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“I must be willing to give up what I am

in order to become what I will be.”

— ALBERT EINSTEIN
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ABSTRACT

Convolutional Neural Networks (CNNs) have become the most used and efficient

way to identify and classify objects in a scene. CNNs are today fundamental not only

for autonomous vehicles, but also for Internet of Things (IoT) and smart cities or smart

homes. Vendors are developing low-power, extremely efficient, and low-cost dedicated

accelerators to allow the execution of the computational-demanding CNNs even in appli-

cations with strict power and cost budgets.

In this work we investigate the reliability of Google’s Coral Tensor Processing

Units (TPUs) to both high-energy atmospheric neutrons (at ChipIR) and thermal neutrons

from a pulsed source (at EMMA) and from a reactor (at TENIS). We report data obtained

with an overall fluence of 3.41×1012n/cm2 for atmospheric neutrons (equivalent to more

than 30 million years of natural irradiation) and of 7.55×1012n/cm2 for thermal neutrons.

We evaluate the behavior of TPUs executing elementary operations with increas-

ing input sizes (standard convolutions or depthwise convolutions) as well as eight CNNs

configurations. Regarding the CNNs, we consider four well-known and widely-used net-

work architectures (SSD MobileNet v2, SSD MobileDet, Inception v4 and ResNet-50)

trained with popular datasets, such as COCO and ILSVRC2012. Through retraining, we

also assess the impact of transfer learning and a reduced number of object classes to be

detected/classified on the CNN prediction robustness.

We found that, despite the high error rate, most neutrons-induced errors only

slightly modify the convolution output and do not change the CNNs detection or clas-

sification. By reporting details about the error model we provide valuable information on

how to design the CNNs to avoid neutron-induced events to lead to miss detections or

classifications.

Keywords: Artificial Intelligence. Convolutional Neural Networks. Machine Learning.

Embedded Applications. Tensor Processing Units. Radiation Experiment. Reliability.



RESUMO

Redes neurais convolucionais (CNNs) têm se tornado a maneira mais utilizada e

eficiente de identificar e classificar objetos em uma cena. Hoje, as CNNs são fundamen-

tais não apenas para os veículos autônomos, mas também para aplicações relacionada a

Internet of Things (IoT), casas e cidades inteligentes. Fabricantes estão desenvolvendo

acelaradores dedicados extremamente eficientes, de baixa potência e baixo custo para

permitir a execução de CNNs de alta demanda computacional mesmo em aplicações com

rigorosos orçamentos de energia e custos.

Neste trabalho, investigamos a confiabilidade da Google Coral Tensor Processing

Units (TPUs) a nêutrons atmosféricos de alta energia (no ChipIR) e nêutrons térmicos

gerados por uma fonte pulsada (no EMMA) e por um reator (no TENIS). Reportamos

dados obtidos com um fluência média de 3.41 × 1012 n/cm2 para nêutrons atmosféricos

(equivalente a mais de 30 milhões de anos de irradiação natural), e de 7.55× 1012 n/cm2

para nêutrons térmicos. Avaliamos o comportamento das TPUs executando operações

elementares (convolução standard e convolução depthwise) com tamanhos de entrada

crescentes, bem como oito configurações de CNNs. Com relação às CNNs, considera-

mos quatro arquiteturas de redes conhecidas e amplamente utilizadas (SSD MobileNet

v2, SSD MobileDet, Inception v4 e ResNet-50) treinadas com datasets populares, como

COCO e ILSVRC2012. Por meio do retreinamento, também analisamos o impacto da

técnica de transfer learning e de um númbero reduzido de classes de objetos a serem

detectadas/classificadas na robustez da predição da CNN.

Descobrimos que, apesar da alta taxa de erros, a maioria dos erros induzidos por

nêutrons modifica apenas ligeiramente a saída da convolução e não altera o resultado da

classificação/detecção. Ao reportar detalhes a respeito do modelo de erros, fornecemos

informações valiosas sobre como projetar CNNs de maneira a evitar que eventos induzi-

dos por nêutrons levem a erros de classificação/detecção.

Palavras-chave: Inteligência Artificial, Redes Neurais Convolucionais, Aprendizado de

Máquina, Aplicações Embarcadas, Unidades de Processamento Tensoras, Experimento

de Radiação, Confiabilidade.
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1 INTRODUCTION

Convolutional Neural Networks (CNNs) are today the most effective (and effi-

cient) way to detect an object in a scene. By applying various filters to the input image,

convolutional layers extract information into feature maps that are then passed to the

downstream layers to detect and/or classify objects. The number of layers, the kind of

filter applied, and several other hyper parameters that define the structure of the CNN are

engineered to achieve the desired efficiency and accuracy. Figure 1.1 shows a simplified

scheme of the structure of a CNN.

Figure 1.1: Structure of a CNN for object detection

The prediction process is highly computational demanding, as it is necessary to

apply several filters to each feature map. When it comes to hardware and software imple-

mentation, the filtering process is mapped into a matrix multiplication operation, which

can be efficiently executed in parallel accelerators, such as Graphics Processing Units

(GPUs) or Field Programmable Gate Arrays (FPGAs).

To ensure very high accuracy along with real-time detection (at least 40 frames per

seconds must be processed), both being fundamental for applications like autonomous ve-

hicles, it is necessary to execute CNNs on highly performant, costly, and power-hungry

devices, such as the latest GPUs or very big FPGAs. Nevertheless, the field of adoption of

CNNs is not limited to self-driving cars. Many other applications, with less strict accuracy

and timing constraints, can benefit from CNNs execution. This is the case of Internet of

Things (IoT), smart homes and smart cities, in which detecting or identifying a relatively

low number of objects can significantly improve the overall system features and, ulti-

mately, enhance the user experience. In these applications, cost and power consumption
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must be minimized, while still guaranteeing sufficient prediction accuracy.

In order to meet the requirements of such applications, lately, vendors have devel-

oped low-cost accelerators for CNNs execution, named EdgeAI devices, such as Neu-

roShield or Google Coral Tensor Processing Units (TPU). These EdgeAI devices are

designed to execute elementary operations (i.e., convolutions and some other matrices

operations) in low data precision, i.e., 16-bit floating point or even 8-bit integer. Coupled

with a good software framework (e.g., Tensor Flow) that runs on a host device, EdgeAI

devices significantly reduce the time and power consumption of the convolution, which is

the most computational demanding operation of CNNs.

As EdgeAI devices are likely to be used at scale and in distributed systems, it

is fundamental to investigate their reliability, in particular their neutron-induced error

rate. Preliminary studies showed that, despite being small, EdgeAI devices have a non-

negligible neutrons- or protons-induced error rate (BLOWER et al., 2021; BREWER et

al., 2020).

In this work, we investigate the neutrons reliability of the Google Coral TPU by ir-

radiating the device with such particles during radiation beam experiments. Unlike previ-

ous works on EdgeAI reliability, we deeply investigate the device fault model on the main

elementary operations (standard and depthwise convolutions). Moreover, we compare the

error rate and the prediction failures of eight CNNs configurations that are widely used in

embedded applications: Single-Shot multibox Detection (SSD) MobileNet v2 and SSD

MobileDet, trained with COCO dataset, as well as Inception v4 and ResNet-50, trained

with ILSVRC2012 dataset.

To have a broad evaluation, we test the Coral TPU with both high-energy neutrons,

at the ChipIR facility, and with thermal neutrons, at the EMMA facility in UK and at

TENIS facility at Institut Laue-Langevin (ILL) in Grenoble, France. In order to be able

to compare the data obtained with different types of neutrons, we report experimental

results using a metric called cross section which, ultimately, represents the probability

of an energetic particle to induce an error in the program execution (more details are

provided in Section 2.3). We observe that, while the high-energy neutrons cross section

of the Coral TPU is much higher than the thermal neutrons cross section, the results are

consistent in the sense that depthwise convolutions are shown to have higher error rate

than standard convolutions and SSD MobileDet is less reliable than SSD MobileNet V2.

The rest of the text is organized as follows. In Chapter 2, we provide a solid

background on CNNs and their reliability to transient faults in other architectures and
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devices, as well as the hardware and software architecture of Coral TPU, useful for un-

derstanding experimentally observed behaviors. In Chapter 3, we describe the thermal

and high-energy neutron setups we developed and the software (convolutions and CNNs)

we tested. Experimental results are presented and discussed in Chapter 4, highlighting

the implications for future hardening solutions for Coral TPU, while Chapter 5 concludes

the document.
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2 BACKGROUND

In this Chapter, we review the main characteristics of CNNs, the architecture of

EdgeAI devices (focusing on the Coral TPU), the software framework used to train and

execute CNNs on EdgeAI accelerators and we introduce some metrics for measuring the

device reliability.

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are today widely adopted to perform ob-

ject detection (REDMON et al., 2015). A CNN is a sequence of layers of different kind,

each applying a specific function to the input frame or input feature map. Among sev-

eral types of layers, the most common and fundamental ones in modern Deep Neural

Networks (DNNs) are: convolutional layers, pooling layers and fully connected layers.

Pooling layers are used to down sample the dimensions of feature maps by ap-

plying functions that summarize the features in each block of the feature map that was

extracted by convolutional layers. Average pooling and max pooling are the most com-

mon functions and they respectively represent the average and the most activated features

from the given input feature map into its output.

Figure 2.1: Pooling layer of size 2x2 and stride 2

Fully connected layers are conventional neural networks that are in charge of per-

forming the object predition task. They provide the probabilities, classes and positions of

each possibly detected object based on the features that were extracted by the upstream

layers in the chain (essentially by convolutional layers).
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Given this, it is clear that one of the main steps when using CNNs for object de-

tection is convolution. Convolutional layers are the computational core of CNNs. By

applying filters, they are responsible for extracting information, from the input frame,

which is then processed to identify objects. To extract specific characteristics of the im-

age, a kernel filter is convolved with a matrix, i.e., the kernel slides over the input matrix,

multiplying and accumulating products at every position of the input with every position

of the kernel. More than 80% of the computation in a CNN is dedicated to convolution,

which is why most device architects are focusing on making convolution more and more

efficient, producing novel devices such as the Coral TPU.

Figure 2.2: Convolutional layer example. Source: (IBM Cloud Education, 2020)

Lately, it has been shown that the efficiency of CNNs execution can be signifi-

cantly improved by approximating operations (Hanif et al., 2018) or hardware compo-

nents (Sarwar et al., 2018; MRAZEK et al., 2016), and it has been also demonstrated

that the same object detection accuracy can be achieved, through re-training, represent-

ing data in 16-bit floating-point (GUPTA et al., 2015), 8-bit integer, or even in binary

values (GAMBARDELLA et al., 2019). Therefore, most low-power accelerators take ad-

vantage of reduced-precision operations to reduce the computing power required to run

CNNs. The Coral TPU we used in this study, for instance, executes operations in 8-bit

integer.

2.2 EdgeAI accelerators

EdgeAI accelerators, like NeuroShield and Google Coral TPU, are low-power and

low-cost devices designed to perform heavy machine learning computations in the context
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of embedded applications. As it is the main target of this study, we focus our analysis on

the Google TPU.

Figure 2.3 shows the high level schematic of the Coral architecture which is mainly

composed by a systolic array fed by a large set of input buffers. Because it is a low-cost

device, these buffers are not protected by error-correction code (ECC) technology, which

would make the hardware more resilient to transient faults, however would increase the

manufacturing cost. The systolic array outputs the product of the model weights and

each layer’s input into the activation unit, where the partial sums are accumulated and

the activation function is applied. Therefore, this device can perform a set of operations,

mainly convolutions, which are a fundamental block for machine learning applications,

in an extremely power- and performance-efficient manner. As a metric that indicates the

power efficiency, the TPU delivers 2 TOPS (tera operations per second) per watt.

Figure 2.3: High level schematic of the Coral Edge TPU architecture. Adapted from (Q-
ENGINEERING, 2019).
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+ + + +

. . .
.
.
.

Data flow

Partial sums

Final
output

Output
accumulators

Input
buffers

Control

Since Coral TPU is simply an accelerator, it must be connected to a host device.

Google provides two versions of the accelerator: one that interfaces with the host via PCIe

and the other uses USB 3.0. On our setup, we have a Raspberry Pi 4 as host, connected

to the Coral USB accelerator. For minimizing data transfers and storage and speed up

calculations, all data that is computed and stored within the TPU is represented as 8-bit

unsigned integers (UINT8). The device is capable of performing the quantization and
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de-quantization steps for interfacing with the host floating-point representations.

The software layer of the Coral TPU relies on TensorFlow Lite which is a light

and optimized-for-embedded-devices version of the TensorFlow framework that was de-

veloped by Google for machine learning (ABADI et al., 2015). Most of the development

effort is very similar as if the machine learning (ML) model would run on a normal cen-

tral processing unit (CPU), however there is an EdgeTPU compiler that is responsible for

deploying the TensorFlow Lite model targeting the Coral Edge TPU architecture.

2.3 Reliability Indicators and Metrics

One of the most common metrics to indicate the reliability of a device is called

Failure in Time (FIT). It is an industry standard value that represents the number of fail-

ures/errors per billion hours of operation.

Another frequently used metric for this purpose is the cross section, measured as

area [cm2], which stands for the area of the device that, when hit by an energetic parti-

cle, will generate a fault. Thus, the cross section represents the probability of radiation-

induced errors to occur.

In this work, however, we use the cross section as the standard way to report

reliability of the Coral TPU of each software workload we test. The main reason is that

the sensitivity to thermal neutrons is strictly related to the amount of Boron-10 used in

the device production, which is normally a business sensitive information not available

to the public, and, as observed in (OLIVEIRA et al., 2021), the exact flux of thermal

neutrons that hits the device board (needed to calculate the FIT rate) depends on various

factors, such as the humidity of the air and the interaction of the hardware chip with

the surrounding materials. Therefore, it is not possible to provide accurate FIT rates

for thermal neutrons and we use the cross section to be able tocompare results between

experiments with different types of particles.

FIT rates for experiments performed with atmospheric neutrons (at ChipIR) are

reported to give an idea of the average number of errors that would occur under natural

conditions with TPU Coral exposed to natural terrestrial irradiation.
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2.4 CNNs Reliability

CNNs have already been shown to be particularly susceptible to transient faults in

many studies (Santos et al., 2019; BOSIO et al., 2019). Through radiation beam experi-

ments and fault-injection, it has been demonstrated that the corruption of each layer has

a different probability of affecting the CNN output, with the convolutional layers being

responsible for most observed errors (Santos et al., 2019).

The corruption of a layer or an operation inside a layer can be:

• masked without affecting the output;

• reach the output but keep the classification/detection unaltered, characterizing a

Silent Data Corruption (SDC);

• spread and modify the output in ways that impacts the functionality and outcome

of the CNN, leading to a critical SDC;

• affect the software control logic and result in application crash, which is called

Detected Unrecoverable Error (DUE).

Thanks to the intrinsic approximate nature of CNN computation, most of the er-

rors do not turn into system failures, i.e., they do not affect the CNN accuracy. This has

been proven for GPUs (Santos et al., 2019), FPGAs (LIBANO et al., 2018), and Neu-

roShield devices (BLOWER et al., 2021; BREWER et al., 2020). Unfortunately, despite

the approximate inherent nature, the misdetections and misclassifications rates in CNN

executed in modern computing devices are still too high to be employed in safety-critical

applications (Santos et al., 2019; BOSIO et al., 2019). As discussed in Section 4.2.2,

we distinguish between critical and tolerable errors in CNN execution on the Coral TPU.

Additionally, we investigate the distribution of corrupted element at the output of convo-

lutions (results in Section 4.1.2).

As already mentioned, Coral TPU executes operations in 8-bit unsigned integers

to improve performance. It has been shown that reducing operation data-precision, while

bringing unquestionable benefits to efficiency, has the drawback of increasing the (neg-

ative) impact of a fault on the operation output (Fernandes dos Santos et al., 2019). For

CNNs, precision reduction turns into a higher probability of a fault to modify the detec-

tion. It has been demonstrated that a fault in a FP16 CNN has ∼2x the probability of

causing misdetection than a fault in a FP32 CNN (LIBANO et al., 2020). For that reason,

part of our contribution is to evaluate whether the execution of CNNs using 8-bit integer



21

is harmful for the system reliability.

Recently, some works have discussed the reliability of EdgeAI devices to neutrons

and protons, focusing specifically on the Arduino NeuroShield (BLOWER et al., 2021;

BREWER et al., 2020). To the best of our knowledge, this is the first work presenting

experimental data on Coral TPU devices error rate. Previous studies have shown that the

error rate of the small EdgeAI accelerators is far from being negligible (higher than 102

Failure In Time - FIT rates).

Unlike previous publications, we engineered an experiment setup to test not only

neural networks but also atomic operations performed by the accelerator (convolutions)

with different sizes and depths (2D and 3D). This information is useful to deeply investi-

gate the neutron-induced fault model of the TPU.
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3 METHODOLOGY

In this Chapter, we detail the software we run, the hardware setup we prepared and

the (high-energy and thermal) neutron beam experiments we performed.

3.1 Software layer

3.1.1 Convolutions

Coral Edge TPU is designed to accelerate machine learning algorithms, especially

neural networks. Considering that most of the computating effort of deep neural networks

is fundamentally represented by convolution operations, we can say the basic operation

of a Coral TPU is indeed convolution. Besides that, from the instruction set architecture

(ISA) perspective, convolutions are atomic operations.

Figure 3.1: Visual representation of the depthwise convolution algorithm.
Source (PANDEY, 2018)

Hence, as a first experiment, we want to evaluate the reliability of the two types

of convolution that are supported by Coral: standard and depthwise. Standard convolu-

tions are normal 2D convolutions while depthwise convolutions have an input composed

by multiple channels and each one is convolved with its respective kernel separately, as

shown in Figure 3.1. Since CNNs usually perform image prediction, in our experiments,

the inputs of depthwise convolutions are always composed of three channels, as for the

RGB colors, and this type is referred as 3D convolutions. We run tests with squared ma-
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trixes of sizes ranging from 256 to 1,250 (INT8) as inputs and squared kernels of fixed

sizes: 40 for standard convolutions and 20 for the depthwise ones.

3.1.2 Convolutional Neural Networks

Besides convolutions, we evaluate the reliability of eight convolutional neural net-

work configurations in which we vary the network architecture, the dataset, and the train-

ing methodology. We consider CNNs that perform the two main machine learning tasks

supported by Coral: image classification and object detection. In image classification,

the goal is to classify a single object in the image, e.g., a dog, a car or a tree, without

indicating the position. On the other hand, object detection is a more complex task, as

multiple objects in the image need to be located and then classified.

For a broad assessment, we consider four different network architectures. Two of

them, Inception V4 (SZEGEDY et al., 2017) and ResNet-50 (HE et al., 2016), target im-

age classification. Both are trained with ILSVRC (RUSSAKOVSKY et al., 2015) dataset

and support a wide range of 1,000 different object classes. The other two, SSDLite Mo-

bileDet (XIONG et al., 2020) and SSD MobileNet V2 (SANDLER et al., 2018), perform

object detection and are trained with COCO (LIN et al., 2014) dataset which embraces 90

classes. The models for these NNs are based on TensorFlow Lite – the machine learning

framework developed by Google for embbeded applications and especially optimized for

Coral Edge TPU.

Figure 3.2: Transfer learning reuses knowledge from pre-trained model during training of
a new model
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In addition to these four models/configurations, we also retrain SSD MobileNet

V2 with two other datasets: a subset of the COCO dataset, containing 14 object classes,

and a subset of the Oxford-IIIT Pet (PARKHI et al., 2012) dataset with only 2 classes. Our

goal is to evaluate whether and how a reduced number of objects to be detected impacts

the device error rate.

The retraining process is done with and without the application of transfer learn-

ing technique. When applying transfer learning, the knowledge from a pre-trained ma-

chine learning model is reused during the training of the new model in order to speed

up the learning process and, in most cases, this even improves classification/detection

performance. As represented in Figure 3.2, most of the feature extractor is reused from

the pre-trained model and the training of the new model is basically reduced to adjusting

weights of the neurons in the fully connected layers.

Considering both types and multiple sizes of convolutions, as well as the different

CNN configurations, we provide experimental data obtained on 16 benchmarks.

3.2 Neutron Experiment Setups

3.2.1 High-energy Neutrons at ChipIR

The atmospheric neutron experiments were carried out at the ChipIR facility at

the ISIS spallation neutron source of the Rutherford Appleton Laboratory (RAL), UK.

ChipIR (CAZZANIGA; FROST, 2018) is the reference beamline dedicated to the irra-

diation of microelectronics and it features a high-energy neutron spectrum, as similar as

possible to the atmospheric one. The flux with neutron energy above 10 MeV is 5.4 ×

106n/cm2/s, while the thermal component (E < 0.5eV ) is 4 × 105n/cm2/s (CHIESA

et al., 2018).

The Coral TPU was positioned 0.8 meters away from the ChipIR beam-stop with

a collimated beam size of 70× 70 mm. A picture of the Coral TPU at ChipIR is shown in

Figure 3.3. At the Coral position, the average flux was about 3.9×106n/cm2/s. The host

device, a Raspberry Pi 4, is connected with a 2-meters-long USB cable and placed well

outside the beam. We test the device for more than 241 effective hours, already excluding

the time spent loading the input images to the memory, downloading the output matrices to

the host device, and rebooting the devices when necessary (some Detected Unrecoverable

Errors may lead to system reboot). The resulting neutrons fluence was then greater than
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Figure 3.3: The Coral TPU aligned with the high-energy neutron beam at ChipIR

3.41 × 1012n/cm2. and, when scaled to the terrestrial flux (13n/cm2/h (SLAYMAN,

2010)), this corresponds to more than 30 million years of natural irradiation, in case of a

device on the terrestrial surface in sea level.

3.2.2 Thermal Neutrons at EMMA

The ISIS neutron source also features various thermal neutrons facilities, such as

the Equipment Materials and Mechanics Analyzer (EMMA) (CAZZANIGA et al., 2021)

that has a line of sight on the water moderator of the main neutron source. The thermal

neutron beam is achieved from the pulsed neutrons source thanks to a chopper, i.e., a

rotating device used to block a portion of the neutron beam in time, that is synchronous

with the proton pulse, thus cutting the fast neutron portion of the spectrum, letting through

only the thermal component. The thermal neutron flux delivered at EMMA is of about

2.32×106n/cm2/s. More details about the neutrons spectrum and the flux measurements

at EMMA can be found in (CAZZANIGA et al., 2021).

The availability of both high-energy (ChipIR) and thermal (EMMA) neutrons fa-

cilities at ISIS is very convenient, as the same setup and the same devices can be tested

back-to-back in both beam lines, allowing a direct comparisons of the sensitivity of the

same device to two different neutrons spectra. Nevertheless, considering that cross sec-

tions obtained with thermal neutrons are normally significantly lower than the one ob-

tained with high-energy neutrons, EMMA flux might be too low to test small configura-
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tions (applications that do not demand much performance of the device due to reduced

amount of data to be processed). With that in mind, we used EMMA to characterize the

TPU configurations with the highest error rates (MobDet and MobNet CNNs). After more

than 25h of test at EMMA the 1,024 convolutions provided only 10s of SDCs (Silent Data

Corruptions), making the characterization impractical in this facility.

3.2.3 Thermal Neutrons at TENIS

To measure the thermal-neutrons cross section of the TPU executing convolutions

(that would not be possible at EMMA due to the very low error rate), we also perform

experiments at the new Thermal and Epithermal Neutron Irradiation Station (TENIS)

hosted by the Institut Laue-Langevin (ILL). This new facility aims to replace D50 as a

facility where thermal neutron experiments were conducted at the Platform for Advanced

Characterisation of Grenoble (PAC-G) (BEAUCOUR et al., 2015; WEULERSSE et al.,

2018).

A captured flux of 1.92 × 109n/cm2/s has been measured by Au foil activation.

TENIS beam is a 5x5 cm2 square. As shown in Figure 3.4, the flux is very stable in a 2x2

cm2 centered square, and from there it decreases rapidly. The sample was tested initially

in the middle of the beam spot where the flux is well characterized. In that position the

error rate is so high that in a few hours we observed more than 100 SDCs for the smallest

convolution configuration, which has an input matrices of 256x256. So,because of the

high flow in the center, it is not possible to test larger configurations. The high flux from

the central position was also problematic as after a few hours the devices died, probably

due to the gamma rays induced Total Ionizing Dose, and we could no longer get it to

work.

Considering the flux at the center is too high, we have then shifted the device to

the edge of the beam, moving it from 2.7cm to 3.1cm from the center, with steps of 1mm,

in order to reduce the error rate. According to the horizontal beam profile shown in Fig-

ure 3.4, the flux significantly drops starting at 2cm from the center, being approximatively

1.4× 107n/cm2/s at 3cm from the beam center.

As shown in the Figure 3.4, the error rates obtained for the 256 and 1,024 convo-

lutions with the TPU shifted away from the beam central position, and normalized to the

error rate observed at the beam center, follow very well the beam profile measurement.

The expected dose rate in SIlicon at TENIS is of about 1, 000Gv/h from neutron interac-
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Figure 3.4: Cross section of the beam profile at TENIS and the error rate for 256 and 1024
standard convolutions normalized to the error rate measured at the center of the beam
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tions and 250Gv/h due to gammas coming directly from the reactor. We do not observe

any Total Ionizing Dose effect during our experiments.

3.2.4 Comparison between TENIS and EMMA

To compare EMMA and TENIS results, normally the EMMA flux is normalized

with the 25meV equivalent flux (the peak energy at room temperature). The neutron

energy spectra of EMMA and TENIS, shown in Figure 3.5, can be described, in first

approximation, as a Maxwell-Boltzmann distribution with a broad peak for thermal neu-

trons. TENIS, as shown in the plot, has a different (and much higher) spectral contribution

of epithermal neutrons than EMMA.

To compare EMMA and TENIS results, we convert the “thermal flux” to “25meV-

equivalent flux” (25 meV being the peak-energy at room temperature). The “thermal

flux”, as defined in the JESD89A standard (SLAYMAN, 2010) and also as common prac-

tice in nuclear physics, is the integrated flux < 0.4 eV/cm2/s. The conversion factor

between “thermal flux” and “25meV-equivalent flux” is calculated by integrating the dif-

ferential flux multiplied by the cross section of B-10 and divided by the cross section of

B-10 at 25 meV. The result for EMMA is a factor of 0.71.
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Figure 3.5: Comparison of the neutron energy spectra of EMMA and TENIS

3.2.5 Notes

All experiments described above are performed at room temperature, using the

standard power and frequency configuration of the Coral TPU. We have tested a total of

4 TPUs.

As a consequence of the Covid-19 pandemic situation, experiments in the UK

were performed remotely, thanks to the tireless and precious help of the ChipIR team

in mounting the setup and granting remote access to the researchers in Brazil and Italy.

Experiments in Grenoble were performed in person, which gave to the researchers an

optimistic feeling for the close future of radiation experiments.
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4 EXPERIMENTAL RESULTS

In this Chapter we present data from the neutron experiments obtained by irradi-

ating the TPUs with atmospheric (high-energy) and with thermal (low-energy) neutrons.

We consider both Silent Data Corruptions (SDCs, i.e., errors on the output) and Detected

Unrecoverable Errors (DUEs, i.e., crashes or hangs). We first discuss the reliability of

atomic operations – standard (2D) and depthwise (3D) convolutions – and then the relia-

bility of four different neural networks that were trained with multiple datasets for a total

of 8 neural networks configurations.

We recall that we use the cross section value to express and compare the reliability

of each benchmark that was tested during the experiments in the three facilities (ChipIR,

EMMA and TENIS) with different types and fluxes of neutrons. All data is reported with

95% confidence intervals, considering a Poisson distribution.

4.1 Atomic Operations

Aiming to analyze how faults affect the execution of the simplest and most light-

weighted operations that the TPU can execute, we run two different types of convolutions:

standard and depthwise. We recall that standard convolution stands for normal 2D con-

volutions while the depthwise convolution algorithm separates the three channels (RGB)

of the 3D input matrix and convolves each one with its respective kernel as it was a 2d

convolution. In our tests, the inputs of depthwise convolutions always have three channels

(as for the RGB colors) and this type is referred as 3D convolutions.

We performed tests with squared matrixes of varying sizes, ranging from 256 to

1,250, as inputs and squared kernels of fixed sizes, 40 for standard convolutions and 20

for the depthwise ones. We choose a kernel size that is both representative (the kernel

size is normally much smaller than the feature size) but yet sufficient to saturate the TPU

computing capabilities. A kernel of size 40 would exceed the TPU computing capabilities

for the 3D convolutions.
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4.1.1 Error Rates and Cross Sections

Figure 4.1 plots the cross sections (SDCs in blue and DUEs in yellow) for the

tested sizes of both convolution types resulting from the high-energy neutron experiments

at ChipIR and thermal neutron experiments at TENIS. Due to the low error rate at EMMA

(more than 5 hours of experiment was needed to observe one error), we decided to test

the TPU executing convolutions at TENIS, where the flux is 3 order of magnitude higher,

with cold moderation of neutrons.

The results for size 256 of the standard convolution (StdConv) algorithm were

obtained at TENIS and are highlighted with a different fill pattern in the left side of the

graph. Depthwise convolution (DepthConv) for 1,250 input cannot be executed on the

TPU since it exceeds the device computing capabilities.

Figure 4.1: Cross sections for standard and depthwise convolutions, with increasing input
sizes, exposed to high-energy neutrons at ChipIR and thermal neutrons at TENIS
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As shown in the Figure above, the SDC cross section increases with the size of the

convolution input. Intuitively, this is justified as the systolic array becomes more occupied

due to the increasing amount of data that needs to be processed. With more hardware area

being actively used, the probability of a neutron hitting the board and causing an error

increases.

On the other hand, the DUE cross sections does not follow this trend. This should

come as no surprise since, as shown in one of our previous publications (FRATIN et al.,

2018), DUEs normally have a component that depend exclusively on the hardware and

not the software layer. Thus, DUEs are biased by the sensitivity of hardware resources
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and are independent of the executed code (or input size).

Figure 4.2: Illustrative comparison between standard and depthwise convolutions as to
hardware resources usage

From Figure 4.1, we also observe that, for a given input size, depthwise convolu-

tions have higher SDC cross section when compared to standard convolutions (on average,

179% higher). In addition, the cross sections of 3D convolutions increase with the input

size at a higher rate than those of 2D convolutions. Considering DepthConvs operate on

about 3 times more data than StdConvs, this trend is again related to the fact much more

area of the TPU device is used when processing depthwise/3D convolutions.

The cross sections for standard convolution of size 256, which were irradiated with

thermal neutrons, have the device positioned in the center of the beam at TENIS facility.

The flux in this position is too high to test bigger configurations, i.e, convolutions with

greater input size. For instance, when compared to the values for StdConv 500 obtained

during the experiments with high-energy neutrons at ChipIR facility, the cross section at

TENIS is about 5 times smaller. This is in line with previous data on thermal versus high-

energy neutrons obtained in various devices (WEULERSSE et al., 2018; OLIVEIRA et

al., 2021).

Table 4.1 shows the FIT rates for both types of convolutions when exposed to

atmospheric neutrons at ChipIR. We recall that FIT rates can only be calculated for the

experiments performed with atmospheric neutrons, therefore, data for the thermal neutron

experiment at TENIS cannot be provided.
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Table 4.1: FIT rates for convolutions exposed to atmospheric high-energy neutrons at
ChipIR

Convolution type Input size FIT SDCs FIT DUEs

Standard Conv

500 6.87 2.99
1000 8.59 4.99
1024 11.33 4.91
1250 13.72 8.14

Depthwise Conv

256 6.48 0.50
500 17.98 12.73
1000 27.57 4.61
1024 28.74 0.93

4.1.2 Geometric Distribution of Errors

Figure 4.3 shows the geometric distribution of the output elements that were cor-

rupted during the experiments with convolutions at ChipIR. Data from TENIS is similar

and thus not shown.

Figure 4.3: Geometric distribution of the corrupted elements in the output of convolutions
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When an SDC is detected, we download the whole output matrix to the Raspberry

Pi and identify how many elements in the output are corrupted. When multiple elements

are found corrupted, we categorize the corruption based on the spatial distribution of the

wrong elements. When more than one element is corrupted and these elements sit in the

same row or column, we count a Line error. When the corrupted elements are distributed

in a square (a whole portion of the output matrix is corrupted), we count a Square error.
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When we see multiple corrupted elements that are neither on a Line nor on a Square, we

count a Random error.

It is worth noting that, by tunning the input sizes and flux, we engineered the

experiments not to have more than one neutron generating an error in a single execution,

since this would be an artifact unlikely for a realistic application. Thus, eventual multiple

errors are caused by the spread of the single neutron corruption to multiple operations and

not by multiple neutrons corruption.

Regardless of the convolution type, we observe that the distribution is very similar

across all sizes. Most of the time, a single element of the output matrix is corrupted.

The second most frequent SDC geometry is Square, meaning that the elements corruption

occurred within square/rectangular blocks, followed by Random distribution, in which the

position of the errors does not match any geometric shape. Finally, element corruptions

arranged in a single Line is the least frequent geometric distribution.

The fact that single corrupted elements is the most frequent distribution in the

TPU architecture is in contrast with what has been observed for Graphics Processing

Units (GPUs) (RECH et al., 2013; Santos et al., 2019; BASSO et al., 2020), for which

the majority of the corrupted matrices have multiple corrupted elements. This is due to

the different way matrix multiplication is implemented in these architecures. On GPUs,

matrix multiplication is executed as a code, with a sequence of instructions, while on the

TPU the execution is done as a single instruction in a systolic array. Executing a sequence

of instructions, therefore, tend to lead to a higher spread of the error in the output.

As it has been shown that multiple corrupted elements in the output matrix are the

main cause for misdetections or misclassifications in convolutional neural networks (San-

tos et al., 2019), the fact that the TPU is less prone to have multiple output errors than

GPUs can be a promising result for its reliability in executing CNNs.

Additionally, we have observed that the magnitude of the errors (i.e., how much

the corrupted value is different from the expected one) is, overall, very small. The absolute

difference between the expected and the corrupt element value is, in fact, exactly one (e.g.,

the expected value is 80 and the corrupted one is 81 or 79) in 91% of the observed SDCs.

Please recall that only INT8 operations can be performed on the TPU.

Also, when the error magnitude is greater than one, the difference with the cor-

rupted and expected value is a power of 2, i.e., a single bit flip usually occurs, and this

happens regardless of the convolution type. Again, this is in contrast with data observed

for GPUs, for which the magnitude of the error can be significantly higher (orders of
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magnitude) (Santos et al., 2019; BASSO et al., 2020) most likely because floating-point

representation is used. This is another promising result for the TPU reliability in execut-

ing CNNs, as a higher error magnitude can have a greater impact on the output value.

4.2 Neural Networks

With regards to neural networks, we report the reliability analysis for eight dif-

ferent configurations by varying the network architecture, dataset and training procedure

(with or without transfer learning). We leveraged on four NNs models that were trained

and made available by Google (Inception V4, ResNet-50, SSD MobileDet, and SSD Mo-

bileNet V2).

We also retrained MobileNet using two different datasets (a subset of the COCO

dataset and a subset of the Oxford-IIIT Pet dataset) with and without applying the transfer

learning technique. By retraining the CNN models, we want to evaluate: (1) how the

number of object classes supported by the CNN impacts its reliability, since the datasets

used for retraining have much less classes than the original COCO dataset and (2) whether

transfer learning has a positive effect into the detection resilience.

4.2.1 Error rates and Cross Sections

Figure 4.4 plots both SDC cross sections (left Y-axis) and DUE cross sections

(right Y-axis) for the eight CNN configurations obtained during experiments with high-

energy neutrons at Chip IR facility and for the two CNN configurations tested at EMMA

(MobDet and MobNet). Other configurations could not be tested at EMMA due to the low

error rate and none of the NNs could be tested at TENIS because the error rate was too

high. The four configurations on the left side are the original models that Google provide

on the Coral Edge TPU official website. The ones disposed on the right side are retrained

versions, with and without transfer learning, of the MobileNet with different datasets.

At ChipIR, the lowest SDC cross section is measured for ResNet. Assuming a flux

of 13n/cm2/h for atmospheric neutrons at sea level, the ∼ 17 × 10−9 cm2 cross section

of the ResNet neural network translates to about 270 FIT. This result is very similar to the

102 FIT (same order of magnitude) measured for the NeuroShield with a similar neural

network in (BLOWER et al., 2021).
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Figure 4.4: Cross sections for the eight CNN configurations that were exposed to high-
energy neutrons at Chip IR facility and to thermal neutrons at EMMA facility
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At EMMA, MobileDet is confirmed to be 50% more likely to experience SDCs

than MobileNet. Although the trend is the same, the SDC cross sections are, on average,

25 times smaller than the corresponding values obtained for these two network configu-

rations when exposed to high-energy neutrons.

From the results plotted in Figure 4.4, we observe that detection networks are less

tolerant than classification ones. This can be justified because, although the classification

models are larger and, possibly execute more operations, the detection output is much

more complex. For the classification task, the output values simply represent the prob-

ability of each object class while, in the detection task, the output is composed of six

values for each possibly detected object: its class, its probability and its position (x, y,

width, height). The position elements are much more sensitive to the effects of faults and,

thus, detection CNNs will have higher error rates. This behavior is in accordance with

what has been observed in GPUs architectures (Santos et al., 2019).

Transfer learning (TL) does not seem to have a significant impact on the CNN

cross sections. This technique has shown to decrease the SDC cross section in only 2-5%

when compared to the analogous configuration without TL. However, the training process

tend to converge much faster with this strategy and, in our case, it reduced the learning

time of the CNNs in around 50%. So, TL is a good solution when a quick re-training of

the NN is needed, as it is fast but does not impact the error rate.

Our results also confirm that the retraining of MobileNet with the COCO subset

(14 classes) lowers the cross sections when compared to the original model trained with
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the total amount of 90 classes of the original COCO dataset. The same network but trained

with the Pets dataset (2 classes) have higher cross sections than the one trained with Sub-

COCO, but still smaller than the one obtained for the original with the entire COCO

dataset. This trend evinces that, with less classes to be considered, the detection process

gets simpler and the cross section is reduced. Therefore, the training of CNNs should

target the real application needs and include classes of object that are really relevant to

the context of the application.

ResNet and Inception, which are CNNs that perform image classification (not de-

tection), have the highest DUEs cross sections. This might be related to the size of the

model for these two networks which are 5 to 7 times larger than the MobileNet model.

With larger models, the communication between the TPU and the Raspberry Pi increases,

as well as the demand for control and hardware resources in general grows, making DUEs

more likely to occur. Apart from the retrained networks, which have the lowest value for

DUE cross sections, the overall DUE rate is similar among the other CNNs which en-

forces the fact that DUEs are mostly related to the hardware attributes rather than the

algorithm.

Finally, Table 4.2 presents the FIT rates for the CNNs tested at ChipIR. Note that

the FIT rates are considered very high. By way of comparison, ISO-26262 states that

the error rate in safety-critical application should not exceed 10 FIT (DONGARRA et al.,

2015). Even though the TPU is definitely not designed for this kind of application, it is

worth it to mentioning that especially the SDC rates are surprisingly high.

Table 4.2: FIT rates for the CNN configurations that were exposed to atmospheric neu-
trons at Chip IR

Network architecture Dataset Transfer learning FIT SDCs FIT DUEs
Inception ImageNet - 235.27 8.10
ResNet ImageNet - 218.52 7.27

MobileDet COCO - 713.07 7.85

MobileNet

COCO - 716.15 5.92

Sub-COCO
YES 408.13 2.35
NO 429.44 3.74

Pets
YES 596.86 2.86
NO 611.97 4.96
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4.2.2 Critical Errors

As already mentioned, not all SDCs are critical for neural networks execution. As

shown in 4.5, SDCs are considered critical when they affect the detection/classification

outcome by altering:

• the class of the detected objects;

• the number of detected objects;

• the object position in such a way that the intersection between the expected bound-

ing box and the corrupted one becomes less than 50%.

Figure 4.5: Categories of critical errors

Figure 4.6 shows, for the configurations presented in Figure 4.4, the percentage of

SDCs that critically affect the classification/detection outcome.

The great majority of SDCs do not modify classification/detection. In the worst

case, only 5% of the errors were considered critical for MobileDet. The average for all

evaluated CNNs was only 1.21%. This is again contrasts with results obtained for GPU

architectures, in another study by our research group (Santos et al., 2019), in which up to

60% of SDCs in CNNs are classified as critical.

It is clear that SDCs in MobileDet tend to be way more critical than the other

network architectures. Comparing it to the MobileNet network architecture, which also

performs the detection task, MobileDet has less model parameters, a 13% larger input

size and a 50% smaller output. The fact that MobileDet has half of the number of output

elements makes each one of them twice more significant fot the detection outcome and,

therefore, the corruption of a single output value tends to be more critical in MobileDet

than MobileNet.

Transfer learning does not seem to have a consistent impact on the criticality of the
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Figure 4.6: Percentage of SDCs that critically affected the classification/detection out-
come of the CNN configurations that were exposed to high-energy neutrons at Chip IR
facility

SDCs. In the case where MobileNet is retrained with the Pets dataset, the application of

this technique has shown to decrease the number of critical errors by almost 3 times. On

the other hand, when trained with COCO subset, it makes the NN 20% more susceptible

to critical SDCs. Further studies are necessary to understand the reasons for this opposite

trend. The differences, though, are not very high.

Naturally, SDCs in classification NNs are considerably less critical since only a

few values, the highest ones, out of 1,000 output values are indeed relevant to the outcome

of the classification process. Therefore, although the SDCs are propagated to the network

raw output, most of them do not influence the classification result, as confirmed by our

data plot in Figure 4.6.
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5 CONCLUSION AND FUTURE WORK

In this work, we have deeply evaluated the reliability of Google Tensor Processing

Units through radiation beam experiments with two types of particles: high-energy and

thermal neutrons.

First, we have understood how neutrons impact the execution of two types of con-

volutions (standard 2D and depthwise 3D convolutions), which are the core atomic oper-

ations of the TPU, with increasing input matrices size. Besides the not surprising linear

dependence between the input size and the cross section values, we have seen that most

neutrons corrupt only one element of the output matrix and the corrupted value is very

close to the expected value. These characteristics of the fault model are very promis-

ing attributes for the reliability of the TPU architecture. With single corrupted elements

and small error magnitude, the amount of critical SDCs tend to be drastically reduced as

demonstrated in Section 4.2.2.

Then, we have executed eight different configurations of convolutional neural net-

works on the irradiated TPU. We have seen that networks that perform the detection task

have a much higher error rate than those that perform only classification. We have also

shown that the dataset reduction has a positive impact on the CNN execution reliability.

With less object classes in the dataset to be considered by the CNN, the detection becomes

simpler and the CNN gets more robust. Besides that, transfer learning has been shown

to significantly reduce training time without comprosing the robustness of the neural net-

works. Furthermore, the vast majority of errors are not critical for the CNNs execution,

which is strictly related to the fault model observed for convolutions.

In general, the DUE cross sections are about 2 orders of magnitude lower than

SDC cross sections, which indicates that TPU implements a very reliable interface with

the host device to which it is connected. Finally, the TPU seems more prone to being

corrupted by high-energy neutrons than by thermal neutrons.

As a future work, we plan to re-train the neural networks using the information we

gathered about the convolution error model. The idea is to reduce the number of objects

that can be detected and spread them in the whole representation span of the UINT8 data

type.
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