub-nets on a crossbar-based architecture with non-volatile

memory,” I[EEE TCAD, 2021.

A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in

spiking neural networks: Vgg and residual architectures,” Front. neurosci.,

vol. 13, p. 95, 2019.

Z. Wang, X. Gu, R. Goh, J. T. Zhou, and T. Luo, “Efficient spiking neural

networks with radix encoding,” arXiv preprint arXiv:2105.06943, 2021.

[71 X. Jin, S. B. Furber, and J. V. Woods, “Efficient modelling of spiking
neural networks on a scalable chip multiprocessor,” in J/CNN. IEEE,
2008, pp. 2812-2819.

[8] S. W. Moore, P. J. Fox, S. J. Marsh, A. T. Markettos, and A. Mujumdar,
“Bluehive-a field-programable custom computing machine for extreme-
scale real-time neural network simulation,” in FCCM. IEEE, 2012, pp.
133-140.

[9] D. Neil and S.-C. Liu, “Minitaur, an event-driven fpga-based spiking
network accelerator,” IEEE TVLSI, vol. 22, no. 12, pp. 2621-2628, 2014.

[10] J. Han, Z. Li, W. Zheng, and Y. Zhang, “Hardware implementation of

spiking neural networks on fpga,” Tsinghua Sci Technol, vol. 25, no. 4,

pp. 479-486, 2020.

H. Fang, Z. Mei, A. Shrestha, Z. Zhao, Y. Li, and Q. Qiu, “Encoding,

model, and architecture: systematic optimization for spiking neural net-

work in fpgas,” in ICCAD. IEEE, 2020, pp. 1-9.

X. Ju, B. Fang, R. Yan, X. Xu, and H. Tang, “An fpga implementation

of deep spiking neural networks for low-power and fast classification,”

Neural Comput., vol. 32, no. 1, pp. 182-204, 2020.

A. Khodamoradi, K. Denolf, and R. Kastner, “S2n2: A fpga accelerator

for streaming spiking neural networks,” in FPGA, 2021, pp. 194-205.

D. Gerlinghoff, Z. Wang, X. Gu, R. S. M. Goh, and T. Luo, “E3ne:

An end-to-end framework for accelerating spiking neural networks with

emerging neural encoding on fpgas,” IEEE TPDS, 2021.

[5

—_

[6

—_

(1]

[12]

[13]

[14]

	I Introduction
	II Related Work
	III Hardware Architecture
	III-A Convolution Unit
	III-B Pooling and Linear Units
	III-C Memory Management

	IV Experiments
	IV-A Experiment Setup
	IV-B Length of Spike Train
	IV-C Number of Convolution Units
	IV-D Hardware Performance and Scalability

	V Conclusion
	References

