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Abstract—Trapped-ion systems can have a limited number of
ions (qubits) in a single trap. Increasing the qubit count to run
meaningful quantum algorithms would require multiple traps
where ions need to shuttle between traps to communicate. The
existing compiler has several limitations which result in a high
number of shuttle operations and degraded fidelity. In this paper,
we target this gap and propose compiler optimizations to reduce
the number of shuttles. Our technique achieves a maximum
reduction of 51.17% in shuttles (average ≈ 33%) tested over
125 circuits. Furthermore, the improved compilation enhances
the program fidelity up to 22.68X with a modest increase in the
compilation time.

Index Terms—Quantum Computing, Qubit, Trapped-Ion, Shut-
tle, Compiler

I. INTRODUCTION

The trapped-ion (TI) quantum bit (qubit) is one of the
front-runner technologies to build practical quantum computers.
They offer several advantages such as, identical qubits, long
coherence times, and all-to-all connectivity among qubits [1].
Several companies such as IonQ and Honeywell are pursu-
ing this technology. Recently, Honeywell reported a trapped-
ion system with a high quantum volume (QV) of 1024 [2].
Several TI hardware systems [1], [2] are already commercially
available through quantum cloud services such as Honeywell,
IBM Quantum Experience, AWS Braket, and Microsoft Azure.
Moreover, TI systems are being used for many practical cases
and demonstrations (e.g., [3]).

The existing TI systems have a smaller number of qubits
compared to their superconducting counterparts (IBM’s Man-
hattan quantum processor has 65 qubits whereas largest known
TI system has 11 qubits [1]). However, roadmaps for larger
systems with 50-100 qubits are in place [4], [5]. Confining
many ions in a single trap is a major roadblock for scalable TI
systems. With many ions in a single trap, the spacing between
ions reduces, making individual ion addressing difficult. More-
over, the gate time becomes slow leading to a longer program
execution time. To resolve these issues and to build TI systems
with more ions, quantum charge-coupled device (QCCD) based
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(ii) Ion chain Considering,
Total trap capacity = 4 per trap
Communication Capacity = 1
Excess capacities: T0 =  & T1 =1

Fig. 1. Schematic of a multi-trap TI system. Ions (qubits) (i) are confined
inside traps (iii) using DC and oscillatory potentials. Inside a trap, ions form
a chain (ii). Traps are interconnected via the shuttle path (iv) which allows
movement of ions between traps.

multiple interconnected traps are proposed [6]. Fig. 1 shows a
schematic of a 2-trap system interconnected by a shuttle path.

In a multi-trap system, sometimes computation is required
on data from ions situated in different traps. In such cases,
one ion needs to be shuttled (moved) from one trap to the
other so that the ions are co-located, and the gate operation
can be performed. A compiler adds shuttle operations to a
quantum program to satisfy the inter-trap communication. The
shuttle operation is expensive as it degrades quantum gate
fidelity. Therefore, minimizing the number of shuttle operations
is beneficial and desired. Murali et al. [7] performed extensive
architectural studies for multi-trap trapped ion systems. They
developed a QCCD compiler to generate hardware executable
programs from high-level versions and a simulator 1 with
experimentally calibrated values. Although the first attempt
to build a compiler for multi-trap TI systems, the compiler
in [7] suffers from several inefficiencies (described in detail
in Section III) which lead to a higher number of shuttle
operations. This, in turn, inevitably increases ion-chain energy
and degrades program fidelity.

In this paper, we optimize the compiler to reduce the number
of shuttles and improve the program fidelity in the process. We
make the following contributions in this paper:
• We introduce three optimization heuristics, i.e., future ops-
based shuttle direction policy, opportunistic gate re-ordering,
and nearest-neighbor-first re-balancing (with better ion selec-
tion).
• We evaluate our proposals across 5 NISQ and 120 random
quantum benchmarks and compare with [7] to showcase the
efficiency of our optimizations.
•We report the improvement in fidelity with minor compilation

1Ref. [8] is the accompanying code-base for [7].
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(a) Sample program

1. MS q[0], q[1];

2. MS q[2], q[3];
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0 1 2 3 4 5
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(iii) Trap (T) (iv) Shuttle path

(i) Ion/Qubit

T0 T1

3 4 5

(ii) Ion chain # Gate # Gate

1 MS q[0], q[1]; 6 MS q[2], q[5];

2 MS q[2], q[3]; 7 MS q[4], q[5];

3 MS q[2], q[0]; 8 MS q[0], q[1];

4 MS q[4], q[5]; 9 MS q[2], q[3];

5 MS q[0], q[3]; - -

q[0]

q[1]

q[2]

q[3]

q[4]

q[5]

g1
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(b) Gate dependency graph

(c) Possible gate execution order
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Fig. 2. (a) A sample quantum program consisting of 2-qubit gates. (b) Gate
dependency graph of the sample program. (c) A possible gate order that satisfies
the dependency graph. (Inset on top left: Possible allocation of 6 ions in the
2-trap system).

time overhead.
The rest of the paper is organized as follows: Section II

describes the basics of trapped-ion systems. Section III explains
the limitations of the existing compiler and presents our algo-
rithms for compiler optimizations. Section IV reports numerical
values of the number of shuttles, fidelity, and compilation time.
Finally, the conclusion is drawn in Section V.

II. BASICS

In this section, we discuss the basics of trapped-ion quantum
computers and terminologies used in the paper.

A. Gate dependency graph

A quantum program is a sequence of quantum gates. Fig. 2a
shows a sample quantum program consisting of 2-qubit MS
gates. A quantum program can be converted to a gate depen-
dency graph (a directed acyclic graph, DAG) which consists
of layers. Gates in a layer are independent of each other but
depends on one or more gates from previous layers. Fig. 2b
shows the dependency graph for the sample program in Fig. 2a.
Gates g5 and g6 are independent of each other (both in Layer–
2 or L2) as they work on different sets of qubits. However,
both g5 and g6 depends on g3 which means g5 or g6 cannot
be executed before g3. Fig. 2c shows a possible gate order that
satisfies the DAG in Fig. 2b.

B. Trapped-ion Quantum Computer

1) Trap details: A trapped-ion system consists of micro-
fabricated surface electrode traps which confine ions like Yb
or Ca using electromagnetic fields [1]. We schematically show
different components of a trapped-ion system in Fig. 1. A
single trap can accommodate a fixed number of ions. We name
this total trap capacity. During the initial allocation of ions,
a part of the total trap capacity is loaded with ions and the
remaining capacity (termed as communication capacity) is kept
unoccupied to allow for shuttled ions from other traps. During
program execution, ions may need to move (get shuttled)
between traps which will free-up one trap and fill-up another
trap. The number of free-spaces is termed as excess capacity
(EC) and defined as “total trap capacity − number of ions in

a0 a3 a2 a1 a4 a5 v0 v1

a0 a1 a2 a1 a4 a5 v0 v1

a0 a1 a2 a1 a4 a5 v0 v1

a0 a3 a2 a1 a4 a5 v0 v1

SWAP q[a1],q[2];

SPLIT q[a1];

MOVE q[a1]; //q[a1] energy ↑

MERGE q[a1]; //Chain-1 energy ↑

Split reduces
chain – 0’s 

energy

Shuttle 
adds energy 

to  q[a1]

Increased energy degrades Fidelity (F)
of any gate on chain–1 ions

Merging q[a1] 
increases
chain – 1’s 
energy (�𝑛𝑛)

f GATE “8 MS q[a1],q[a5]” STEPS

a0 a3 a2 a1 a4 a5 v0 v1

a0 a1 a2 a1 a4 a5 v0 v1

a0 a1 a2 a1 a4 a5 v0 v1

a0 a3 a2 a1 a4 a5 v0 v1

SWAP q[a1],q[2];

SPLIT q[a1];

MOVE q[a1]; //q[a1] energy ↑

MERGE q[a1]; //Chain-1 energy ↑

Increased energy degrades Fidelity (F)
of any gate on chain – 1 ions

GATE “8 MS q[a1],q[a5]” STEPS

(i)

(ii)

(iii)

(iv)

SPLIT q[2];

MOVE q[2]; //q[2] energy ↑

MERGE q[2]; //Chain-1 energy ↑

Increased energy degrades Fidelity (F)
of any gate on chain–1 ions

GATE “2 MS q[2],q[3]” STEPS

0 1 2 3 4 5

0 1 2 3 4 5

0 1 3 4 52

(i)

(ii)

(iii)

Fig. 3. Shuttle steps to bring ions 2 and 3 in the same trap.

a trap”. Inside a trap, gates are executed serially (technology
constraint) while different traps can have parallel gates.

2) Need for a shuttle operation: Qubits (ions) are all acces-
sible directly inside a trap in trapped-ion systems.

For example, the 1st gate MS q[0], q[1] in the sample
program (Fig. 2a) can be directly executed as both ions 1 and
2 are located in the same trap T0. However, the 2nd gate in
the sample program, MS q[2], q[3], cannot be directly
executed as ion 2 is in T0 and ion 3 is in T1. One of the
ions need to be shuttled to bring both ions into the same trap.

3) Gate fidelity model: Quantum gates in existing quantum
computers including TI systems are erroneous. Ref [7] presents
an analytical gate fidelity model for TI systems: Fidelity F =
1−Γτ−A(2n̄+1). Here, Γ = trap heating rate, τ = gate time,
n̄ = motional mode or vibrational energy of an ion-chain, A
is a scaling factor that varies as #qubits/log(#qubits). The
simulator in [7] uses experimental values of Γ, τ , A, and n̄ [9],
[10]. The values are reported in the paper [7] and are embedded
in the GitHub code-base [8]. We omit those values in this paper
for brevity.

4) Shuttle steps and impact on fidelity: The shuttle operation
involves several steps as depicted in Fig. 3. First, ion 2 is
split from the ion-chain, and then, moved from T0 to T1. The
movement adds energy to the ion. Then, ion 2 is merged with
the other chain, and gate MS q[2],q[3] can be executed.
This merge operation increases the vibrational energy (n̄) of
the chain in T1. As motional mode n̄ is now higher, the
subsequent gate operations in this chain will experience a lower
gate fidelity (F ).

III. COMPILER OPTIMIZATIONS

In this section, we describe our compiler optimization al-
gorithms. We also discuss the key policies of the QCCD
compiler [7] along with its limitations and show how our
approaches can address them.

A. Shuttle direction policy

Shuttle direction policy dictates which ion will be moved to
execute a 2-qubit gate. The shuttle direction policy in [7] uses
excess capacity as the deciding factor. The policy is illustrated
in Listing 1.



# Gate Shuttle 
direction Trap states

A MS q[1], q[2]; T1  T0

B MS q[2], q[3]; T0  T1

C MS q[1], q[2]; T1  T0

D MS q[2], q[4]; T0  T1

0 1 2

T0 (EC = 2)

3 4 5

T1 (EC = 1)

T0 (EC = 2)

0 1 2 3 4

T1 (EC = 1)

T0 (EC = 2)

0 1 2 3 4

T1 (EC = 1)

0 1 2

T0 (EC = 1)

3 4

T1 (EC = 2)

0 1 2

T0 (EC = 1)

3 4

T1 (EC = 2)

T0 (EC = 2)

0 1 2 3 4

T1 (EC = 1)

Total trap capacity = 4

Fig. 4. Issues with the shuttle direction policy used in [7], [8]. Excess capacity-
based logic can lead to repeated shuttles.

1 if excess_cap0 < excess_cap1:
2 Move Trap0 --> Trap1
3 elif excess_cap0 == excess_cap1:
4 Move 1st ion of the gate
5 else:
6 Move Trap1 --> Trap0

Listing 1. Shuttle direction policy [7], [8].

1) Issue with excess capacity-based policy: The excess
capacity based shuttle direction policy can result in repeated
shuttle between traps. We illustrate the issue with an example
in Fig. 4. Consider a 2-trap system with total trap capacity of
4 ions per trap. Consider, there are 2 ions in T0 and and 3 ions
in T1. Therefore the excess capacities (ECs) of the traps are
EC(T0) = 4− 2 = 2 and EC(T1) = 4− 3 = 1.

Next, consider 4 gates to be executed starting with MS
q[1],q[2]. As EC(T0) > EC(T1), according to the shuttle
policy in [7] (Listing 1), ion 2 will be moved from T1 to T0.
The trap states are updated after this shuttle, and new excess
capacities are EC(T0) = 1 and EC(T1) = 2. For the next
gate MS q[2],q[3], ion 2 will again be moved back to T1
according to the shuttle policy. Likewise, the next 2 gates will
also require shuttles. Therefore, 4 shuttles are required and ion
2 is shuttled back-and-forth between T0 and T1.

2) Proposed future ops-based shuttle direction: We propose
a future operations-based policy. Suppose, ionA belongs to
trapA, and ionB belongs to trapB . To implement gate(ionA,
ionB), one of the ions needs to be shuttled. To make the
decision, our heuristics algorithm computes move score for each
ion as defined below:
• ionA(A→B) move score = # ionA gates in trapB + #
ionB gates in trapB

• ionB(B→A) move score = # ionA gates in trapA + #
ionB gates in trapA

An ionA(A→B) move score greater than ionB(B→A) move
score means that keeping both ions in trapB will satisfy more
future gates than if both ions are kept in trapA. Therefore,
moving ionA to trapB will be more beneficial and vice-versa.

Consider the 4 gate-program in Fig. 4. Suppose, ionA = 1,
ionB = 2, trapA = T0, and trapB = T1. To perform Gate-A,
our logic will look-up the remaining 3 gates and compute the
move score as tabulated in Table I. As ionA(A→B) move score
> ionB(B→A) move score, ionA = 1 will move from trapA

TABLE I
MOVE SCORE COMPUTATION EXAMPLE

# ionA gates in trapB 1 (Gate-C)
# ionB gates in trapB 2 (Gate-B and D)
ionA(A→B) move score 3 -

# ionA gates in trapA 0 -
# ionB gates in trapA 1 Gate-C
ionB(B→A) move score 1 -

1. MS q[a], q[b];
2. MS q[c], q[d];
3. MS q[a], q[c];
4. …
5. …
6. …
7. …
8. …
9. …
10.…
11.MS q[b], q[d];

Gates 
involving 

ions 
other than 
ion_A and 

ion_B

T0 (EC=2) T1 (EC=1) T2 (EC=4) T3 (EC=2) T4 (EC=0) T5 (EC=5)

Previous logic: 
T4 sending ion to T0 needing 4 shuttles 

Improved logic: 
T4 sending ion to nearest free neighbor 

T3 or T4 needing only 1 shuttle

A full T4 creating a 
traffic block for shuttle 
between T3 and T5.

1. MS q[a], q[b];
2. MS q[c], q[d];
3. MS q[a], q[c];
4. …
5. …
6. …

7. …
8. …
9. …
10.…
11.MS q[b], q[d];

Fig. 5. Gate proximity consideration. Distant gates are excluded.

(T0) to trapB (T1) for Gate-A according to our optimized
logic. Moving ion 1 will satisfy requirement for the remaining
3 gates in this case, and thus, we will require only 1 shuttle
compared to 4 as in the previous case.

3) Gate proximity consideration: While computing the
number of future gates, we adopt a proximity-based approach.
We argue that not all gates involving ionA and ionB have
same priorities in the decision making. If there are many other
gates between two gates involving ionA and/or ionB , then
we flag the later gates as distant (low proximity) and exclude
them from move score computation. The proximity between
two gates involving ionA and ionB is a design parameter in
our compiler optimization. The distance should not be too low
as it should exclude most future gates from consideration and
should not be too high as distant future gates may not represent
ion locations correctly. From our analysis, setting the proximity
parameter to 6 provides good results.

We illustrate the proximity-based approach in Fig. 5. Gate
1 and 3 involves either 1 or both of ionA and ionB . There
is one other gate between these two gates, and thus, distance
= 1. As distance 1 < 6, gate 3 is considered. The next gate
involving ionA and/or ionB is gate 11. The distance between
gate 3 and gate 11 is 7 which is greater than set threshold of
6. Thus, gate 11 (and any related gate after gate 11) is marked
as low-proximity and excluded from score computation.

4) Comment on the complexity: The future ops-based
shuttle policy checks remaining gates for each gate requiring
shuttle. It can lead to O(n2) time complexity. With gate prox-
imity consideration, the complexity becomes O(n.k) where
k ≤ n. Moreover, not all gates require shuttles and do not
invoke the shuttle direction related computations. Combined
with gate proximity consideration, this keeps the value of n
and the compilation time in check even for very large circuits.

B. Gate execution order

For gate execution order, we keep the baseline earliest-ready-
gate-first heuristics as in [7]. It finds the order by topologically
sorting the gate dependency graph. In some cases, the favorable
shuttle direction computed by the future ops-based shuttle
direction policy may not be achievable if the destination trap



Algorithm 1: Re-order gate execution
Input: active gate, old destination, gate dependency

graph, gate order, remaining gates
Output: new gate order

1 active layer ← the layer the active gate belongs to;
2 check gates ← empty;
3 for layer ∈ 1st layer to active layer do
4 for gate ∈ layer do
5 if gate ∈ remaining gates and gate 6= active

gate then
6 check gates.append(gate);
7 end
8 end
9 end

10 for gate ∈ check gates do
11 Find source trap for the gate using future-ops

shuttle policy;
12 if source trap == old destination then
13 new gate order ← Remove gate from gate

order and insert before active gate; break;
14 end
15 end

is full. In such cases, we reorder the gate execution sequence
to free-up the trap maintaining the gate dependency graph. We
name the gate to be executed as active gate. First, we identify
the layer number of the active gate (e.g., if g8 from Fig. 2b
is the active gate, then layer number is 3). Any pending gate
in this layer and preceding layers are candidates as they can
be executed without breaking the gate dependency graph. The
algorithm checks each candidate gate. If a candidate gate can
free-up a space in the destination trap, then it is moved up the
gate execution order before the active gate, and it becomes the
new active gate. The algorithm is detailed in Algorithm 1.

Example 3.1: Fig. 6 illustrates an example of gate re-
ordering. Gate-A (gA) requires a shuttle, and the favorable
direction is moving ion 2 from T0 to T1 (as ion 2 has more
operations in T1). However, with present trap state (Fig. 6a)
T1 is full and cannot accept an incoming ion. For such a case,
the gate re-ordering logic will be invoked. The logic checks
candidate gates (pending gates in the active-layer, Layer-X in
this example, and preceding layers). Gate-B in Layer-X is a
candidate gate. This gate (gB) also requires a shuttle, and the
direction is moving ion 4 from T1 to T0 (as ion 4 has more
operations in T0). Thus, the re-ordering the baseline order in
Fig. 6d to the order in Fig. 6e (i.e., executing gB before gA) will
free up a space in T1. Next, gA can execute with its favorable
direction (ion 2, T0 → T1). Fig. 6f illustrates how re-ordering
gates to support favorable shuttle direction can save shuttles in
the example partial program.

1) Comment on the complexity: The algorithm checks every
pending gate in the active layer and the preceding layer(s), and
for each pending gate computes a shuttle direction. Again, it has
a time-complexity of O(n2). However, the number of pending
gates is typically small even for large circuits. This keeps

0 1 2

T0 (EC = 2)

3 4 5

T1 (EC = 1)

T0 (EC = 1)

0 1 3 4 5

T1 (EC = 0)

2 6

# Gate

… …

gA MS q[2], q[3]

gB MS q[4], q[0]

gC MS q[2], q[5]

gD MS q[6], q[2]

gE MS q[1], q[4]

… …

gA

gB

gC

gE

gD

Layer-X Layer-Y Layer-Z

gA gB gC gEgD

gB gA gC gEgD

T0 (EC = 4)

0 1 3 5

T1 (EC = 1)

2 64
After gate-B

(a)

(b)

(c)

(d)

(e)

… …

Gate Ion & 
Direction

Trap state 
after the gate

MS q[2], q[3] Ion 3,
T1  T0

T0: [0, 1, 2, 3]
T1: [4, 5, 6]

MS q[4], q[0] Ion 0,
T0  T1

T0: [1, 2, 3]
T1: [0, 4, 5, 6]

MS q[2], q[5] Ion 5,
T1  T0

T0: [1, 2, 3, 5]
T1: [0, 4, 6]

MS q[6], q[2] Ion 2,
T0  T1

T0: [1, 3, 5]
T1: [2, 0, 5, 6]

MS q[1], q[4] Ion 4,
T1  T0

T0: [1, 3, 5, 4]
T1: [2, 0, 6]

Gate Ion & 
Direction

Trap state 
after the gate

MS q[4], q[0] Ion 4,
T1  T0

T0: [0, 1, 2, 4]
T1: [3, 5, 6]

MS q[2], q[3] Ion 2,
T0  T1

T0: [0, 1, 4]
T1: [2, 3, 5, 6]

MS q[2], q[5] No shuttle T0: [0, 1, 4]
T1: [2, 3, 5, 6]

MS q[6], q[2] No shuttle T0: [0, 1, 4]
T1: [2, 3, 5, 6]

MS q[1], q[4] No shuttle T0: [0, 1, 4]
T1: [2, 3, 5, 6]

Without gate re-ordering (5 shuttles) With gate re-ordering (2 shuttles)
(f)

Fig. 6. An example of opportunistic gate re-ordering. (a) An example trap
state. (b) Partial quantum program. (c) Gate dependency graph of the partial
program. (d) Baseline gate execution order. (e) Re-ordered gate sequence to
free-up T1. (f) Illustration of shuttle reduction with gate re-ordering.

1. MS q[a], q[b];
2. MS q[c], q[d];
3. MS q[a], q[c];
4. …
5. …
6. …
7. …
8. …
9. …
10.…
11.MS q[b], q[d];

Gates 
involving 
ions 
other than 
ion_A and 
ion_B

T0 (EC=2) T1 (EC=1) T2 (EC=4) T3 (EC=2) T4 (EC=0) T5 (EC=5)

Previous logic: 
T4 sending ion to T0 needing 4 shuttles 

Improved logic: 
T4 sending ion to nearest free neighbor 

T3 or T4 needing only 1 shuttle

A full T4 creating a 
traffic block for shuttle 
between T3 and T5.

Fig. 7. Trap re-balancing logic for traffic block resolution: the problem with
the previous logic and a fix with our improved logic.

compilation time in check (supported by numerical results).

C. Resolving traffic blocks

The compiler [7] incorporates logic to resolve traffic blocks
in a shuttle path. If a trap is full, it cannot receive any ion
which potentially creates a traffic block. The compiler uses a
minimum-cost-maximum-flow (MCMF) algorithm to move an
ion from a full trap and resolves the traffic block. In [7], the
re-balancing logic always starts searching for a destination trap
from trap − 0. This may result in an inefficient re-balancing
which is illustrated with the following example.

1) Issue with re-balancing logic: Consider, an ion needs
to shuttle between T3 and T5 (Fig. 7). However, T4 is full
creating a traffic block. To remove the traffic block, an ion
from T4 needs to be moved to another trap. Therefore, we
need another trap (destination) with excess capacity (> 0).
With the present logic in QCCD-simulator [7], the search for a
destination trap always starts with T0. In the example in Fig. 7,
T0 has excess capacity, therefore T4 will send an ion to T0 to



re-balance the trap (i.e., free-up traffic block). This will require
4 shuttles. However, the neighboring traps of T4 (T3 and T5)
also have excess capacities. Thus, moving to either T3 or T5
would require only 1 shuttle.

Algorithm 2: Nearest-neighbor-first re-balancing
Input: blocking trap, all traps, trap topology
Output: destination trap

1 source trap ← blocking trap;
2 candidate dest dist ← empty hash table;
3 for candidate dest trap ∈ all traps do
4 if candidate dest trap 6= source trap and

trap.excess capacity > 0 then
5 distance ← shortest distance between

source trap and candidate dest trap on
trap topology;

6 candidate dest dist[candidate dest trap] = dist;
7 end
8 end
9 destination trap ← key (candidate dest trap) with the

smallest distance in candidate dest dist;

2) Nearest-neighbor-first re-balancing logic: We improve
the re-balancing logic by searching from nearest-neighbor traps
first. The algorithm (Algorithm 2) first filters out traps with 0
excess capacities and creates a list of candidate (destination)
traps that can accept an ion. Finally, the nearest candidate trap
is selected as the destination.

Max-score shuttle ion selection: Besides selecting the
destination trap intelligently, we add another optimization in
the logic to select a better ion to move. We apply the following
heuristics: the ion should have a high number of gates in the
destination trap and a low number gates in the source trap. We
compute a score = (wd × # gates in destination − ws × #
gates in source) for each ion in the source trap. Usually, we set
wd = ws = 0.5. If # gates in destination and # gates in source
are equal we make wd = 0.49 and ws = 0.51 to avoid score
being 0. Finally, ion with highest score is moved.

3) Comment on the complexity: Finding a neighboring trap
with free spaces has a linear time complexity. As the number
of traps are small, searching for a candidate trap is fast. For the
max-score shuttle ion algorithm, the number of ions to consider
becomes a constant as we have a fixed source trap. Thus, it also
has a complexity of O(constant×n). In [7], the authors show
that 15− 25 ions per trap is suitable NISQ applications which
bounds the constant to 25.

IV. EVALUATION AND DISCUSSIONS

A. Evaluation Setup

Experimental Platform: All simulations are run on an
Ubuntu 20.04 virtual machine with 8 GB RAM on a Windows
10 host with Intel i7-9700k 3.60 GHz.

Benchmarks: To showcase the efficacy of the compiler
optimizations, we choose several NISQ benchmarks from [7]
and Qiskit circuit library. The benchmark suite includes circuit
from Google’s supremacy experiment, quantum approximate

optimization algorithm (QAOA), quantum Fourier transform
(QFT), Square Root, and QuadraticForm [11] (quadratic form
finds it application in constrained polynomial binary optimiza-
tion problems). Besides the NISQ benchmarks, we test our
compiler with 120 random circuits. The random circuits are
of sizes 60, 65, 70, and 75 qubits. For each size, we take 30
randomly generated circuits with average 1438 2-qubits gates
(σ ≈ 413). For random circuits, we tabulate the mean value
with standard deviation in parentheses for performance metrics.

Hardware model: For a fair comparison, we use the same
hardware model as in [7]. We consider the “L6” trap topology
as in [7] where 6 traps are connected in a linear fashion (Fig. 7).
Each trap has a total capacity of 17 with a communication
capacity of 2 per trap. To get the program fidelity estimates, we
leverage the QCCD simulator [7] which includes experimental
operation time and gate fidelity models.

B. Number of shuttles

Table II shows the reduction in number of shuttle operations
for this work compared to [7] for benchmarks listed in Sec-
tion IV-A. We observe a ≈ 19% to 51% reduction in shuttles.
Our compiler outperforms (results in significantly less number
of shuttles) the QCCD compiler in [7] for every circuit in the
test suite of 125 circuits. This empirically supports the stability
of our algorithms.

The 5 NISQ benchmarks have structured but different 2-qubit
gate pattern [7]. For example, Supremacy and QAOA circuits
have nearest neighbor gate pattern, and for both of them we
observe ≈ 38% reduction. The QFT and the QuadraticForm
circuits have all-to-all connectivities. For such circuits, moving
one ion satisfies many future gates, and thus, they tend to have
a smaller number of shuttles. The SquareRoot circuit has short
and long-range gates, and results indicate that we may get
best reductions for such patterns. The random circuits have
a more unstructured pattern. Our compiler works for random
gate pattern as well achieving 26% reduction on average.

C. Program fidelity improvement

Shuttle operation increases vibrational energy or motional
mode(n̄) of an ion-chain i.e., heats up ion-chain and degrades
gate fidelity. As our compiler optimizations reduce shuttles,
it curbs motional mode resulting in improved gate and overall
program fidelity. Fig. 8 shows improvement in program fidelity
across different benchmarks. QAOA exhibits a very high-gain

TABLE II
REDUCTION IN THE NUMBER OF SHUTTLES

Benchmark Qubits 2Q gates [7] This Work ∆(↓) %∆

Supremacy 64 560 365 223 142 38.90%

QAOA 64 1260 1552 957 595 38.34%

SquareRoot 78 1028 717 355 372 51.17%

QFT 64 4032 241 196 45 18.67%

QuadraticForm 64 3400 228 164 64 28.07%

Random 60-75 1438 (413) 1048 775 (270) 273 (109) 26% (6)
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Fig. 8. Improvement in program fidelity compared to [7].

TABLE III
COMPILATION TIME OVERHEAD

Benchmark Compile time (sec) Compile time (sec) ∆(↑)

[This work] [7] (sec)

Supremacy 2.6 1.1 1.5

QAOA 12.99 3.88 9.11

SquareRoot 6.29 1.83 4.46

QFT 18.42 4.22 14.2

QuadraticForm 24.55 3.74 20.81

Random 19.15 (12.59) 3.53 15.62 (11.28)

as it requires the highest number of shuttles across benchmarks.
In general, applications with high shuttle-to-gate ratio will ex-
perience more improvement in program fidelity. This is because
the fidelity of such applications are dominated by shuttle-
induced aggravated motional mode (last term of the fidelity
equation, Section II) than the background heating. However,
reducing shuttle operations still significantly improves program
fidelity for benchmarks with low shuttle-to-gate ratio, e.g, QFT.

D. Compilation time overhead

Our compiler optimizations for shuttle direction, gate re-
ordering, and efficient re-balancing increase the compilation
time compared to [7]. Our algorithms have worst case time
complexity of O(n2). However, as we discuss in Section III-A4,
III-B1, and III-C3, the value of n is contained. Therefore, the
compilation time remains tractable even for very large circuits
like QFT and QuadraticForm (3000-4000 gates) as evident from
the Table. III. For all the circuits the increase in compilation
times are in few tens of seconds, and it remains under a
minute for very large circuits. Therefore, we are trading-off
compilation time in a scalable manner to reduce # operations.

E. Discussions

1) Heuristic vs. exact methods: Applying exact methods
like integer linear programming (ILP) and satisfiability modulo
theorem (SMT) solvers can lead to best results. However, these
methods do not scale well with circuit size. For the NISQ-era
benchmarks considered in this paper or the previous paper [7]
the exact approaches will become intractable. Therefore, ma-
jority proposals on quantum compilers (e.g., [12], [13]) resort

to heuristics methods and trades off some performance in the
favor of better scalability. We also follow the same approach.

2) Test benchmark sizes: We test benchmarks with 60− 75
qubits and thousands of 2-qubit gates. One can argue that these
benchmarks are not of practical sizes for present-day noisy
devices. However, the domain of quantum computing is in
a trajectory where benchmarks of this size will become and
must become practical. Our compiler generates more compact
circuits with substantially less number of operations (shuttles)
which will definitely be beneficial.

3) Initial mapping policy: In this paper, we used popular
greedy initial mapping policy [14]. In future, different initial
mapping policies can be explored. Even without modifying the
initial mapping policy, our compiler shows significant gains.

V. CONCLUSION

In this paper, we present compiler optimizations for multi-
trap TI quantum computers. Our methods drastically reduce
the number of shuttles compared to previous state-of-the-art
and improves program fidelity.
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