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Abstract

Integrated circuit development is an industry-driven high-risk high-stakes envi-
ronment. The time from the concept of a new transistor technology to the market-
ready product is measured in decades rather than months or years. This increases
the risk for any company endeavouring on the journey of driving a new concept.
Additionally to the return on investment being in the far future, it is only to
be expected at all in high volume production, increasing the upfront investment.
What makes the undertaking worthwhile are the exceptional gains that are to be
expected, when the production reaches the market and enables better products.
For these reasons, the adoption of new transistor technologies is usually based on
small increments with foreseeable impact on the production process. Emerging
semiconductor device development must be able to prove its value to its cus-
tomers, the chip-producing industry, the earlier the better. With this thesis, I
provide a new approach for early evaluation of emerging reconfigurable transis-
tors in reconfigurable digital circuits. Reconfigurable transistors are a type of
metal-oxide semiconductor field-effect transistor (mosfet) that features a con-
trollable conduction polarity, i. e. they can be configured by other input signals
to work as pmos or nmos devices.

Early device and circuit characterisation poses some challenges that are cur-
rently largely neglected by the development community. Firstly, to drive tran-
sistor development into the right direction, early feedback is necessary, which
requires a method that can provide quantitative and qualitative results over a va-
riety of circuit designs and must run mostly automatic. It should also require as
little expert knowledge as possible to enable early experimentation on the device
and new circuit designs together. Secondly, to actually run early, its device model
should need as little data as possible to provide meaningful results. The proposed
approach of this thesis tackles both challenges and employs model checking, a
formal method, to provide a framework for the automated quantitative and qual-
itative analysis. It pairs a simple transistor device model with a charge transport
model of the electrical network.

In this thesis, I establish the notion of transistor-level reconfiguration and
show the kinds of reconfigurable standard cell designs the device facilitates. Early
investigation resulted in the discovery of certain modes of reconfiguration that the
transistor features and their application to design reconfigurable standard cells.
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Experiments with device parameters and the design of improved combinational
circuits that integrate new reconfigurable standard cells further highlight the need
for a thorough investigation and quantification of the new devices and newly
available standard cells. As their performance improvements are inconclusive
when compared to established cmos technology, a design space exploration of the
possible reconfigurable standard cell variants and a context-aware quantitative
analysis turns out to be required.

I show that a charge transport model of the analogue transistor circuit pro-
vides the necessary abstraction, precision and compatibility with an automated
analysis. Formalised in a domain-specific language (dsl), it enables designers to
freely characterise and combine parametrised transistor models, circuit descrip-
tions that are device independent, and re-usable experiment setups that enable
the analysis of large families of circuit variants. The language is paired with a
design space exploration algorithm that explores all implementation variants of
a Boolean function that employs various degrees and modes of reconfiguration.
The precision of the device models and circuit performance calculations is vali-
dated against state-of-the-art finite element method (fem) and spice simulations
of production transistors.

Lastly, I show that the exploration and analysis can be done efficiently using
two important Boolean functions. The analysis ranges from worst-case measures,
like delay, power dissipation and energy consumption to the detection and quan-
tification of output hazards and the verification of the functionality of a circuit
implementation. It ends in presenting average performance results that depend
on the statistical characterisation of application scenarios. This makes the ap-
proach particularly interesting for measures like energy consumption, where av-
erage results are more interesting, and for asynchronous circuit designs which
highly depend on average delay performance. I perform the quantitative analy-
sis under various input and output load conditions in over 900 fully automated
experiments. It shows that the complexity of the results warrants an extension
to electronic design automation flows to fully exploit the capabilities of recon-
figurable standard cells. The high degree of automation enables a researcher to
use as little as a Boolean function of interest, a transistor model and a set of
experiment conditions and queries to perform a wide range quantitative analyses
and acquire early results.
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Chapter 1

Introduction

The semiconductor industry is known to be a high-risk high-stakes environment.
New production lines take a tremendous amount of money, time and effort to be
established and to start returning their investment. The time scale is measured
in decades rather than years or months, as the device that is used in this work a
germanium nanowire reconfigurable Schottky junction field effect transistor with
multiple independent control gates was first shown in 2006 in [62] and is yet to
be picked up for production. As a consequence, production alterations are imple-
mented with great caution and very conservatively, favouring small-step evolution
over revolutionary technological jumps. Emerging devices must prove their worth
before they can expect to be accepted by the industry.

This is where the current device and circuit characterisation techniques are
not sufficient. Current methods expect a technology readiness level of 4–5 ([55]),
which is about to be reached now for the mentioned germanium nanowire tech-
nology, before significant device models can be constructed, namely spice com-
pact models. These models are needed in order to perform sufficiently precise
logic circuit performance projections that garner interest of the producing indus-
try or steer further device optimisation. Additionally, producing smaller device
structures proves harder to yield enough functioning chips. Thus, the old rule
that complexity and reliability are at odds with each other still holds true for
chip manufacturing. So, either increasing the functionality per transistor and
per standard cell or reducing the size and complexity of a fixed standard cell
are still beneficial design goals for emerging technologies. This is what polarity-
controllable transistors and reconfigurable circuits are promising candidates for.
A design space exploration and quantitative analysis method that works from an
earlier technology readiness level would be a valuable contribution to these de-
mands, especially if it focuses on high automation and a decent coverage of the
possible circuit implementation variants.

Formal methods, like model checking and theorem proving, provide valuable
properties that align especially well with the demands in hardware development,
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2 1.1. EMERGING RECONFIGURABLE TRANSISTOR TECHNOLOGY

surveyed in [17] and exemplified in [19]. Both disciplines usually require exact
and exhaustive answers to critical questions, which sets them apart from the
best-effort computing domain. Both also struggle with the inevitable state space
explosion problem which leads hardware development to accept suboptimal cir-
cuit design results in exchange for functional correctness guarantees. It also has
led to the general acceptance of simulation methods in projecting and validating
circuit performance characteristics. In this thesis, I present a design space explo-
ration and quantitative analysis approach that is tailored to probabilistic model
checking, a formal method and suitable to investigate logic gates of the size of
standard cells. It builds on the model checker prism and provides its own input
language that is tailored to describe transistors, standard cells and experiment
setups to characterise them. Model checking [3] provides the formal framework to
exactly model and compute the analogue transistor network and also provides the
query language(s), based on temporal logics such as computation tree logic (ctl)
and linear time logic (ltl), to ask for interesting quantitative and qualitative cir-
cuit properties. It enables the direct computation of extremal values without the
need for particular knowledge about the circuit under test. So, instead of needing
expert knowledge to provide the right set of simulation input stimuli, the model
checker can be directly asked for the worst-case delay or power dissipation for an
arbitrary logic gate. After delivering the output, model checking also provides
the state transitions as witnesses that allow a close inspection of the circuit be-
haviour in interesting situations after the fact. What is very valuable, though, for
future integration, is that probabilistic model checking is able to determine the
long-run average performance characteristics of a circuit. Obviously, the average
performance is what is exhibited most of the time by a circuit and, thus, is where
optimisations lead to the highest benefits. Especially for measures like energy con-
sumption, that can easily tolerate short but large deviations, optimising for the
average may be much more beneficial than optimising for the worst-case. Results,
such as the long-run average, can also be computed as rational functions in vari-
ables that abstract model characteristics as probabilities, such as the switching
frequency of an input.

1.1 Emerging Reconfigurable Transistor Technology
The analysis method that I am going to lay out in this thesis has been conceived
to solve the problem of early device characterisation especially for reconfigurable
transistor technology that itself is founded in the ambipolar behaviour of each
device. Ambipolarity describes the property of a semiconductor to conduct both
charge carriers, electrons (𝑒−) and holes (ℎ+). This is usually a property that
designers seek to avoid, because it leads to undesirable short-circuit currents in
digital circuits that increase the energy consumption or conflict with the circuit
function altogether. In reconfigurable transistors, engineers have found ways to
control the ambipolar device behaviour electrostatically as shown in Figure 1.1.
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Figure 1.1: Drawing and I–V heat map diagram of a single germanium nanowire rfet
from a formal model. 24 nm feature size, comparable to Figure 2.6 on page 26.

The transistor now possesses two gates instead of one. The gates-all-around
structure positions each transistor gate at the interface between the metallic wire
(dashed), reaching in from the outer contacts, and the semiconductor (stippled).
The device can be configured to act as a p-channel field-effect transistor (pfet)
or an n-channel field-effect transistor (nfet). By adding another control input,
the device polarity can be controlled, in situ, without the need of implanting ions
that govern channel polarity like in common cmos transistors. That is why in
this thesis, electrostatically controllable transistors will be referred to as polarity-
controllable transistors. Transistor polarity control is not completely independent
of the rest of the device functionality, which means that it only works if all device
terminals are charged to certain voltages relative to each other. Voltage changes
to the polarity control gate also change whether the channel opens or closes, un-
less the second control gate is worked in unison with the first. Additionally, some
combinations of transistor contact voltages may leave the device in an uncon-
trolled ambipolar state. Thus, care must be taken to avoid these states or to let a
circuit switch as quickly as possible. The heat map in Figure 1.1 shows the drain
current for all possible gate voltages and highlights the normal operation modes.
While they touch three corners of the diagram, the fourth corner (lower right)
shows a fully-developed ambipolar device. A detailed description of the device’s
functionality is given in Section 2.2.2, pp. 23 ff.

A single device is used to implement both necessary transistor types that make
a complementary circuit, and it can change its polarity through an additional in-
put signal. This gives rise to a type of reconfigurable circuits that are founded in
Shannon decomposition of Boolean functions. These kinds of circuits are comple-
mentary and, thus, consist of a pull-up network and a complementary pull-down
network of transistors. What makes them special is that they have a working and
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Figure 1.2: 𝛼. Polarity control via second transistor gate. 𝛽. Reduced virtual channel
resistance compared to a series of cmos devices by using multiple independent gate fets.

meaningful implementation regardless of which of the transistor networks func-
tions as the pull-up or pull-down network, as long as they are configured to each
others opposite.

The technology that I dominantly use in this thesis was first shown in [62],
expanded into full reconfigurable fets in [23] and extended with multiple inde-
pendent control gates in [56] as shown in Figure 1.2 𝛼 and 𝛽. It is that of a
symmetric nanowire polarity-controllable fet, with emphasis put on its p- and
n-channel with (nearly) equal conductance properties. While other concepts of
circuit reconfiguration work on an architectural level that sits on top of ready-
made cmos standard cells, transistor-level reconfiguration acts on the single device
inside reconfigurable standard cells. This means, its effect is not only on the logic
level but on the analogue electrical level, as well. It is a well-known fact that
due to technological limits and architectural choices, pfets and nfets are typ-
ically individually sized according to their electrical contribution inside a logic
gate. Most famous is the delay performance discrepancy of the nand and nor
standard cells of older cmos technology nodes. It gives preference to the nand
circuit, because designing the pull-up and the pull-down networks such that they
output the same currents results in a structurally and actually smaller and faster
design than a balanced nor circuit of the same technology. Although this is not
unanimously true anymore, it serves as the guiding principle that underlines the
importance of a symmetric channel conductance in polarity-controllable devices
that are used to implement the reconfigurable circuits that are the subject of this
thesis. In addition to this observation, reconfigurable standard cell design relies
heavily on a property called reduced virtual channel resistance that comes with
multiple-independent gate devices in small feature sizes (see Figure 1.2 𝛽). The
property enables the implementation of wired-and or series paths that have the
same channel current as a single device. They are the second ingredient that
ensures that reconfigurable standard cells can develop their full potential.

The polarity-controllable fets are based on germanium nanowire heterostruc-
tures in a gate-all-around design and implement Schottky junction devices that
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are both controllable and polarity-controllable in the same voltage domain. Thus,
an output of one logic gate can serve as either an input or a reconfiguration signal
of the next logic gate. This is the third important device property, that en-
ables reconfigurable standard cells to work with in-band reconfiguration signals.
It sets them apart from similar transistor technology like floating-gate devices
used in non-volatile memory or single-transistor sensors that must usually work
with separate voltage domains for distinct operations, i. e. reading/writing or
excitation/detection.

Chapter 2 establishes the detailed operation of the polarity-controllable tran-
sistor and its relation to reconfigurable circuit design. All of these observations
and conclusions are results from early experiments on this subject and while we
have seen more reconfigurable transistor device design in the last years, these
three properties do not receive special attention from semiconductor research. I
suppose, in part, this is due to a lack of feedback from the circuit design com-
munity. These devices cannot be easily tested without proper models, that are
hard to come by in the early design stages, especially because device modelling is
usually a complicated process that needs a lot of data (which is not available in
the early stages). So, the lack of device data leads to a lack of testing and exper-
imentation which, in turn, leads to a lack of feedback into the device community.
This was one motivation to devise the automated design space exploration and
quantitative analysis method that I propose in this thesis.

1.2 Testing and Standard Cell Characterisation
Standard cell characterisation for a new device technology is usually conducted
by waiting until the development reaches technology readiness level 4 and a spice
compact model is created. It can then be used by current tool chains to quan-
tify known standard cell implementations, and new standard cell designs can be
drafted and tested in tight loops. Considering early device characterisation, re-
cent works, like [50], extract the important device characteristics directly from
fem simulations and apply curve fitting to increase the accuracy. This results in a
table model which is, then, compared to and validated against known technology
nodes of comparable sizes. A change in device characteristics requires the con-
struction of a new table model, which requires a lengthy series of fem simulations.
In addition, the table model is usually restricted to a limited set of parameters
which represents the “normal conditions” the device is used in. Although the de-
vice parameters were extracted from single-device simulations, the whole process
works on the abstraction level of standard cells rather than transistor circuits.
This means that some intricacies of the transient switching behaviour that can
have a major impact on circuit performance may get lost due to abstraction.
Additionally, this level of abstraction does not cover the numerous circuit imple-
mentation variants that reconfigurable standard cells exhibit and that are shown
to have significantly diverging quantitative and qualitative characteristics.
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Standard cell characterisation methods that are based on simulations also
require a lot of expert knowledge to deliver correct and meaningful results. As
with all testing schemes, they can only validate known answers or contradict
wrong assumptions. Finding the slowest transient of a standard cell requires the
tester to ask for the specific input stimulus that exhibits the transient in question.
The system cannot be asked for the slowest transient directly and, thus, cannot
qualify a given transient as the slowest.

Formal methods can deliver stronger answers and they have been successfully
applied to hardware verification on various levels of abstraction on whole sys-
tems [29, 31], in logic synthesis [20] and also on the register transfer level (rtl)
by augmenting hardware description languages [7, 19]. Static timing analysis on
the logic gate level and the verification of rtl designs using probabilistic model
checking [30] or with timed automata [1] have proven the general applicability
and tractability of formulating hardware verification problems as formal mod-
els. Probabilistic model checking [3] in particular provided the necessary tools
to successfully apply formal methods to the research problems in this thesis. By
describing the standard cells as, basically, analogue circuits that operate on volt-
ages and currents, I could formulate the necessary queries as independent entities
that are able to capture the transient switching behaviour of arbitrary logic gates.
Queries are formalisations of measures and properties which can be automatically
computed and verified by a model checker. This means that I can ask for quanti-
ties like worst-case delay, maximum power dissipation, or Boolean properties like
the existence of spurious output hazards directly and get an answer as a numerical
result or Boolean with a witness/counterexample. It also means that the query
to ask for the worst-case delay is independent of the particular circuit under test.
Any circuit of a particular size can be checked against it and the model checker
identifies the correct transition and quantifies the result automatically.

1.3 Research Questions
Emerging reconfigurable nanotechnology provides exciting new features and is
host to a new kind of reconfigurable standard cell design. Yet, the technology
still awaits adoption by both the circuit community, which needs assurance that
the technology is ready to be produced and the semiconductor producers that
need assurance that there are applications for the new technology. Based on this
observation, I aim to address the following overall research goal:

Explore the design of transistor-level reconfigurable standard cells and their effects
in combinational circuits. Create an automated approach for early technology eval-
uation to explore the design space of reconfigurable standard cells and to provide
quantitative and qualitative results on key metrics.

Today’s circuit and technology evaluation tools are centred around the gradual
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evolution of cmos technology that does not aim to provide early feedback to semi-
conductor research but that accepts new device parameters as a given and opti-
mises standard cell designs around them. With emerging devices, this becomes
a relevant aspect which needs to be addressed in the characterisation workflow.
Hence, the overall research goal can be broken down into the following individual
questions:

1. What is the design space of transistor-level reconfigurable circuits and what
kinds of circuit structures and Boolean functions do they support?

2. How do reconfigurable standard cells perform in larger circuit designs? How
does their performance change with their surrounding circuitry?

3. Are simple formal device and circuit models feasible and precise enough to
allow for both an automated evaluation and valuable early results?

4. Can an automatic quantitative analysis of formal standard cell models be
formulated as a tractable problem?

5. Can formal modelling and quantitative characterisation be abstracted in
such a way that the needed expert knowledge outside electronic circuit de-
sign is minimal?

By these research questions, the centre of this thesis revolves around the question
whether a formal analysis can provide the expected answers while maintaining
enough precision despite its limited scalability that comes with uncontrollable
model state space growth.

1.4 Design Space Exploration and Quantitative Analysis
In this thesis, I develop and present the workflow shown in Figure 1.3. Starting
with a Boolean function, a set of queries and a set of experiment conditions on
the left, the design space exploration algorithm generates all circuit implemen-
tations that adhere to certain criteria that are laid out in Section 4.4.1. These
implementations are minimal in the number of transistors, which is why the ex-
ploration tool is named minimal-circuits. All implementations are generated
in the netlist-like language prism-gen, that I developed for this thesis. It ad-
dresses three concerns and represents them in a single domain-specific language
(dsl), a) the parametrisation of transistor devices, b) the description of transistor
circuits in a netlist and c) the description and parametrisation of a test fixture.
Chapter 4 goes into the depth of describing the inner workings of the dsl. Its
main purpose is to provide useful interfaces between the three concerns such that
the circuits under test can be constructed independent from the exact transistor
being employed. Also, the test fixtures, which are bound to the queries that shall
be answered with them, are usually the same for all circuit implementations of
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Boolean function:
f = A ⊕ B ⊕ C

DSE Circuit
implemen-
tations

Quantitative
Analysis Sampled traces

Numbers
Queries:
tmax, Emax,tavg,…
"hazards"

Figure 1.3: Design space exploration and analysis workflow for reconfigurable standard
cells.

a single reconfigurable standard cell. So, they too should be independent of the
particular circuit implementation. Thus, prism-gen enables a designer to analyse
multiple circuits in different test fixtures using various transistor devices without
the need to rewriting undue amounts of code. The transistor device models are
independent of the circuits and are delivered as library elements. Yet, they are
still accessible in prism-gen such that they can be scaled or even parametrised
(e. g. see the drain current imbalance analysis in Figure 2.3 on page 22).

The output of the prism-gen compiler is a formal model, more precisely a
Markovian model, of the whole experiment that can be processed by the model
checker prism. The formal model encodes the electrical network as a bipartite
graph as can be seen in Figure 1.4 in the example of a nand circuit that is
transformed from the netlist description into a charge transport model. The graph
contains the circuit structure and transistors (as charge transport nodes) as well as
an input automaton which limits the time and value relations of the circuit input
stimuli. One example of an input automaton is shown at the right of Figure 1.4.
This automaton describes all possible state transitions of the circuit inputs and
contains additional restrictions as to when the next set of transitions is allowed
to occur. It usually ensures that the circuit output has stabilised before the next
input stimulus is triggered. So, by describing a rule by which the input stimuli
may develop, instead of a fixed trace of input stimuli at fixed intervals, the model
checker is able to explore all relevant input transitions by itself. Queries that
assess worst-case properties work on non-deterministic automata while queries
that implement statistical application behaviour work on probabilistic automata.
This is reflected in two separate test fixtures with two different input automata.

The last input into the dse and analysis workflow are the queries, which
correlate with their experiment models. They are also largely independent of
the circuits in question and usually only depend on the number of inputs into
and outputs out of the experiment. Both the dse and the quantitative analysis
run completely automatic, delivering different kinds of output, depending on the
query. Most queries deliver direct numeric results, but for some analyses, it might
be worthwhile to look at the transient behaviour of the circuit under test. This is
delivered as witness states by the model checker which can be used to generate the
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Figure 1.4: Left Conversion of a netlist circuit description into the formal model by
prism-gen. Right A typical non-deterministic input automaton with inputs 𝖠 and 𝖡
that is compatible to the circuit.

sampled traces in question. Lastly, the model checker is able to return a rational
function that can generate the numeric results of a family of input parameters.
So, instead of re-running the costly quantitative analysis for a new set of input
parameters, the problem can be reduced to computing a simple rational function.

One of my contributions is, that I use this automated workflow to perform
a mass analysis of two reconfigurable standard cells which, together, have more
than 60 implementations. More than 900 experiments deliver all interesting
quantitative and qualitative results that are shown in Chapter 5.

1.5 Contribution
The collaboration with semiconductor research uncovered a demand for early
circuit characterisation and device performance projections in standard cells. One
additional aspect was to have a device model that is easy enough to be altered
when more beneficial characteristics are determined from experiments or when
the device production work flow would change the final device characteristics,
which make reevaluation necessary. As the semiconductor producing industry is
very conservative, strong predictions regarding viable circuit architectures were
also sought for as a convincing tool to pick up the new transistor devices.

The contributions of this thesis are the research of fundamental reconfigurable
logic gates to show the conceptional foundation of transistor-level reconfiguration
and the several reconfiguration types that exist and reconfiguration modes that
can be used to drive the circuits. This thesis also shows the feasibility of reconfig-
urable standard cells in larger combinational circuit designs and their usefulness
in implementing higher-order functions, their contribution to the reduction of
circuit complexity and performance improvements. Its main contribution is a
comprehensive design space exploration and analysis method for reconfigurable
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digital circuits that is built on formal methods. It is used to show the automated
exploration and comparative analysis of the 3-min and 3-xor functions and their
various reconfigurable implementations. Multiple measures are covered in the
quantitative analysis for a range of experiment conditions.

Fundamental reconfigurable circuits Reconfigurable circuits that are based on
polarity-controllable transistors, like germanium nanowire devices [56], imple-
ment a certain kind of reconfiguration that exploits Shannon decomposition of
Boolean functions. In Chapter 2, I investigate fundamental circuit implementa-
tions and how they make use of polarity-control and the reduced series resistance
of multiple-independent gate transistors. Device geometry, functional and perfor-
mance symmetries turn out to play a major rôle in the effectiveness of the device
for a well-performing reconfigurable circuit. I infer three device reconfiguration
modes and their influence on circuit design possibilities.

Combinational circuits Reconfigurable implementations of logic gates have to
prove their efficiency in larger circuit designs. In Chapter 3, I compare the re-
configurable implementations of basic logic gates to their standard cmos counter-
parts implemented in a state-of-the-art device node. Their structural differences
are shown by comparing their logical efforts (see [53]) in addition to absolute
delay values. Strong variability of results motivate the later analysis of the whole
spectrum of reconfigurable implementations of a certain logic gate, as neither the
logical effort nor the delay are sufficient to judge the trade-offs between circuit
structure and performance. In that chapter, I also show the improvements that
reconfigurable standard cells can bring to computation-oriented circuits, by im-
plementing an alu with higher delay performance and less energy consumption.
A complex conditional sum adder serves as the example for how reconfigurable
standard cells can improve circuit characteristics if their reconfigurability is not a
user-visible function but remains embedded to compress a fixed circuit function-
ality into a smaller circuit design.

Constructive circuit exploration and analysis The initial studies show that a com-
prehensive analysis of reconfigurable circuit implementations is necessary to de-
termine their actual performance range and their suitability in the design of com-
binational circuits. Additionally, reevaluation, performance projections and adap-
tation to modified transistor characteristics are a main goal for the methodology
and tool set that I present in Chapter 4. While hand-picked implementations
could show the feasibility, the comparison between the technologies also showed
that the actual performance depends on intricate details of the circuit struc-
ture and the individual transistor device. Thus, the methodology must allow
a researcher to perform an automated exploration and analysis of the reconfig-
urable implementations of a certain Boolean function. In this thesis, I devise a
charge transport network model that operates on simple analytical transistor de-
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vice models. It is precise enough to capture the analogue device behaviour and is,
yet, simple enough that it can be implemented as a formal model. This model is
built and analysed by the probabilistic model checker prism which checks device-
and circuit-independent queries against it. They can directly answer questions for
extremal values like worst-case delay and power dissipation as well as support the
detection and enumeration of spurious output hazards and the verification of cir-
cuit functionality. The models and the experiment descriptions are implemented
in the domain-specific language prism-gen that abstracts the model details into a
netlist-like description language that enables the composition of complex circuits
from simpler ones while maintaining detailed access to single transistor or exper-
iment properties if necessary. To show the validity of the proposed method, I
compare the germanium nanowire model against tcad simulation data from [58,
56]. Additionally, I also implement the cmos production device from [41] and
compare the performance of standard cells implemented in the proposed method
against commercially available spice models to show the precision of network and
device model at a circuit level. The design space exploration of reconfigurable cir-
cuit implementations is constructive such that in a given set of constraints, all
implementations are considered and are guaranteed to be functionally correct. I
also show why timed automata are not a suitable implementation technique de-
spite being an established method and successfully used in hardware verification
on the register-transfer level.

Automated quantitative analysis To put the proposed method to the test, I present
a comprehensive evaluation of two significant Boolean functions, which shows its
range and abilities. In Chapter 5, I show a worst-case analysis of all reconfigurable
3-input minority circuit variants in comparison to each other and the static imple-
mentation. The analysis reveals that both input inverter sharing and output load
sensitivity must also be considered to get a complete picture of the performance
properties of individual implementations as worst-case analyses prove to be too
simplistic to capture all realistic use cases. To address computation-intensive sce-
narios, I also investigate the 3-input exclusive-or function. This analysis includes
hazard detection and shows that the direct access to extremal values uncovers the
worst-case states for different measures like delay and energy may deviate from
each other, underlining that each measure warrants an independent analysis that
is easily achievable with the proposed method. Future technological improvements
will have to concentrate on improving the average performance case, because this
is where the most optimisation potential lies for best-effort computing. This is
especially true for measures like energy consumption, in which short extreme out-
liers can be easily tolerated. These measures are hard to come by with simulation
techniques but become accessible with probabilistic model checking. I show long-
run average results for the 3-xor circuits and parametric delay calculations whose
results are directly usable in future eda tools.
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Chapter 2

Fundamental Reconfigurable
Circuits

Reconfiguration and reconfigurable hardware has settled in a prominent niche in
both research and application since the 1990’s when it became powerful enough to
serve as an implementation basis for real-world applications. It has become a fixed
go-to implementation vehicle for certain high-bandwidth software-defined commu-
nications and filtering applications with ever-varying degrees of reconfigurability.
Its success hinges on its ability to strike a balance between the system architect’s
(or user’s) uncertainty of the exact computation that the target system needs to
perform and strong requirements regarding computational efficiency. Uncertainty
requires some degree of programmability which directly conflicts computational
efficiency, which is either dictated by necessity in cyber-physical systems or has
monetary reasons in best-effort computing applications (faster = more money).
Additionally, programmable systems are, at least somewhat, adaptable to new
conditions and repairable in the field.

There has been numerous preliminary work on reconfigurable hardware design
and architecture. Principle work and how the approach in this thesis differs from
it is introduced in Section 2.1.1. The concept of reconfiguration, as explained in
the next section, is closely tied to the fundamental transistor device that enables
the digital circuitry in the first place. It is no architectural concept that sits on
top of regular cmos standard cells. Numerous transistors have been proposed
that would be suitable as implementation vehicles for the kind of reconfiguration
described in this thesis. Silicon and germanium nanowire transistors that use
Schottky junctions are one class of devices and are shown in [62, 23, 56, 51,
11]. They also serve as the implementation devices to showcase the quantitative
standard cell characterisations in this thesis, because their development already
produced sufficient research data to not only model the devices but to also validate
the models against independent simulations.

13
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Dual metal-gate planar fets are proposed in [28], but carbon nanoribbon
devices ([16]) and other 2-D material devices ([44]) also show promising char-
acteristics regarding polarity controllability. For instance, heterostructures from
carbon nanotubes and the 2-D material MoS2 that form a reconfigurable tun-
nelling transistor are shown in [33].

2.1 Reconfiguration Redefined
The term reconfiguration will be used often throughout this thesis and, thus,
warrants an explanation of what is understood as reconfiguration and how it is
different from common usage throughout the field. Reconfiguration, in this work,
is bound to a technological ability of the primary active component, the transistor.
The transistors we consider in this work, and which will be detailed in Section
2.2, all have the ability to have their channel polarity electrically controlled.
Thus, they can conduct either positive charge carriers or negative charge carriers,
controlled by an additional input. In combination with certain circuit topologies,
introduced in Section 2.3, polarity control enables us to perform different Boolean
functions depending on the configuration of the polarity-control inputs of the
transistors. The circuit is said to be reconfigured from one Boolean function to
another.

2.1.1 Common Understanding of Reconfiguration
Circuit design always has been an industry-driven field of research. This means
that terms do not always have their foundation in science but may stem from
product marketing. When looking closely at the use of the term reconfiguration
it becomes apparent that it is used more colloquially than in a precise narrow
meaning. Programmable array logics (pals), programmable logic arrays (plas)
and field-programmable logic arrays (fpgas), for instance, are clearly considered
reconfigurable circuits but are called programmable. Their implementations also
differ a lot from each other.

The pal was first described in [5] as an array of programmable fuses. Each
input signal is driving two columns of the array, one as direct value and one
inverted. Programmable fuses allow the designer to connect each column to select
rows, which then connect to (4-input) and gates. Two and gates are pair-wise
connected to a final or gate, whose output signal can be used directly or inverted.
This means, all logic must be expressed in product terms under consideration of
the limitations introduced by the and and or logic after the array. Routing and
the construction of sequential logic must be done off chip by connecting an output
to another input. Configuration strictly considers the description of product terms
and output signal inversion. Reconfiguration is not possible in these devices so
they are, strictly speaking, not reconfigurable. Nevertheless, they introduce the
important concept of a semiconductor fabric whose connections are done in late
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Figure 2.1: Comparison of common reconfigurable architectures along three axes: re-
configurability of the logic fabric, reconfigurability of the interconnect, and the design
of the logic fabric.

production depending on the intended application.
The pla extends this concept, as described in [22], by introducing a second

matrix between the and gates and the or gates. Again, each and gate drives two
rows, directly and inverted, which can be connected to select columns via fuses.
A number of columns, usually eight, drives a single or gate. This design does
not change the fundamental expressivity of its reconfiguration nor does it change
the level of architecture it is applied on, but it enables a better compression of
the logic functions by enabling the expression of logic in configurable sum-of-
products terms. Most notable, product terms that are far away from each other
or use radically different inputs can now be shared between several or gates as
these no longer only connect to neighbouring and gates. The architecture also
features internal feedback paths, leading to a more reliable sequential logic, as
their impact on signal propagation and latency can now be depended upon.

The deciding technological step forward comes by the use of erasable fuses to
implement the configurable connections which are introduced in programmable
logic devices (plds) and complex programmable logic devices (cplds). Though
their fundamental fabric design is similar to plas, they can be reconfigured in
the field. Architecture-wise, cplds contribute macrocells (hard macros or hard
intellectual property cores (ip cores) in modern terms) in addition to the sea-
of-gates logic fabric and the programmable interconnect, which can multiplex
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between multiple instance of logic fabric and macrocells. The interconnect allows
for deeper logic and carrying inner state by providing internal feedback paths and
defined ways to construct flip flops.

Fpgas were introduced in [8] and make an important step forward to the,
now common, understanding of reconfiguration by introducing several new re-
configuration primitives. They introduce the 2-dimensional array architecture of
programmable logic elements surrounded by programmable routing, which was
pioneered in a fixed form by contemporary fabricated gate arrays. They are also
the first devices to use static random access memory (sram) to capture the device
program instead of proms or fuses. Although at the time of its inception it was
still two decades away from its realisation, this gave rise to the idea of dynamic
hardware; hardware that can be reconfigured not only in the field but even in
operation, so, while the surrounding hardware still performs its function. Today,
this concept is subsumed under the name of dynamic partial reconfiguration or
dynamic function exchange. Another important architectural contribution is the
use of lookup tables (luts) for Boolean function implementation instead of a
sea-of-gates design. Implementing the full truth table of a function, which looks
excessive on paper, turns out to be the driving factor for a flexible, synthesis-
able and routable logic design, as it simplifies the natural entanglement of logic
placement and routing by featuring constant-delay Boolean functions, as long as
they fit into a single lut. Finally, replacing crossbars with chains of pass tran-
sistors enables a flexible 2-dimensional routing. Fpgas introduce reconfiguration
on another architectural level, the interconnect. Starting with cplds, the pro-
grammable interconnect inside an fpga is highly structured into local connection,
longer uninterrupted connections and long lines that can reach across the chip.
In addition, fpgas feature a separate, low-skew clock network with the ability to
cross signals from and to either network to achieve maximum flexibility and high-
est performance. Switch boxes form the programmable part of the interconnect
and allow for efficient XY routing across the fpga’s surface. This 2-dimensional
network of routes with islands of hard macros and configurable logic blocks in
between result in the most powerful and versatile reconfigurable architecture to
date, with a 14 times larger market size of 6 billion US dollars [61], than cplds,
with a market size of 421 million US dollars [49] in 2021.

All this flexibility comes at a high price, though. Computing the logic place-
ment and the routing between the placed logic are both interdependent and NP-
hard problems in themselves. Computing even simple designs needs several orders
of magnitude more powerful machines than for the next class of reconfigurable
architectures, the coarse-grain reconfigurable architecture (cgra).

cgras can be regarded as a set of arithmetic logical units (alus) connected
by a network on chip (NoC). This means, they can be considered distributed pro-
cessing systems but are called (coarse-grain) reconfigurable. Their strength lies in
the focus on efficiently connecting common-case processing elements and can be
considered a case of the principle Convention over Configuration. By having a con-
vention that defines the interface between the processing elements, i. e. a 64-bit



2. FUNDAMENTAL RECONFIGURABLE CIRCUITS 17

bus, request-acknowledge signals or a common clock, routing between numerous
processing elements becomes a more constrained and, thus, easier task. It also
reduces the size of the device program by several orders of magnitude, enabling
successive reconfiguration while in operation. Reconfiguration works completely
on a high architectural level, specifying the abstract connections between complex
processing elements.

This shows that reconfiguration can neither be pinned to a specific mechanism
nor a specific architectural level, nor a specific algorithm. Figure 2.1 shows the
evolution from pals to cplds, the revolutionary change in architecture in fpgas
and the simplification back to partially reconfigurable logic to gain speed and
run-time reconfigurability in cgras.

In very general terms, reconfiguration can be described as a mechanism, that
allows a designer to modify the functionality of an integrated circuit. The access
to this mechanism and the resources it acts upon inside the integrated circuit are
not part of the regular logic that integrated circuit uses to drive the target ap-
plication. So, a reconfigurable circuit always uses some extra resources to govern
the interaction between and functionality of the user-visible logic resources.

It is important to note that any implementation of an algorithm conceptually
consists of at least three parts, a data path leading from the input to the output,
a reducer component destroying entropy (thus, performing a computation), and
a control path that steers the behaviour of sub-components. These are the same
parts that constitute a Turing machine, the way of data from the band through
the head, the head as the mechanism performing mechanical work and the rules
that describe what actions the head can perform. While the band is regarded
part of the Turing machine, data memory is normally not regarded as being part
of an algorithm. Circuits cannot be an exception to this observation.

So, using this mental model to approach reconfiguration of circuits, we arrive
at the same concept we traditionally use in computer science, programmability.
The control path is the implementation of our program and can, in general, be
fed by input on the data path. Like in central processing units (cpus), the be-
haviour of the reducer components depends on the input. When an alu is either
computing, say, addition or subtraction, the circuit is (re-)configured to perform
either computation. One could argue, that the difference between these two is,
that the alu is always performing both operations and we merely control the
propagation of the results or, even if we halt execution of unused units, we still
need to have them physically implemented. Whereby in a reconfigurable circuit,
the unused logic is not even there. Well, for reconfiguration I will be talking
about later in this work, this is not true. There will be no unused logic sitting
dark as a consequence of reconfiguration. Also, to be truthful, one must accept
that reconfigurable circuits must also keep unused resources around. If we could
build a reconfigurable circuit precisely with the amount of logic that we needed
for our application, it would not need to be reconfigurable at all but would al-
ready be the final application-specific integrated circuit (asic). So, neither of
the two are valid arguments to treat reconfiguration in fpgas any different from
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programming circuits like cpus.
So, while it might be useful to distinguish reconfiguration from programming,

this distinction has no solid scientific foundation. It is rather a social distinction
like differentiating between scripting (as in JavaScript) and programming (as by
programming in C). At least, its usefulness highly depends on how narrow the
communication context is in which reconfiguration needs to be set apart from
computation.

2.1.2 Reconfiguration is Computation
In this thesis, I will use reconfiguration in a restricted meaning that is defined by
the polarity-control feature of the transistors that I use. Used in complementary
logic circuit designs, it can be captured by the mathematical formalism of self-dual
Boolean functions.

Using polarity-controllable transistors, a complementary circuit is reconfigured
by changing the sensitivity of a particular transistor towards its inputs, which is
equivalent to changing its channel polarity from nmos to pmos or vice versa.
That is why I call this mode of reconfiguration transistor-level reconfiguration.
Mapped to a whole complementary logic circuit, this means that parts or all of
the pmos network is reconfigured to an nmos network and, at the same time,
its complementary part is reconfigured in reverse. For complementary logic cir-
cuits, this mode of reconfiguration completely stays in the Boolean domain or the
Boolean domain is closed under reconfiguration. The difference to reconfigurable
luts is that transistors can be individually reconfigured, giving transistor-level
reconfiguration greater power to also perform non-Boolean reconfiguration. With
few exceptions, which are expressly mentioned when they appear, this work con-
centrates on constructing, evaluating and showcasing logic circuits that make use
of purely Boolean transistor-level reconfiguration.

Now, the mathematical foundation to Boolean transistor-level reconfiguration
lies in self-dual Boolean functions.

Definition 1 A neutral function is a Boolean function that has equal number of
min terms and max terms.

Additionally, self-dual functions must not have mutually exclusive terms be-
cause otherwise they could not have a dual term for each other term.

Definition 2 Two Boolean terms, which are both either conjunctions or disjunc-
tions, are called mutually exclusive iff.

1. they use the same variables,

2. all their variables are complementary to each other and

3. they evaluate to the same output.
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Table 2.1: Example of a Boolean function that is neutral but not self dual.
Each term and its dual term is described as is the expected output to make
a particular row self-dual to its dual row.

𝑎 𝑏 Out Term Self-dual Expected Out Mutually
term (by n'th row) exclusive term

0 0 1 𝑎 ∧ 𝑏 𝑎 ∨ 𝑏 0 (by 4) 𝑎 ∧ 𝑏
0 1 0 𝑎 ∨ 𝑏 𝑎 ∧ 𝑏 1 (by 3) 𝑎 ∨ 𝑏
1 0 0 𝑎 ∨ 𝑏 𝑎 ∧ 𝑏 1 (by 2) 𝑎 ∨ 𝑏
1 1 1 𝑎 ∧ 𝑏 𝑎 ∨ 𝑏 0 (by 1) 𝑎 ∧ 𝑏

Definition 3 The dual term 𝐵′ of a Boolean term 𝐵 is defined as the term that is
constructed from 𝐵 by replacing all binary and unary mappings with their inverses
(e. g. ∨ ↔ ∧, ∘ ↔ ∘) and exchanging the neutral elements (e. g. 0 ↔ 1).

Let us consider Boolean terms over three variables 𝑎, 𝑏 and 𝑐. The mutually
exclusive term to 𝑎 ∧ 𝑏 ∧ 𝑐, which is 𝑎 ∧ 𝑏 ∧ 𝑐, cannot be equal to the dual term,
which is 𝑎 ∨ 𝑏 ∨ 𝑐. If that would be the case, it would mean that the output of
the function that uses these terms does not depend on the three variables, at all.

Definition 4 A self-dual Boolean function is a Boolean function equal to its own
dual, i. e. each of its Boolean terms is replaced by its dual. A Boolean function
over 𝑛 variables is called partially self-dual when it contains a self-dual Boolean
function over 𝑘 variables with 𝑘 < 𝑛.

An in-depth explanation of self-dual functions and their properties can be
found in [4].

The Truth table 2.1 for the function over two variables has 22 = 4 lines, some
of them minterms some maxterms depending on the function value. And each
one is mutually exclusive to one and only one other term as shown in the column
Remark. The table also lists the term, its accompanying dual term and, given
the dual term’s output from the truth table, the expected output to make both
terms dual. Only when the output and the expected output match for each line,
is the function self dual.

The smallest non-trivial self-dual Boolean function is over three variables and
is shown in Table 2.2. While the left half of Table 2.2 lists all possibly self-dual
functions over two variables. Closer inspection reveals, though, that none of them
depends on both variables. This concludes that there are no self-dual Boolean
functions over two variables. It is the 3-input minority function, which has the
added benefit of covering the complete Boolean algebra, due to it being usable
as an inverter. This function is self-dual in every variable. So, each variable can
be used to select between a term and its dual, and it does so for all terms of the
function. This property can be directly translated into a mechanism that provides
Boolean transistor-level reconfiguration.
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Table 2.2: Left: All possibly self-dual dyadic Boolean functions. None ac-
tually depend on both variables, proving that there are no self-dual dyadic
functions. Right: Example of the smallest non-trivial self-dual function
which also covers the complete Boolean algebra, the 3-input minority.

all self-dual dyadic
𝑎 𝑏 Boolean functions

0 0 1 0 0 1
0 1 1 0 1 0
1 0 0 1 0 1
1 1 0 1 1 0

𝑓 𝑎 𝑎 𝑏 𝑏

𝑎 𝑏 𝑐 3-min

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Definition 5 Given a self-dual function 𝑓 over 𝑛 variables and the variables be
partitioned into a set of reconfiguration variables 𝑅 and a set of static input vari-
ables 𝑆. Boolean transistor-level reconfiguration maps reconfiguration variables to
the polarity-control inputs and source inputs of transistors such that the resulting
logic circuit implements the set of dual terms, switching between either the term
or its dual depending on the values of the reconfiguration variables.

This is the definition of reconfiguration that will be used throughout the re-
mainder of this document unless noted otherwise.

2.2 Reconfigurable Transistor
Self-dual Boolean functions and their relation to reconfigurability are directly
reflected in the electrical behaviour of the transistors I am going to use in this
thesis. The devices used in the remainder of this thesis are nanowire transistors
built in a silicon or germanium technology. They were conceived with their basic
electrical characteristic in mind, which sets them apart from off-the-shelf mosfet
devices—their ability to change the conductance of their channel between 𝑒−

carrier conductance to ℎ+ carrier conductance with the help of an extra transistor
gate. As it turns out, when implementing static cmos logic gates, this property
coincides with Boolean self-duality.

2.2.1 Device geometry
Industrially manufactured nanowire transistors are etched out of the bulk material
in a top-down process, comparable to standard cmos devices. The drawing of an
ideal silicon nanowire (sinw) transistor in Figure 2.2 shows a grown device which
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Figure 2.2: Idealised drawing of a grown silicon nanowire transistor. At its core, the
silicon wire and metallic NiSi2 wires form a heterostructure with two Schottky barriers.
All-around gates over the barriers control the channel polarity and conductivity. Addi-
tional inner gates add a wired-and functionality to the device without impacting device
performance.

is functionally the same but whose components are easier to identify and explain.
It’s proportions were chosen for instructive purposes and are not to scale. All
hatched components in Figure 2.2, like the contact surfaces, depict metallic parts,
white surfaces are oxides, and stippled objects are semiconductors.

In production, the wire is grown under a gold particle or etched from the bulk
material. After formation, the wire is metallised from its ends by intrusion of
nickel, forming nickel silicide (NiSi2). Nickel silicide keeps a sharp interface to the
silicon wire and its intrusion depth can be controlled by keeping a precisely timed
temperature profile or by depositing exact amounts of nickel onto the source and
drain contacts and run the intrusion until all material is depleted.

It is important that the NiSi2/Si interface forms directly under either of the
outer gate contacts for maximum control over the Schottky barrier and, thus,
good device performance (cf. [56] pp. 18). The Schottky barriers form an energy
barrier for either types of charge carriers which cannot be overcome by the voltage
difference between the source and drain contact. Each Schottky barrier gate can
deform the conduction band along the semiconducting middle wire section and
depending on the material, the gates need about 0.6V(Si) or 0.3V(Ge) difference
to the source to allow charge carriers to tunnel through the barrier (the device-
intrinsic threshold voltages). For reasonable wire lengths (up to a few hundred
nanometres), charge transport inside the semiconducting section is ballistic, which
is the reason that the inner gate shown in Figure 2.2 does not increase the channels
intrinsic resistance and, thus, does not negatively affect device performance. Inner
gates show different performance characteristics than Schottky barrier gates which
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Figure 2.3: Modeling of the effects of an imbalance of drain currents between pmos
and nmos configurations of germanium migfets. 3-min circuit variant 1,bl,sg, output
load 𝐻 = 1, worst-case delay.

relate to the physical structure of the device. As they do not influence a Schottky
barrier, inner gates have a smaller threshold voltage, thus, need less energy and
usually switch faster than their Schottky barrier siblings. It is also possible to
have multiple inner gates on a single nanowire and reconfigurable circuits will
make use of them.

The geometry of sinw transistors has another benefit that becomes important
for building reconfigurable circuits. The amount of material in the hafnium nitride
(HfN) shell can be used to parametrise the on-current through the wire. Chang-
ing the thickness of the shell changes the pressure on the wire, which influences
charge carrier mobility differently for ℎ+ carriers than 𝑒− carriers. This way, apart
from unavoidable production variations, the pmos and nmos on-currents can be
balanced out enabling the design of cmos logic gates without severe performance
imbalances.

Figure 2.3 shows the effects of drain current imbalances on circuit perfor-
mance. The graph depicts the worst-case delay of a fully reconfigurable 3-min
circuit, specificly the variant 1, bl, sg, which is similar to the one shown in Fig-
ure 2.10 I, over the quotient 𝐼PMOS

D /𝐼NMOS
D . The nomenclature of circuit variants

will be explained further in Chapter 5, but the signifier bl stands for a distribu-
tion of the reconfigurable signals over all input signals and the sg describes the
reconfiguration mode the transistors are used in and is explained Table 2.3.

The results were retrieved by the model checking approach that is also ex-
plained in full detail in Chapter 4, but they are not measurements or simulation
results but exact numbers (within the precision of the model). The curves show
the rise and fall delay separately, to distinguish pmos-driven switching events
from nmos-driven events. As can be seen from Figure 2.3, for this particular
circuit, there is a zone between 0.8 and 3 in which the imbalance as almost no
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effect on the worst-case output delay. This is well within range of fabrication
tolerances, such that current imbalances, although being a factor to consider are
not a show stopper to transistor-level reconfiguration.

As shown in Figure 2.2, the device is completely symmetric around its middle
point. This is also true for the produced device, thus, all names, such as source
and drain contact or program and control gate, can be given to any suitable
point of the device and only bear meaning in direct relation to each other or the
surroundings of the device but not to physical points of the fabricated transistor.
This means that the contact points in Figure 2.2 could be named in reverse.

The example shown in Figure 2.2 features silicon as an example technology
mainly, because this was the most advanced nanowire technology available during
the research for this thesis. Nonetheless, germanium nickel-based nanowires have
been shown in [56] and various other 2-D materials have been demonstrated
that follow the same basic concept and have similar properties. So, although, the
example may come across as being limited to a particular technology, it was chosen
for its simplicity and availability of research data, which was most important for
developing circuits and models on top the device itself. I will use silicon and
germanium devices, concepts and data, based on the theses of André Heinzig [23]
and Jens Trommer [56] interchangeably and where it fits the purpose of proper
display. As long as some basic electrical properties are retained, the actual device
is not of importance to the applicability of the approaches demonstrated in this
thesis. I refer the reader to above theses for an extensive read on the construction
of nanowire transistors.

2.2.2 Electrical properties
To make it easier to grasp the transistor characteristics, we will use the following
conventions to name the device terminals. In logic gates, the source contact will
be placed on the input side or on the outer edge of the circuit, where the input
signals and voltage supply is connected; the drain contact will always point to the
output or the middle of the logic gate. This placement is used for both nmos and
pmos transistors and is unlike the conventional terminology used in cmos logic
gates. These conventions will become important in later chapters concerning the
abstraction of the transistor device into a probabilistic model.

The top circuit symbol in Figure 2.4 directly corresponds to the geometrical
layout shown in Figure 2.2. Following the drawing style of Schottky devices,
the Schottky barrier (sb) gates are drawn with hooks. Unlike other Schottky
device symbols, the hooks are only drawn towards the drain side of the device
and, following above conventions, will point to the middle axis of a cmos logic
gate. The naming of gates and contacts is no longer arbitrary and the gate with
the hook facing towards the contact is always the drain-side gate, which is also
the output side. By using these drawing conventions, each transistor gate can be
assigned a fixed function out of two.

The bottom drawing in Figure 2.2 shows that the program gate, which is
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responsible for controlling the channel polarity and thus the pmos or nmos char-
acteristic, sits at the drain side. It is always a Schottky barrier gate. The inversion
circle marks this gate as being connected to the device’s polarity, and the arrow
towards it shows that the transistor’s polarity is controllable via a voltage applied
to the gate. All other transistor gates are called control gates, as either can steer
the channel open or close, but they do not affect the channel polarity. Control
gates never carry an inversion circle to mark pmos channel polarity, which must
be deduced solely from the program gate input.

source

source gate
inner gate

drain gate

drain

input

control gates
program gate

output

electrical
designation

functional
designation

Figure 2.4: rfet terminal
designations

The term rfet is used for the whole class of re-
configurable transistors and, generally, I will make
no distinction between rfets that employ exactly
two transistor gates and three independent gate field-
effect transistors (tigfets) or migfets. In addition,
I will not discriminate polarity-controllable tran-
sistors shown in works of the École polytechnique
fédérale de Lausanne (epfl), in which the two outer
gates are electrically connected and work in unison.
In the circuit drawings throughout this document,
transistors may have two or more gates which work
independent unless explicitly connected, and whose
characteristics are according to the following para-
graphs unless mentioned otherwise.

Due to the nature of the device, either Schottky
barrier prohibits the flow of charge carriers into the
channel when the gates are left floating. As the semiconductor erects a band
gap which excludes certain energy states of charge carriers within a surrounding
electric field, the metal conductors at the outer ends force the charge carriers
into states that are well within the band gap. The five band diagrams in Figure
2.5 show the physical expansion of the channel on the abscissa and the energy
(as inverse −𝐸, so that a higher value translates to higher charged electrons) on
the ordinate. The observations, here, are just qualitative and thus no values are
supplied in any dimension.

A transistor with its gates left floating (and whose charges meet with the
electrical field created between the source and drain contacts) would exhibit the
unbent band gap shown in Figure 2.5 in Band Diagram I. The axial expansion of
an (unbent) band gap prohibits charge carriers from tunnelling past either Schot-
tky barrier in both directions, thus, closing the transistor for either charge carriers.
It is, naturally, an unstable state with no usefulness to digital circuit design. The
symbol of the transistor above and the voltages noted at the source/drain contacts
reveal that the band diagrams depict the transistor in nmos configuration. Start-
ing from this outset, the first question is, how to properly program the channel for
𝑒− charge carrier transport?

Band Diagram II shows the nmos-configured and closed transistor. The pro-
gram gate on the right, charged to 1.2V, blocks ℎ+ charge carriers from entering
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from the right and raising to the top left. It does not, though, affect the source
side of the device. Thus, the first thing to note is, that channel programming
works by inhibiting unwanted charge carriers from entering the channel from the
“output” or drain side, instead of drawing wanted charge carriers into the channel
(probably blocking them later with the control gate).

−E

l

«floats» «floats»

I.

−E

l

0 V 1.2 V

II.

−E

l

1.2 V 1.2 V

III.

−E

l

1.2 V 0 V

IV.

−E

l

0 V 0 V

V.

0 V 1.2 V

Figure 2.5: Band diagrams

The second band diagram also reveals that
band bending is practically symmetric in the
closed case. This is the enabler of reconfigurable
circuits using this device but will also become a
problem for circuit design, as this symmetry lets
the device exhibit strong ambipolar characteris-
tics when gate and contact voltages do not align
properly (cf. Band Diagram IV). Symmetry of
the band gap also dictates, that there is no intrin-
sic meaning of program gate or control gate to the
device. The same way the acting program gate in-
hibits ℎ+ charge carriers, the acting control gate
inhibits 𝑒− charge carriers. Leaving all voltages
the same and reversing the labelling on all termi-
nals would depict a closed pmos transistor instead
of a closed nmos device.

Band Diagram III shows band bending when
the left control gate steers the channel into fully
nmos open by being charged to 1.2V, as well. The
axial length of the band gap at the top left end
becomes very narrow, allowing 𝑒− charge carriers
to tunnel to the other side and to flow out of the
drain contact; ℎ+ charge carriers are still blocked.

During reconfiguration of a logic gate, the volt-
age at the program gate might switch faster than
supply voltages. So, as a little thought experi-
ment, consider the transistor being in the cur-
rent nmos open state. Now, the program gate
(right) switches early from 1.2V to 0.0V, with-
out the source contact (which is connected to the
voltage supply by convention) following suit. This
(briefly) leaves the transistor in the state that is
shown in Band Diagram IV. The input, which has
not changed, still bends the band down while the
program gate forces it to bend upwards, thinning

out both band gaps and allowing charge carriers from both sides into the chan-
nel. Even a supposed inner gate would no longer be able to effectively close the
channel at either end, let alone both ends.

This description is concluded by Band Diagram V, which is drawn dashed, and
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Figure 2.6: Tcad simulation of a single germanium nanowire rfet. 24 nm feature size.

strengthens the view that the device is symmetric. Both transistor gates bend
the band upwards. Now, the left gate is blocking 𝑒− charge carriers from entering
the channel, which makes it the acting program gate. The right gate opens the
channel for ℎ+ charge carriers, constituting a pmos open state.

In summary, the device exhibits four extremal states, shown in Band Dia-
grams II–V. The “off” state and the ambipolar state are symmetric with regard
to the functional designation of the transistor terminals. In contrast, the “on”
states are distinct states regarding the drawing conventions. Moving the device
from one “on” state to another via the “off” state, while avoiding the ambipolar
state as much as possible, will be the task of reconfiguration.

Quantitative transistor behaviour Figure 2.6 is based on a technology computer-
aided design (tcad) simulation for a germanium nanowire (genw) device (similar
to the device in [56]), with a channel diameter of 20 nm, a channel length of
48 nm and respective gate lengths of 24 nm. Both the left and the right heat map
show the same data, the drain current 𝐼D for varying voltages of the left and
right transistor gates. Similar to Figure 2.5, the source/drain voltage is fixed to
𝑉DS = 1.2V. While the left heat map emphasises the on-current using a linear
scale, the right heat map allows better judgement of the off-current emphasising
small values of 𝐼D with a logarithmic scale. The experiment spans the voltage at
the left gate according to 𝑉lg = 0V, 0.3V, … , 1.2V and the voltage at the right
gate according to 𝑉rg = 0V, 0.02V, … , 1.2V.

Band Diagrams II–V from Figure 2.5 represent the four corners of each heat
map according to the voltages of the left and the right gate. The topmost horizon-
tal line depicts the nmos behaviour with 𝑉rg = 1.2V programming the channel
and 𝑉lg steering the channel open towards 𝑉lg = 1.2V. Likewise, does the leftmost
vertical column of values correspond to the pmos behaviour.

Figure 2.6 I shows that the ambipolar current is significantly stronger than
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Figure 2.7: Reduced virtual channel resistance compared to a cmos series of transistors
when employing migfets.

either nmos or pmos on-current. On the way from either full open state towards
ambipolar, the current drops to a minimum at around the threshold voltage (plot
corner − 0.3V) of the current program gate. This is the point where the pro-
gram gate starts acting as a control gate itself. It no longer blocks unwanted
charge carriers and starts injecting them into the channel. This culminates into
an ambipolar current that is almost twice as large as either on-current.

Behaviour during reconfiguration Apparently, in Figure 2.6, top left marks the
closed transistor state and bottom right the full ambipolar state—under the given
source/drain voltage regime, while reversal of 𝑉DS would result in a reversal of
both corners. Reversing the corners means effectively reconfiguring circuit by
switching 𝑉DS and 𝑉rg in any order. Depending on the current state of the device,
e. g. nmos open (top right), switching 𝑉rg first would be a drawback as it would
force the device into the bottom right corner. Suppose further that the device part
of a cmos circuit. So, the drain contact is connected to the circuit output and
not directly to drain voltage rail, while the source contact is connected to supply.
Switching 𝑉DS first would move the device state in a fourth dimension of the
plot. In Figure 2.6, we assumed 𝑉DS = 1.2V. For a source voltage 𝑉SS = 1.2V,
the drain contact would be at 0V. So, when changing the voltage at the source
contact, its difference towards the drain side drops to 0V with no further current
flowing.

Multiple independent gates The geometry of nanowire transistors allows them to
carry multiple gates. A working Schottky barrier type transistor uses at least two
gates, while the Finfet-based devices shown in [65] use at least three. Longer
nanowire transistors with four and more gates are conceivable and have been
predicted and simulated in [56, 57].

The use of multiple control gates stems from exploiting a feature of Schottky
barrier type devices. Their channel current is not so much limited by the intrin-
sic resistance of the channel, but by the energy barrier itself. Thus, stretching
out the channel does not immediately increase the channel resistance to a mea-
surable value. This allows us to put more control channels around the middle
of the nanowire between the two Schottky barrier gates without affecting device
performance. Additional inner control gates work together with the Schottky bar-
rier control gate in a wired-and fashion. While one transistor gate can close the
channel, all gates have to agree to open it. Looking at it from a circuit designer’s
perspective, a migfet reduces the virtual channel resistance per input as shown
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Figure 2.8: I. Smallest possible rfet inverter. II. Inverting tri-state buffer, based on
migfets.

in Figure 2.7. Each input has operates a (virtual) transistor with only 1/𝑛 × 𝑅
channel resistance for 𝑛 inputs. Still, all inputs have to agree to produce an out-
put signal, which brings the total resistance back to 𝑅 for the on-case. Branches,
which are perfectly valid in standard cmos logic gate design, are obviously not
possible—alternatives have to be expressed by fully repeating otherwise shared
paths. Multiple independent gates allow a circuit designer to compress unavoid-
able series paths to a single transistor with the effect of balancing out the output
strength for this compressed path against the parallel network on the other side of
the complementary circuit design. Thus, they contribute an important function
to reconfigurable logic gate design, which is sensitive to these imbalances.

This concludes the description on the basic operation of the transistor de-
vice. Its effects on fundamental reconfigurable circuits will be investigated in the
following section.

2.3 Fundamental Circuits
Reconfigurable circuits draw their effectiveness from two properties the underlying
transistor device should ideally deliver. The first property is the programmable
transistor channel, which allows the device to act as pmos and nmos transistor
by virtue of feeding an extra input signal. The second property, which is delivered
by nanowire transistors in particular, is their ability to host multiple control gates
without notably impacting device performance. The circuits shown in this section
usually make use of both these properties.

Starting out from the simplest cmos circuit, the inverter in Figure 2.8 I, we
can see the added complexity that follows rfet logic gates. In addition to the
usual inputs, every transistor has to be connected to both supply voltages to
be programmed correctly, one at the source contact and the other at the drain
Schottky barrier gate. Before I address reconfigurability by connecting switching
input signals to these terminals, instead of static voltages, I will show fundamental
logic gates that make use of the multigate property to enhance their functionality.
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Figure 2.9: The inverting multiplexer. It can be extended by using the selection signals
as tri-state control inputs.

Generally, I have chosen to write the name of the circuit’s function at the output,
rather than a mathematical expression resembling it, at all circuit drawings. The
name may be augmented by prefixes declaring inversion (with the letter N), their
number of inputs (as 𝑛-), and the suffix for tri-state behaviour (letter Z). All of
these may be put in parentheses, due to reconfigurability and may reference their
reconfigurable input.

The simplest feature-enhanced circuit is the inverting tri-state buffer, invz,
shown in Figure 2.8 II. It does not use transistor reconfiguration but provides a
highly performant implementation of a tri-state buffer due to its use of multiple
independent gates. The input signal 𝖨 is connected to output-side transistors.
Apart from the polarity-control gates, the two remaining control gates on each
transistor differ in speed and leakage currents. 𝖨 is connected to the inner gates,
as they are the faster ones, while the tri-state signal 𝖹 is connected to the outer
Schottky barrier gates, which provide low-leakage shut-off. The buffer is designed
to provide full output strength by eliminating additional transistors in the driving
path – either due to having two transistors in series in each P-/N-network, or
a transmission gate at the output. So, this buffer can be used as a drop-in
replacement mostly retaining electrical and timing characteristics.

We can extend the idea of the tri-state buffer—deactivating both pull-up and
pull-down paths to render a network inert to input voltage changes—into the 2-
input inverting multiplexer in Figure 2.8 I. The two selected inputs 𝖠 and 𝖡 are
distributed to the left and right partial network, respectively, and are controlled
the selection signal 𝖲 and its inverse ¬𝖲. In this particular design, inputs 𝖠 and 𝖡
are connected to the Schottky barrier gates to save area; under the assumption of
a multiplexer-driven FPGA, like Intel’s, inputs 𝖠 and 𝖡 are programmed and only
input 𝖲 is time critical. So, this design may be favourable. This design inherits
the benefits of the inverting tri-state buffer, its output strength and balance over
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Figure 2.10: Basic reconfigurable logic gates. The nand/nor logic gate (I) and the
xor/xnor logic gate (III) are the smallest reconfigurable circuits. Logic gate II shows
that self-dual functions may not have a well-known name, although their parts do.

all signal paths. Additionally, this design can be naturally extended as shown
in Figure 2.8 II. By adding another control gate to all transistors, this circuit
accommodates a second selection signal 𝖲𝟤, which selectively activates either the
dashed or solid set of transistors. Of course, the logic complexity of the selecting
between four inputs instead of two must go somewhere else if it is not inscribed in
the shape of a multiplexer tree. Hence, it does show up in the quadratic growth of
connections to the selection signals 𝖲𝟣 and 𝖲𝟤. So, depending on the application
in mind, either design might be beneficial. Nevertheless, cutting the depth of a
multiplexer tree in half by providing a breadth factor of four instead of two may
outweigh the cost for the selection signals.

Depending on the connections made to this set of transistors, this circuit can
perform multiplexer, exclusive or with two and three inputs, majority, minority
and other operations. So, it is a nucleus of reconfigurable circuit design, as it
provides just enough flexibility to be usable without impacting circuit performance
due to an overly complex design. Additionally, it can have the important property
of inverting its input signals. While not as useful in formal logic calculations, this
provides many basic logic gates that cover inversion and can be used to cover the
full Boolean Algebra—without affecting other Boolean function properties like
monotonicity.

The simplest logic gates over two inputs are the nand/nor and xor/xnor
logic gates. In contrast to the multiplexer and the tri-state buffer, they can make
use of transistor-level reconfiguration. This is, because their functions each corre-
spond to one half of larger self-dual Boolean functions, 3-min and 3-input exclu-
sive or (3-xor) respectively. Using reconfiguration, they can be implemented as
the circuits shown in Figure 2.10 I and III. The nand/nor logic gate in its form
given in Figure 2.10 I was first introduced in [23], where it still used exclusively
four 2-gate rfets, and was brought to its shown form in [57]. This logic gate uses
a single input, 𝖯, to drive the reconfiguration. When this signal is understood
as a “program” signal, it programs the circuit to either nand or nor function,
similar to programming an fpga or cpld. Due to the nature of transistor-level
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reconfiguration, though, the input signal can also always be understood as an
additional input. So, this completes the nand/nor logic gate to a 3-min logic
gate.

This construction of a physical circuit template gets functionalised by attach-
ing the inputs not only to the normal control gates but also the program gates and
source contacts. From this circuit, we can get a first intuition of what transistor-
level reconfiguration is able to achieve in larger circuit designs. It is less of a radical
new circuit architecture, like the idea of using lookup tables to express Boolean
functions and well-structured pass-gate logic to connect them. In contrast, it is
more of a functional compression approach that allows a physical circuit layout to
achieve more with the same structure by using its connections in a flexible way.

The circuit depicted in Figure 2.10 II shows a natural extension to the 3-min
logic gate. It represents a reconfigurable 3-input nand/nor logic gate but other-
wise has no well-known name on its own. Adding a third transistor in the parallel
network would be achievable in standard cmos as well. The real benefit—next
to the logic gate being reconfigurable—lies in its series path, which can be ex-
tended without impacting circuit performance. Adding a second logic stage and
replicating shared structure to the other half of the decision tree can be deferred
for another input, which keeps the overall circuit smaller and more efficient. This
circuit comes in 20 architectural variants.

Figure 2.10 III picks up the arrangement from the inverting multiplexer in
Figure 2.8 II, and is merely routing the inputs to different terminals implements
the new function. It was first shown in [57, 46] and is a variant of an earlier design
shown in [65] and Figure 2.11 I. Both designs are competitive, each having their
benefits and drawbacks depending on the performance measure and circumstance,
and both were conceived on paper by method of taking a sharp look. As I will
show in detail in Chapter 5, there are various other, surprising variants with also
beneficial performance properties. In contrast to the former two variants, these
are systematically produced and analysed, resulting a clear picture of the design
space.

In this section, I want to pick out three variants of the 3-xor logic gate
to show another structural design decision that influences the performance of
reconfigurable circuits.

The designs I and III shown in Figure 2.11 are both competitive, while the
design II turned out to be worse in every aspect. The numbers below the circuits
show the worst-case delay, worst-case power dissipation, and worst-case energy
consumption per operation. While the first number of each pair shows the measure
for input 𝖠 being fixed, the second number shows the measure for the worst
combination of inputs switching. The first take from this is, that multi-stage 3-
xor designs are not beneficial, when migfets are available, opposite to standard
cmos technology.

The first circuit variant is the aforementioned variant from [65] by epfl and
connects input 𝖠 solely to the source contacts, but not the transistor program
gates. This is possible due to the duplication of input 𝖡 at both Schottky barrier
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Figure 2.11: 3-xor logic gate variants. I. was shown in [65]. II. was shown in [46] as
a 2-stage variant, that avoids negating inputs 𝖡 and 𝖢. III. was found via design space
exploration shown in Chapter 5. Numbers at the bottom show worst-case results for
delay, power dissipation and energy consumption per operation.

gates at all transistors to avoid the ambipolar state. The design is very competi-
tive, scoring first in worst-case delay, and in the Top Ten for power dissipation and
energy consumption. But the important fact for this section is, that it demon-
strates one reconfiguration mode that I will call transmission gate mode for the
remainder of this work.

The second mode is shown in the 2-stage variant, which does not duplicate
the signal at the program gate to the other Schottky barrier gate, when there is
a third signal that can take this spot. This scheme generally results in very low
power dissipation within the same circuit variant. I will call this connection mode
single gate mode.

The third mode always duplicates the input to the program gate at the other
Schottky barrier gate. This forces all other inputs to the inner gates, which is
why I call this the inner gate mode. The quadriga of reconfiguration modes is
completed with the illegal variant, which I will call ambipolar mode, in which the
there is no relation between the source contact and the Schottky barrier gates. As
this may result in ambipolar transistor behaviour, this mode is usually useless for
circuit design. The terminology was first introduced by Steffen Märcker in [34].

All three modes have their advantages, depending on the environment that
the circuit is to be used in and their usefulness, especially of the transmission
gate mode, is highly dependent on the Boolean function of the circuit. While it
performs excellent for the 3-xor, it is dysfunctional for the 3-min logic gate that
I show in [47].

The reason is that in transmission gate mode, the reconfiguration input 𝖯 is
independent of the source signal and the drain signal. So, although, by connecting
signal 𝖯 to both Schottky barrier gates, the transistor does not enter ambipolar
states, it will reverse direction, because the source contact signal no longer limits
its conducting states. In this configuration, the transistor may either conduct from
left to right, when all signals at the transistor gates agree and are opposite of the



2. FUNDAMENTAL RECONFIGURABLE CIRCUITS 33

Table 2.3: Transistor reconfiguration modes.

Polarity control signal 𝖯
Source contact Both SB gates Single SB gate

¬𝖯 ¬𝖯

𝖯∘𝖯

¬𝖯

𝖯∘∘

inner single

Other ∘ ∘

𝖯∘𝖯

x a

z∘y

transmission ambipolar

signal at the left contact. Likewise, due to the same argument, it may also conduct
from right to left regardless of the state of the left signal. In complementary
circuits, this could lead to unwanted short circuit currents, depending on the
Boolean function it implements. A Boolean function that can be implemented
using the transmission gate connection mode must have the following property:
Whenever all signals 𝖲𝟣, … , 𝖲𝗄 connected to the transistor gates are at the same
value, potentially opening the transistor channel, the intended output value (at
the drain contact) must correspond to the current value at the source contact 𝖲𝗌.
The following proposition must hold for the Boolean function:

∀𝑖 ∈ {1, … , 𝑘}, 𝑠 ≠ 𝑖. 𝖲𝗌 ⊕ 𝖲𝗂

In this chapter, I demonstrated the kinds of reconfigurable circuits that can be
constructed from polarity-controllable transistors. After explaining the electrical
function of the device, I determined its effect on reconfiguration and the conditions
that are necessary to facilitate efficient reconfigurable circuit designs, by showing
examples of fundamental designs. I will defer the detailed design space exploration
and performance evaluation of single logic gates to Chapter 5 after the tooling, the
exact measures and methods to evaluate these measures were properly introduced
in Chapter 4. The next chapter establishes transistor-level reconfiguration in the
larger scheme of combinational circuits.
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Chapter 3

Combinational Circuits and
Higher-Order Functions

The fundamental circuits presented in the previous chapter show interesting char-
acteristics. They are especially compact and use fewer numbers of transistors
than standard cmos implementations. The next questions, I want to investi-
gate, are, how well they would perform in larger explicitly reconfigurable designs,
and what their influence is on the characteristics of larger combinational circuits.
This investigation, described in the following sections, was done very early in
the development of the silicon- and germanium-based transistor devices. Thus,
no reliable electrical data was available at the time, and the device was nowhere
near a top-down production-ready state, which could have rendered it compati-
ble with established cmos devices at the time. This is why I chose to evaluate
circuit performance using Logical Effort Theory introduced by Ivan Sutherland
in [53]. It enables me to capture relative performance characteristics and to show
the development of circuit performance from small to larger circuit designs with-
out the need for electrical device data. The following sections capture the design
and evaluation of programmable logic cells suitable for augmentation of asic de-
signs, their basic design and improvements with rfets. They are followed by an
investigation of a combinational adder design based on the conditional sum adder.

3.1 Programmable Logic Cells
The previous chapter demonstrated fundamental reconfigurable circuits eligible
to be collected in a process design kit (pdk). To further discriminate the meaning
of reconfiguration by its intended use, we can say that the fundamental circuits
shown earlier employed implicit reconfiguration. Those circuits were used accord-
ing to their function and reconfiguration was merely a vehicle to achieve that
goal. This section concentrates on multi-functional circuits, whose purpose is to

35
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provide a set of Boolean functions, which are known to facilitate the implementa-
tion of larger designs. These circuits set themselves apart from the fundamental
circuits by providing explicit selection inputs that allow a designer to choose
from the set of functions, comparable to macrocells and configurable logic blocks
(clbs). The selection inputs may reconfigure the multi-functional circuit. I will,
therefore, refer to this type of reconfiguration as explicit reconfiguration. The fol-
lowing section highlights the benefits of implicit reconfiguration by compressing
functionality into smaller logic gates.

3.1.1 Critical Path Delay Estimation using Logical Effort Method
In the early stages of technology development – a stage in which this thesis is
written concerning nanowire-based reconfigurable transistor technology – simu-
lation program with integrated circuit emphasis (spice) network analysis is not
feasible, because it is based on the availability of a spice transistor model. Sim-
pler methods are Elmore delay [12] or algorithms using the more general Padé
approximation [43, 40]. Both methods perform moment matching, a method for
asymptotic waveform evaluation. The real transfer function (that describes the
delay) is approximated by a rational function 𝐻(𝑠) with the restriction, that the
real function and the approximation agree at 𝑥 = 0 and at their derivatives at
𝑥 = 0. The derivatives of 𝐻(𝑠) at 𝑠 = 0 are the coefficients of the Maclaurin
series of 𝐻(𝑠) and are called moments of the transfer function, hence the name
moment matching. Elmore delay only matches the first moment 𝑚0 while Padé
approximation matches as many moments as necessary to gain a required ac-
curacy. See also [14] for further details on the method. Both methods require
some kind of pdk that provides the logic gate delays and/or transistor models
like in spice analysis. The Logical Effort Method [53] provides a simple way to
calculate gate delays and is also suitable for circuit delay calculations for small
circuits that are not dominated by wire delays. I used this method for both early
estimations of logic gate delay and for calculating the critical path delays of the
circuits presented in this chapter.

Logical effort calculation for multistage logic circuits with 𝑁 stages is repre-
sented by the normalised path delay 𝐷 driving a fanout 𝐻:

𝐷 = 𝑁 × 𝑁
√

𝐹 + 𝑃 (3.1)

𝑃 =
pcrit

∑
𝑖

𝑝𝑖 (3.2)

The normalised delay 𝐷 is the geometric mean of 𝑁 individual stage efforts
along the critical path pcrit (an ordered set of logic gates), culminating into the
path effort 𝐹. It also includes the intrinsic parasitic delay 𝑃 which is the sum
of the parasitics 𝑝𝑖 for each of the logic stages. Path effort 𝐹 is computed from
the path electrical effort 𝐻 (also called fanout), the path logical effort 𝐺 and the
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branching effort 𝐵:

𝐹 = 𝐺 × 𝐻 × 𝐵 (3.3)

𝐺 =
pcrit

∏
𝑖

𝐶 in
𝑖

𝐶 in
INV

(3.4)

𝐵 =
pcrit

∏
𝑖

(1 + 𝐶rest
𝑖

𝐶path
𝑖

) (3.5)

The logical path effort 𝐺 describes the structural effort along the path by
the relation of the input capacitance 𝐶 in

𝑖 at a particular stage 𝑖 to the inverter
input capacitance 𝐶 in

INV. So, when a signal needs to be fed to more transistor
gates, the whole logic gate at that stage is expected to be structurally slower. By
restricting to the critical path, which is confined to a single input, the method
neglects dynamic effects that arise from multiple active electrical paths by multiple
inputs switching simultaneously. Likewise for the branching effort 𝐵, logical effort
method determines how much effort in each stage needs to be devoted to drive
logic gates other than the next one on the critical path, i. e. how much more
load is put on the critical signal. Finally, the approximated absolute delay 𝑡 is
calculated from the normalised delay and the intrinsic delay 𝜏:

𝑡 = 𝜏 × 𝐷 (3.6)

𝜏 ≈ 𝑉DD
𝐼D

× 𝐶gate (3.7)

𝜏 expresses the input / output delay of a standard-sized inverter of a particular
technology. It is conceptually described as delay experienced by the inverter
driving an identical second inverter. The delay is taken starting from the input
transient crossing 𝑉DD/2 to the output transient also crossing that point. These
delays are usually hard to obtain for new technology, because no reliable circuit
simulations exist, yet, and it is the whole point of Logical effort theory to have
very little reliance on simulation. This is reflected in the computation of Equation
3.7, which is an approximative solution for the actual inverter delay. 𝑉DD is a
technology parameter and 𝐼D can be found via device simulation in a technology
simulator like tcad. 𝐶gate is hard to retrieve and is usually indirectly inferred
from device simulation.

The benefit of the logical effort method over the other delay approximation
approaches is, that its results are technology agnostic. This was important in the
course of this work because most technology parameters of nanowire transistor
technologies were either preliminary, unreliable in themselves or outright non-
existent. Especially 𝐶gate is hard to obtain in early technology evaluation and so
is the inverter delay. Thus, I have chosen to work with the shown approximation
for 𝜏 and to mostly work with the normalised delay 𝐷.

For a single-stage logic gate, the formula for the normalised delay simplifies to
𝑑, the path effort 𝐹 simplifies to the stage effort 𝑓 and the parasitics 𝑝 are directly
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taken for the single stage. Due to 𝑁 = 1, the root becomes trivial and pcrit is the
set containing only said logic gate. Branching effort 𝐵 = 1, because is no 𝐶rest

which lies off the path. The single stage normalised delay is, thus, computed by:

𝑑 = 𝑓 + 𝑝 with: 𝑓 = 𝑔 × 𝐻 (3.8)

Table 3.1: Comparison of static logic gate implementations in migfet and
cmos technology shown in [57]. Absolute delays determined by model check-
ing explained in Chapter 4.

Gate Transistor cnt. # T migfet cmos
Logical effort 𝑔 genw fdsoi
Parasitic delay 𝑝 (24 nm) (32 nm)
Normalized delay 𝑑 Delay 𝑡 (ps) Delay 𝑡 (ps)

# T 2 2
inv 𝑔 total 1 1

𝑝 1 1
𝑑𝐻=1 2 24 2 9

# T 3 4
2-nand 𝑔 total 2 2 2/3

𝑔 per input 1 1 1/3

𝑝 1 1/2 2
𝑑𝐻=1 2 1/2 32 3 1/3 13

# T 3 4
2-nor 𝑔 total 2 3 1/3

𝑔 per input 1 1 2/3

𝑝 1 1/2 2
𝑑𝐻=1 2 1/2 32 3 2/3 14

# T 4 8
2-x(n)or 𝑔 total 4 8

𝑔 per input 2 4
𝑝 2 4
𝑑𝐻=1 4 44 8 22

# T 6 10
3-min/ 𝑔 total 6 12
3-maj 𝑔 per input 2 4

𝑝 3 6
𝑑𝐻=1 5 36 10 23

# T 6 12
2-nmux 𝑔 total 4 8

𝑔 per input 1 2
𝑝 2 4
𝑑𝐻=1 3 38 6 19
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Table 3.1 shows a comparison for a selection of the fundamental logic gates
that were used in implementing the multi-functional circuits of the following sec-
tion. The table lists the implementations as depicted, using migfet transistors,
and compares them with functionally equivalent implementations using standard
cmos transistors. Jens Trommer and myself feature this table in [57] to show
a first approximation of the capabilities of multigate transistor circuits in gen-
eral and reconfigurable circuits, in particular. The gates must only be cautiously
compared horizontally because migfets and cmos devices have very different
intrinsic delays. Thus, I have added a second column for each transistor technol-
ogy, showing the actual delay, as determined by the approach further developed
in this thesis (see also Chapter 4). Nevertheless, the table makes a structural
comparison feasible that highlights the benefits of multiple independent gates per
transistor, reducing the parasitic delay 𝑝, as well as the benefits of reconfigurable
circuits (starting from 2-x(n)or downwards), having a similar profound effect on
the logical effort 𝑔 and the number of transistors #T.

As Table 3.1 shows, both inverters are structurally equivalent. To get the
best comparison between two very different technologies, I use the 24 nm genw
described in the previous chapter, and a 32 nm cmos technology described in [41]
that is known to be used in scaled 24 nm processes in production. Both tech-
nologies are modelled in my modelling language described in Chapter 4, as are
the circuits. The actual delay shown next to the normalized delay is computed
from those models. The difference in absolute delay is the measure for the intrin-
sic delays 𝜏 of each technology with a relation of 2.7 ∶ 1. For each circuit, the
table lists the number of transistors (as a rough estimate of the area), the total
logical effort (𝑔 total) and logical effort of the worst input (𝑔 per input) ignoring
the reconfiguration signals. This means, that for cmos to implement the same
reconfigurable circuit like 2-x(n)or etc., it may need many more transistors than
the rfet implementation. Still, both implementations feature the extra recon-
figuration input that allows a designer to select the function of interest. In case
of cmos it merely turns off one set of transistors and enables another, while in
case of rfets, it actually reconfigures the transistors. The table also shows the
parasitic delay and, as mentioned earlier, the normalized delay for fanout 𝐻 = 1.

Looking at the normalized delays and absolute delays of the inverter, it be-
comes apparent how large the difference can be. So, how good does logical effort
predict the behaviour of rfet technology circuits?

So, for the rfet implementations the intrinsic delay has the magnitude [𝜏rfet] =
24/2 = 12, whereas for cmos it is [𝜏fet] = 9/2. The delay factor 𝑘 between the two
technologies is:

𝑘 =
𝑡inv,rfet

𝑑inv,rfet
×

𝑑inv,fet

𝑡inv,fet
= 24 ps

2
× 2

9 ps
≈ 2.7 (3.9)

By rule of proportion, the prediction for the absolute delay of the rfet im-
plementation of the 3-min circuit is the product of delay factor 𝑘 corrected by
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the real intrinsic delay for the 3-min circuit:

𝑡3−min,rfet = 𝑘 × 𝑑3−min,rfet ×
𝑡3−min,fet

𝑑min,fet
(3.10)

≈ 2.7 × 5 × 23 ps
10

≈ 31 ps (3.11)

In want of a better estimate, the correction for the real intrinsic delay was
taken from the field-effect transistor (fet) implementation. Though, looking at
the absolute delay for the rfet implementation of 3-min with 36 ps, the predic-
tion is quite true to the actual delay, being 16% off. The absolute delay was
determined by model checking which is explained in Chapter 4, further values
for various other logic gates are shown in Table 3.1. This table serves as the
motivation for showing the principle effectiveness of reconfigurable standard cells
and the complexity of comparing actual delay results that stem from the different
transistor technologies. Neither is comparing the delays for a single output load
nor abstracting from absolute delays to structural delay enough to give a clear
picture. Additionally, as it turns out in Chapter 5, there are usually numerous re-
configurable implementations for a single logic gate, sometimes with very different
delay characteristics and sensitivities to changing output load.

3.1.2 Multi-Functional Circuits
Multi-functional circuits form the basis of fpga circuits. They can be imple-
mented based on multiplexer trees or memory decoder logic, and, of course, as
complete crossbar networks as shown in Figure 2.1. Each approach has its own
drawbacks and benefits with crossbars being the hardest to translate into an asic
design pattern. This section investigates designs based on multiplexer trees that
provide simple reconfigurable cells for use in asics.

Jens Trommer and myself have shown in [57] how to improve the 6-functional
circuit depicted in Figure 3.1 𝛼. The Figure shows three implementation variants
𝛼, 𝛽 and 𝛾. They are functionally equivalent, but for the sake of comparability,
implementation 𝛼, which is standard cmos, also uses inverting multiplexers. Im-
plementations 𝛽 and 𝛾 are targeted for rfet and migfet devices and they use
the logic gates from Table 3.1. Although the use of inverting multiplexers comes
as a drawback for cmos implementation 𝛼, this still makes sense given the fact
that transmission gate multiplexers would force the outputs of the gates in the
left column through two, respectively three, transmission gates, diminishing sig-
nal quality. Nevertheless, the true sweet spot for a cmos implementation will be
in a mix of multiplexer (mux) implementations. All networks have two inputs 𝖠
and 𝖡 and select the function via the three selectors 𝖲𝟣–𝖲𝟥.

The cmos implementation 𝛼 uses 92 transistors compared to 34 transistors
used by implementation 𝛽, which uses the logic gates shown in Table 3.1. The
two outer branches of implementation 𝛼, featuring the nand and nor logic gates,
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Figure 3.1: 6-functional programmable logic circuit controlled by a mux tree. Imple-
mentation 𝛼 is standard cmos, while Implementations 𝛽 and 𝛾 use reconfigurable logic
gates from Table 3.1.

where placed at different depths of the multiplexer tree, such that one branch ef-
fectively computes the and and or functions, while the other computes the nand
and nor functions. It is evident, that the two top-left nand and nor logic gates
and the multiplexer can be merged into a single 3-min circuit. The same holds for
the two lower left logic gates. In the same way, the branch containing the 2-xor
and 2-xnor circuits can be merged, as well. The inverter-buffered transmission
gate multiplexers used in implementation 𝛼 can be replaced with the efficient
static variant shown in Figure 2.9 now, that migfets can be used for its imple-
mentation. This saves 63% transistors and, thus, static power dissipation, but it
is to be noted that migfets are larger than cmos devices. So, area reductions
are less. It also reduces the circuit from four to three logic stages, moving selector
𝖲𝟣 nearer to the critical path. Having 𝖲𝟣 as an input increases the balance of
the overall circuit and the performance of inputs 𝖠 and 𝖡, in particular, but it
sacrifices speed for switching scenarios in which 𝖠 and 𝖡 are quiet. In implemen-
tation 𝛼 merely the (speculatively) computed result needs to be selected, while
in implementation 𝛽 the function must be recomputed altogether. Nevertheless,
under the assumption of explicit reconfiguration, the reconfiguration signals are
not regarded as timing critical, because they are not part of the user logic but a
static part of an already configured device.

The second optimization is shown in Figure 3.1 implementation 𝛾. The and,
or, nand and nor functionality can be completely subsumed by utilizing a 3-
input min/maj logic gate. This logic gate realises inversion and selection of and
and or functionality in a single stage. It further reduces the circuit size to 26
transistors, while reducing the number of logic stages to two. Similar to imple-
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mentation 𝛽, selector 𝖲𝟤 is also elevated to an input – selector 𝖲𝟣, although shown
at the top of the 3-input minority/majority reconfigurable logic gate, works at the
same logic stage as the left inputs. This implementation is further reducing the
number of speculatively active logic paths, reducing the overall dynamic power
dissipation.

Table 3.2: Comparison of the path delays 𝐷 for the multi-functional circuits
shown in Figure 3.1. Bold results show the critical path delay, italics
display critical path involving a selection input.

Impl. 𝛼 Impl. 𝛼 Impl. 𝛽 Impl. 𝛾
Signal Path delay 𝐷 Path delay 𝐷 Path delay 𝐷 Path delay 𝐷

𝐻 = 1 𝐻 = 4 𝐻 = 4 𝐻 = 4

𝖠/𝖡nand/nor 21.5 / 22.1 26.1 / 27.0 21.5 18.5
𝖠/𝖡and/or 19.7 / 20.5 25.5 / 26.7 21.1 21.1
𝖠/𝖡xor/xnor 22.7 27.0 20.3 19.0
𝖲𝟣 16.8 21.7 20.1 18.5
𝖲𝟤 15.2 22.0 20.7 22.7
𝖲𝟥 15.4 28.5 14.3 14.3

Using logical effort theory, we can now calculate the path efforts of the indi-
vidual input-to-output paths for all signals. Table 3.2 shows two sets of results
for implementation 𝛼 for paths involving (n)and/(n)or logic gates, due to their
deviating efforts. Also, implementation 𝛼 is shown with a fanout 𝐻 = 1 and 4
while the reconfigurable implementations are just shown for fanout 𝐻 = 4. This
is to show, how the critical path may shift from a user input to a reconfigura-
tion signal albeit the signal not being involved in computation but only selecting
speculative results. The bold numbers represent the critical path delays 𝐷 as nor-
malised delays while the italic numbers represent the worst case path delays when
they involve a selection input. Under the assumption of explicit reconfiguration,
though, these numbers can be ignored in favour of the smaller bold results.

As shown earlier, although genw devices may be the slower technology to
begin with, their logic gate implementations show strong benefits regarding the
logical effort that is needed to perform their function. With gains of up to 25%
compared to a cmos implementation, this holds true for more complex circuits
like the multi-functional circuits, as well. Additionally, for implementations 𝛽
and 𝛾, the resulting path delays are very close to each other, which is a highly
desirable property for fast circuit design. The development of the path delays for
implementation 𝛽 and 𝛾 show that, considering all path delays, implementation
𝛽 seems to be the sweet spot where all delays are closest together and smaller
than 𝐷𝐻=4

𝛾 (𝖲𝟤) = 22.7. According to logical effort theory, this indicates that the
cmos circuit design was too deep for its complexity. We fixed that by widening
it by compressing the function, exploiting transistor reconfiguration and multiple
gates per transistor. Slightly over-optimizing implementation 𝛾, it is certainly the
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smallest implementation and has also the edge in delay when considering explicit
reconfiguration.

Circuit Energy Consumption Estimation Following the observations how logical
effort develops when changing the implementation paradigm to reconfigurable
circuits, which focused on making delay predictions structurally comprehensible,
it would also be interesting to see how circuit power dissipation and energy con-
sumption develops for reconfigurable designs. Dynamic energy consumption can
be judged with the dynamic power product formula, which delivers Joules per
Operation:

∑ 𝐶 × 𝑉 2
DD = (∑ 𝐶dyn + ∑ 𝐶static + ∑ 𝐶int) × 𝑉 2

DD (3.12)

Capacitance 𝐶 is the input capacitance of the nmos transistor. It can be split
into three sets of capacitances, the dynamic and static gate capacitances 𝐶dyn
and 𝐶static, and the inter-nodal capacitances 𝐶int. They are hard to obtain and
were inferred from diagrams in [41] for the cmos implementations and taken from
similar tcad simulations for the genw devices that were used to describe the
device characteristics in the previous chapter. The formula is pessimistic in the
sense that all possible transistor gates are considered in the calculation. Though,
it is known, that not all gates will participate in any single switching operation.
For the multi-functional circuit, the results of this computation are shown in
Table 3.3.

Table 3.3: Dynamic energy consumption using normalised capacitances that
allow a structural comparison between technologies.

Impl. 𝛼 Impl. 𝛽 Impl. 𝛾

𝐶dyn 92 54 46
𝐶static 0 24 16
𝐶int 22 6 4
𝑉DD (V) 1 1.2 1.2

∑ 114 121 95

The migfet-based implementations have no inter-nodal capacitances, because
all paths with two or more transistors in series could be eliminated. Unlike imple-
mentation 𝛼, though, they need additional transistor gates that driving polarity
control (i.e. circuit configuration). Implementation 𝛽 is on par with the cmos
implementation with only 5% deviation. Nevertheless, this estimation is quite
rough and neglects the possibility of prolonged cross currents due to shallower
transients during circuit switching. We have seen earlier in Table 3.1 that the
migfet device start with a quite larger intrinsic delay compared to cmos. Later
analysis with the model checking-based approach, which I will lay out in the next
chapter, will show that especially the static logic gate implementations for 3-min
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and 3-xor of this section suffer from high energy consumption although, they can
trade this in for a very low worst-case delay. Implementation 𝛾 can excel in both
normalized delay and energy consumption due to its compact design and shallow
tree of logic gates.

The dynamic power formula is not the only way to analyse the expected energy
profile of a circuit. In my joint work with Shubham Rai et al. [45], I showed
that transistor activity can be used as a measure that models worst-case dynamic
energy consumption. Activity describes the number of transistors of a logic circuit
that are excited to switch by a single input change. The worst-case activity is
maximum number of transistors that can be excited by a single input change and
depends on the input pattern before the change and the logic function (for all
non-trivial functions).

In Figure 3.1, implementations 𝛼 and 𝛽 show a label activity at the output of a
particular multiplexer. Both circuits perform the same function up to this point,
but due to their different implementations, need different numbers of transistors
to perform it. Figure 3.2 depicts this function as implementation 𝛽′. In contrast
to the sub-circuit shown in 𝛽, this implementation does not use the static logic
gate implementations from this chapter but size optimized variants for the 3-
min and 3-xor logic gates, which are only available to multiple independent gate
rfets. The dashed red lines show those paths through the tree that excite the
worst-case activity in the logic gates. Selector 𝖲𝟤 selects the output of the 3-xor
logic gate to recall the critical path, which leads from Selector 𝖲𝟣 to the output.
Nevertheless, the same selector also (accidentally) excites the maximum activity
in the 3-min logic gate. (Although this could be remedied by reordering input 𝖲𝟣
at one of the logic gates, this would negatively impact worst-case delay of either
input 𝖠 or 𝖡, making it a choice that depends on the intended application.) To
give a realistic comparison between this implementation and the sub-circuit of
implementation 𝛼 (called 𝛼′), both circuits drive the output through a buffer,
adding another four active transistors. This (energetically) simulates a load of
two inverters.

As the table in Figure 3.2 shows, this migfet implementation uses only 61%
of the transistors in the worst-case, compared to cmos, to perform the same
function. This is quite a gain compared to the pessimistic calculations using the
dynamic power product formula. The last line of the table shows the prediction
delivered by the modelling approach discussed in the next chapter. It is not
capable of directly modelling a circuit of the size shown in Figure 3.2 but is
suitable for single logic gates, which is why the results for the 3-min gate are
shown here. Like the columns in Table 3.1 that show the absolute delay to put it
into perspective to the normalised delay – arguably the migfet circuits lost quite
strongly against cmos, there. The last line shows just how much more power
efficient the genw transistor device is to a high-speed off-the-shelf cmos device.
The technology can perform the same operation using only 1/3 of the energy; and
this is not the most energy-efficient implementation of that logic gate, while there
are only minor optimizations left for the cmos implementation. So, regardless of
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Figure 3.2: Worst-case activity in the (partial) multi-functional circuit. Red dashed
lines show the active paths through the circuit contributing to worst-case activity. The
numbers show the numbers of active transistors. Last line of the table shows the energy
consumption of the 3-min sub-circuit, determined by prism-gen, the circuit modelling
approach described in Chapter 4.

the intended application, migfets provide viable alternative implementations of
useful logic circuits that, in addition to the already known low-power design of
the transistor device itself, feature significant energy savings over cmos circuits.

3.2 Improved Conditional Carry Adder
Implicit reconfiguration is another interesting use-case for reconfigurable transistor
devices. It is obvious now, that there is no single useful concept of reconfigura-
tion that could refute rivalling definitions as mere computation. Of course, the
inner workings of the reconfigurable circuits shown up to this point can all be
explained with the same concepts that apply to “non-reconfigurable” logic gates.
The reason, though, is just, that on the level of transistor reconfiguration, both
concepts, computation and reconfiguration, can be commonly supplanted by the
single concept of Shannon expansion. Then again, as long as we are not con-
sidering reconfigurable signal routing, all logic circuits can be described in terms
of Shannon expansion, be it configurable logic blocks in fpgas or macrocells in
cgras or the multi-functional circuits shown in this chapter. Implicit reconfigu-
ration, then, should be thought of as a means to compress a logic function into a
smaller set of transistors than would be possible by standard cmos by exploiting
transistor-level reconfiguration.

In my work with Jens Trommer et al. [46], I investigated the possibilities to
optimize a larger arithmetic circuit. I chose a variant of the conditional sum adder,
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Figure 3.3: 8-bit conditional carry adder. Left the cmos implementation. Right the
migfet implementation with several replaced logic gates. Numbers inside show the
number of transistors per logic gate.

which was already optimized by stripping the multiplexer network, which is used
to communicate the conditional sums, to the bare minimum to only communicate
the conditional carry signals. It was shown in [9] and was named conditional carry
adder (cca) by its authors. The left circuit in Figure 3.3 shows a depiction of an
8-bit cca. The circuit lent itself because of its regular structure featuring several
nand/nor/mux blocks at the input side that we have already investigated in this
chapter. It also shows a distinct pattern in the multiplexer network that can be
first seen in the calculation of the output carry signal 𝖢𝟩. The numbers inside
each logic gate represent the number of transistors that are needed to implement
it.

To support the critical signals (the ones with the least amount of slack in
relation to the critical path), which are the carry propagation signals, the cmos
implementation also uses inverting multiplexers for the most part. Arithmetically,
an inverted multiplexer output in stage 𝑘 which feeds a selector in stage 𝑘 + 1 can
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be addressed by exchanging the two signals that are selected in stage 𝑘 + 1. This
means (apart from the extra two transistors), using inverting multiplexers inflicts
no additional cost for the circuit implementation. For the cmos implementation,
there is one exception, though, at the top input to the 3-xor logic gate producing
𝖲𝟦. In spite of similar occasions in the migfet implementation on the right,
the input inversion to 3-xor gate is a real inverter – whereas for the migfet
implementation, the shown inverted inputs could all be achieved by rewiring the
signal inside the logic gates without adding another inverter.

Figure 3.3 right shows the migfet implementation, and it is apparent that
only some of the triplets could be exchanged for significantly smaller 3-min logic
gates. The shown implementation tries not to make sacrifices regarding critical
path delay but one. Leaving out the specialised multiplexer gate producing 𝖢𝟩 in
favour of the usual multiplexer tree would give a slight improvement, but I kept
it in this design, because the pattern causing it starts to appear more often for
larger circuits, like the 32-bit variant shown by its original authors. Also, it shows
an interesting optimisation applicable to this circuit. All of the 3-min circuits
were placed away from the critical path, which is from input 𝖠𝟢/𝖡𝟢 to output
𝖲𝟩, because they slightly increase the delay for the carry propagation signal. The
implementation also avoids 3-min circuits in places like the inputs 𝖠𝟤/𝖡𝟤, although
they form triples with the multiplexers in the third column (counted from the
input). As can be seen, they not only feed into the multiplexers but are also into
the 3-min gates of inputs 𝖠𝟥/𝖡𝟥. Table 3.1 showed that the logical effort for the
3-min gate is higher than for the simpler 2-nand/2-nor gates. So, the chaining
of two 3-min gates had to be avoided in those cases. For larger circuits, though,
the higher bits of the adder develop enough slack such that chaining of multiple
3-min gates becomes feasible for additional savings and a more balanced circuit.

The logic gates in the migfet implementation are the ones shown in Figure 2.9
I for the 2-inverting multiplexer (nmux) gate, Figure 2.10 I for the 2-nand/nor
and 3-min gates and circuit III for the 2-/3-xor gates. One notable exception is
the top-right logic gate producing 𝖢𝟩. It implements a pattern that also appears
more often for larger input sizes, which is related to the underlying information
density of the addition operation.

Logic circuit implementation cannot escape the fundamental limits of infor-
mation density, which itself is the driving force of signal communication. Every
complete and correct implementation of an algorithm must communicate as many
bits of information to as many sub-circuits as are necessary to fulfil its definition.
Most implementations communicate more bits, 1) due to a non-trivial mapping
between electrical signals and bits of information and 2) due to restrictions of the
underlying implementation vehicles, the transistors. As this work already showed,
reconfigurable transistors allow for a reproduction of a tighter mapping between
information bits and electrical signals. The same is true for adder circuits. Not
all bits of inputs can influence all bits of output in the same way, otherwise the
critical path would have to grow linearly in the number of inputs, which it does
not. The best known adder designs grow in the square root of the number of in-
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with only two distinct inputs, shown in the middle, is recurring in larger cca circuits.
Using migfets, it can be compressed into a single-stage logic gate, depicted on the right.
See Figure 2.9 for a circuit drawing explaining the principle operation.

puts (at least asymptotically). So, when the information density is thin enough,
we should start to see gaps in the tree structure of the circuit.

In the cca, one such gap shows up on the path to compute 𝖢𝟩. The rele-
vant circuit pattern and its construction as a single gate is shown in Figure 3.4.
Although three (more or less) independent signals select the input of the shown
specialised multiplexer, only two inputs feed into the multiplexer instead of four,
that it could theoretically select from. This obviously means that multiple se-
lections map to the same input signal. But it also means that there is no need
to keep all the necessary signal paths around for inputs that will never be used.
The pattern in the middle shows clearly, that only one of the input multiplexers
can be active at any given time. So, when the output of the inactive multiplexer
could be tri-stated, they could be combined at the outputs without inferring an-
other logic stage. (See second drawing from the right.) With migfets such a
circuit is possible and its construction is shown in the left box and in Figure 2.9
II. Adding one more gate to all transistors in the circuit allows us to also feed a
third selection signal to the circuit, resulting in the final right logic gate, which
shows a single-stage logic gate selecting over two inputs.

The utility of this circuit design lies its ability to exploit tri-state behaviour
to connect the outputs of two multiplexers, which is usually forbidden in static
logic design. Here, it does exactly allow to reflect the decision tree of the three
selectors, which must be connected to increasing numbers of transistors in the
logic gate depending on their level in the tree.

On a larger-scale arithmetic circuit, migfet implementations can fare quite
well against cmos circuits, as Table 3.4 shows. In the number of transistors,
the migfet implementations range consistently in the 58% region over all input
sizes. The left number, in columns that show two numbers separated by a slash,
represents circuits that do not replace the patterns of three multiplexers with the
extended variant on the critical path, a constant difference of 6 transistors to
the right number in those columns. The normalised delay for fanout 𝐻 = 4 is
shown in the next two columns. For the small 4-bit design, the introduction of
3-min logic gates dominates the improvements, pushing the delay down to almost
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Table 3.4: Comparison of cca implementations for three input sizes. Nor-
malized delay of the critical path. For the migfet implementations results
are shown without / with the extended multiplexer gate.

Circuit 𝑁fet 𝑁migfet 𝐷𝐻=4
fet 𝐷𝐻=4

migfet

4-bit cca 144 82 43.6 26.2
8-bit cca 352 202 / 196 49.6 37.2 / 38.2
16-bit cca 826 480 / 474 68.5 51.9 / 52.5

1/2. Nevertheless, the larger the circuit gets, the more does the multiplexer tree
dominate the circuit delay. Thus, the delay converges against 75% of that of the
cmos implementation.

In this chapter, we have seen that transistor reconfiguration and multiple
gates per device are interesting opportunities to improve on logic circuit design.
They show promising results for both explicitly reconfigured circuits in the recon-
figurable architectures domain and implicitly reconfigured circuits as a general
compression scheme that improves delay and energy performance. The effects are
not only visible at a small scale but they carry over to larger circuit designs. In
the next chapter, I will demonstrate an approach to model logic gates as transistor
circuits which needs very little data. It targets early technology evaluation where
reliable transistor device data is scarce, but where early results in circuit design
can drive further device development. Thus, it focuses on standard-cell sized
logic gates and enables us to automatically investigate implementation variants
of Boolean functions and compare their results in various metrics and situations.
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Chapter 4

Constructive DSE for Standard
Cells Using Model Checking

The previous chapters showed that reconfigurable fets have interesting new prop-
erties and lend themselves to new standard cell designs. I also showed that the
enhanced features of the devices have an impact on larger circuits, as well, allow-
ing for a more compact implementation of the intended function and a smaller
energy budget. To this end, devices research has gone into the direction of
polarity-controllable field-effect transistors based on established fabrication sil-
icon processes [11, 64] or as low-temperature back-end processes using silicon and
germanium that can be integrated into current fabrication processes as shown in
[23, 56]. Other devices, such as carbon nanotubes [6, 37], graphene nanoribbon-
based devices [15, 44], and tunnelling devices for ternary logic [26] have been
proposed as well. To stay consistent with the earlier chapters, this chapter makes
use of the germanium device shown in [56], as it shows promising performance
results and tcad simulation data was accessible for research during the work done
resulting in this thesis. I will describe the modelling of the transistor using this
particular device (see also Figure 2.6 for an impression of its performance data).
Nevertheless, the modelling technique described here is general enough to describe
any type of transistor device and several other device models were described with
this approach, like a 400 nm silicon-based lab device described in [51] and a 32 nm
high-performance Finfet device shown in [41]. When transistor devices with new
properties are devised and published, it is worthwhile, if not important, to begin
to evaluate their potential impact on circuit design as early as possible. Device
and integrated circuit production is an excessively costly undertaking with many
factors stacked against the adoption of new designs and stacked for being conser-
vative and implementing small incremental changes. Stable device manufacturing,
long-term working circuit designs are both in itself hard problems that take large
amounts of time to be solved. Hence, when it is foreseeable that new device prop-

51
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erties will influence very large-scale integrated (vlsi) design, one cannot start too
early to try and quantify where circuit design should go forward with that new
device or what properties of the new device may need special attention to make
it competitive. Thus, providing an approach to explore the standard-cell design
space and quantify key performance numbers like circuit delay, power dissipation,
energy consumption per operation from as little device data as possible, was a key
goal of this research. High automation ensures that, when device parameters can
be determined with higher precision later, those changes are picked up on during
quantification, allowing for a refined picture of the design space.

A second key goal of this research was to provide a tool that is capable of giv-
ing explicit answers to queries for extreme performance indicators where it made
sense, like the absolute worst-case delay and maximum power dissipation; or to
queries for average quantities, like average delay under the assumption of a cer-
tain reconfiguration probability or the average energy consumption per operation.
This is a new direction of quantifying circuit designs early on, because it allows
us to investigate variants of circuit designs which are functionally equivalent but
whose performance differences are hard to judge from the outside. Having access
to extremal values of quantities enables a better judgement of valuable imple-
mentation variants and allows us to explain why they are so valuable at the same
time.

To achieve these two key goals, I chose to employ probabilistic model check-
ing (pmc) as the computational basis to implement this automated design space
exploration (dse). Model checking has the prime feature that it provides guaran-
teed, exact and complete answers to queries that are checked against models of
interest (see also [3], pp. 11 ff.). If a problem can be modelled and a meaningful
query be formulated, the investigator does not need to have prior knowledge of
corner cases or relevant input patterns. The approach in itself is able to determine
the interesting model states and can even deliver them back to the investigator
as witnesses. This is in stark contrast to simulation-based approaches which can
only be as good as the quality of their test stimuli. Also, if model resolution
affects the results, model checking will produce a new matching set of relevant
states when model parameters change. In simulation, it is again left to the user to
know about the changing conditions and to adapt the test set accordingly. Espe-
cially in variant analysis, where circuits are likely to have differing “critical” input
patterns (those, that excite the worst-case result), and in early analysis, where
device characteristics are likely to change, this independence of a well-known set
of input stimuli is a complete game changer.

Up to this point, I completely ignored average performance metrics. These
are next to impossible to obtain with simulations, but, on a large scale, are an
even more important metric than worst-case metrics. The reason I believe this,
is that large-scale systems all work asynchronously, anyways. So, in the long run,
computer systems behave according to their long-run average characteristics, be-
cause that is the very definition of the long-run average of a metric. By induction,
long-run average system performance is maximised when long-run average circuit
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performance is maximised. So, when a certain worst-case performance is accept-
able, aiming for the better long-run average performance may yield considerable
benefits. This induction breaks down as soon as circuits are used in synchronous
pipelined environments. Still, as the overall optimisation goal is still the one that
is to be achieved (on the large scale), it would rather make sense to think about
completely asynchronous (or rather self-synchronising) computer designs again,
rather than dismissing the metric on the small scale (while it remains the only
relevant metric on the large scale). It so happens that migfets are also promis-
ing for use in asynchronous circuits [36, 13, 60] as they reduce transistor count
and complexity (a main drawback of current designs) and their polarity control
facilitates a direct implementation of hysteresis (a fundamental building block of
self-synchronisation).

Standard cell characterisation can and is done in various ways. The method
shown in [50] makes special effort to characterise reconfigurable standard cells to
planar rfet technology. The fundamental difference of my proposed method to
the established methods, fem [52, 32] and spice [38], is that they describe a cir-
cuit experiment as an initial value problem of a set of differential equations that
describe the model’s evolution over time. The approach introduced in the follow-
ing sections uses a charge transport model that operates with discrete voltages
and evolves in time steps. State evolution is expressed through local interactions
in which charges are transmitted between charge stores exclusively mediated by
charge transmitters. The resulting models remain discrete and finite and can thus
be completely traced and explored, which enables the exhaustive quantitative
analysis using model checking. Spice simulations are not generally feasible for
exhaustive analysis and fem, while it maintains the highest precision, becomes
excessively costly for anything but the smallest circuits and the simplest exper-
iments. The new approach allows me to directly query measures and perform
multi-objective analysis, e. g. see [31, 21, 18].

Design space exploration of circuit variants from a single Boolean function is
done via an algorithm that generates all “minimal” implementations – the mini-
mality constraints are given in Section 4.4. This is not feasible at the transistor
level using fem, but in [66], a genetic algorithm found new multiplier circuits
that were more compact and performed better than previously known variants,
which could be analysed using spice.

Formal methods, in broader terms, have been used before in hardware veri-
fication and logic synthesis, see [29, 20]. Probabilistic model checking has been
successfully applied to research the dependability of sram-based fpgas in [24]
and to quantify the reliability of nand multiplexing in [39]. Theorem proving and
model checking have been applied also to verify cmos circuits regarding their con-
formance to a sequential specification and their functional correctness on a logic
level [17]. Other approaches include the extension of very large-scale integrated
circuit hardware description language (vhdl) and Verilog with domain-specific
annotations that allow the automated extraction and verification of formal mod-
els, see [7, 19].
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While timing analysis is usually done approximatively with gate-level simu-
lations or static timing analysis [27], formal methods have also been successfully
applied. As in this work, the idea was to overcome the incompleteness of ap-
proximation and the practicality issues that arise when attempting an exhaus-
tive analysis with simulation-based techniques. To this end, probabilistic model
checking could be used to verify complex rtl designs, like a H.264 decoder [30],
and timed automata were used in [1], employing the model checker Uppaal, to
analyse a 4-bit adder. Both works concentrated on evaluating gate-level designs
constructed from standard cells, whose performance data had been obtained via
other means. Using charge transport models, I can transition from an analogue
circuit description to gate-level performance data, a technique that has also been
adopted in spice in [59].

For the construction of an automated dse tool, it was necessary for me to have
a language that can efficiently capture this type of network model. The model
checker prism, which was used to run the experiments, features a very basic input
language. It is designed to exactly capture a probabilistic model description and
provides no abstraction mechanisms to describe recurring parts of the model as
functions and function calls. All connections must be described explicitly. This
led to the development of prism-gen, a language that is based on CommonLisp
and that allows the composition of transistors, sub-circuits and input stimuli
generators with the surrounding test fixture, which is, then, compiled into a flat
specification for prism. I introduce parts of the prism language and describe the
unfolding of prism-gen constructs into it at appropriate times.

This chapter describes the principle operation of model checking, to enable
the reader to understand the approach that I took to model and quantify recon-
figurable circuit designs. It then goes on to describe the network model and the
transistor model as well as their implementation as the prism-gen dsl. Lastly,
this chapter focuses on the exploratory aspects and how implementation variants
of a circuit are generated. The development of this approach is the result of a
joint research effort with my colleague Steffen Märcker.

4.1 Principle Operation of Model Checking
Model checking is a verification technique. As such, it can determine the validity
of properties with mathematical rigour. This is achieved by brute force analysis
of all reachable states of the model under scrutiny. The model is a formalised
representation of an actual computational problem – an algorithm, a computing
device or a distributed system. It is restricted to just capture as much state of
the real problem as necessary to faithfully replicate its behaviour when checked
against a set of requirements. These requirements are also formalised in a property
specification, where each property, again, captures the essential qualities that the
model is to be proven (or disproven) to uphold. Thus, the mathematical proof,
that model checking is able to deliver, exactly captures the two formalisations
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(and simplifications) of the system to check and the property it shall possess, but
not the real system and the real property themselves. As a verification method,
it guarantees to “build the right thing” [3] (page 13). The biggest threat to
its successful application is the validation problem, the question “do we verify the
right thing?” Establishing the right model – a model that captures those qualities
correctly that you want to base real-world decisions on – is an art. Inherent to
the method of model checking, the user must supply formalisations of the system
model and the properties that it is supposed to have. Both the types of models and
the types of queries that the former can be checked against are interdependent. In
this thesis, I exclusively use probabilistic model checking (pmc). This extension
to model checking widens the applicability of the models to more interesting
properties for which the model is best expressed as a probabilistic system or one
that involves non-deterministic choice.

4.1.1 Model Types
Probabilistic model checking is used in this research to express the sets of random
input stimuli to a circuit under test and it avoids picking (and potentially missing)
relevant input stimuli that excite the necessary system behaviour that, in turn,
shall be quantified as circuit delay or power dissipation. Finding the right input
stimuli to excite maximum power dissipation or worst-case delay is taken from the
hands of the developer and put into the hands of an automated tool. This greatly
expands the usefulness of this formal method even beyond what is practical with
simulation techniques.

Discrete-time Markov chain Pmc requires the system model (i. e. the circuit
itself and the whole experiment that surrounds it) to be expressed as a transition
system that is augmented with probabilities and non-deterministic choices. This
can be achieved in mainly two ways. As discrete-time Markov chains (dtmcs),
the experiment is modelled such that all transitions from a state to its successor
states are probabilistic. Thus, each state can be assigned a probability distribution
according to which the experiment will select the next transition to its successor
states.

Figure 4.1 shows an example of a dtmc. It is an input automaton that gen-
erates the stimuli for a digital circuit. The automaton describes the truth table
over three inputs, thus, it has eight states. The transition to another state re-
flects the switch of one or more inputs. As the automaton shows, every state can
only reach three neighbouring states, those, that reflect switching a single input.
Furthermore, the graph can be divided into two major sub-graphs, of which one
is outlined and labelled as “Configuration 0”. Inside each sub-graph, state tran-
sitions are equally likely with a probability of 49%. Transitions that are crossing
the grey outline, though, are less likely to happen with only 2%. This Markov
chain depicts an input automaton for a 3-input reconfigurable circuit, where we
assume that the first input is the reconfiguration input and the other two inputs
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Figure 4.1: An input automaton into a 3-input digital circuit described as a dtmc. It
can assume the eight states of the truth table and allows only single input switches.
Input 𝑟 is the reconfiguration input and the outlined Configuration 0 can only be left
via switching that input. With 2 %, this is much less likely to occur than a switch of
either input 𝑎 or 𝑏 (with 49 %).

are normal functional inputs. Thus, each sub-graph represents one of two config-
urations that the circuit would be in. We would use such an input automaton,
for example, for experiments, where we would be interested in the average en-
ergy consumption per operation (for operations being restricted to single input
switches) in which the circuit reconfiguration is not to be totally dismissed but
its contribution being reduced to a realistic amount. Reconfiguration uses a lot
of energy but is not very likely to happen. Regulating the switching probability
of the reconfiguration input exactly achieves the desired effect. For the sake of
simplicity, Figure 4.1 does not show the state space of the circuit model that is
affected by this input automaton. Thus, it also does not show quantities on the
transitions that, in the actual model, are the basis for its quantitative analysis
(e. g. the absolute amount of energy per operation). This will be introduced later
when describing the network model.

Markov decision process The second way to model a circuit is to describe it as
a Markov decision process (mdp). Mdps allow the simultaneous use of non-
deterministic choices and probabilistic ones. In general, this allows them to ex-
press a non-deterministic choice between probability distributions that govern the
transition from a state to its successor state. From any state, first, a probability
distribution is selected non-deterministically and second, the successor state is
selected in a probabilistic manner like in dtmcs. Every dtmc is, thus, an mdp
with only one probability distribution to choose from in each state.

Figure 4.2 shows a small non-deterministic automaton 𝛼 and a possible mdp
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Figure 4.2: 𝛼. Another input automaton for a 2-input digital circuit with inputs 𝖠
and 𝖡. In every state, the automaton selects one of two actions 𝖠 and 𝖡. 𝛽. An mdp
of automaton 𝛼, depicted as a bipartite graph. It introduces the possibility that a state
transition fails. In each state, the system selects one of two actions corresponding to 𝛼.
For both actions a probability distribution (black squares) shows the probabilities for a
successful transaction or a failure; e. g. switching away with action 𝖡 from states (0, 1)
or (1, 0) fails in 1 % of the cases.

of that automaton as 𝛽. Taking a non-deterministic choice is called taking an
action and is depicted by a dashed edge. Clockwise state changes are drawn
using the outward edges and counter-clockwise changes use the inward edges in
both graphs. So, in state (0, 0) we can take action 𝖡 to transition to state (0, 1)
or action 𝖠 to transition to (1, 0). This coincides with switching inputs 𝖠 and
𝖡 when the state encoding (𝑎, 𝑏) encodes 𝑎 as input 𝖠 and 𝑏 as input 𝖡. In
the mdp 𝛽, model states are depicted as rounded rectangles, as before, but they
are no longer directly connected. It is left by taking an action, which always
selects a probability distribution (black squares). In this example, this almost
always leads to choosing a probability distribution which only leads to a single
outcome – the same target model state as in automaton 𝛼. For instance, leaving
state (0, 1) (top-right) by switching input 𝖠 (downwards) leads to a square that
has only one leaving probabilistic edge with probability 1 which leads to state
(1, 1) (bottom-right). This is true for all actions except for those leaving (0, 1) or
(1, 0) via action 𝖡. With a probability of 1%, the switch will fail and the model
transitions to the state in the opposite corner. This corresponds to the behaviour
that switching input 𝖡 sometimes flips input 𝖠 as well, but only if 𝖠 and 𝖡 start
with opposite values. It could be modelling error behaviour that is expected
due to manufacturing or technological constraints, but whatever it may model,
it is clear that this behaviour affects the circuit differently than the probabilistic
automaton in Figure 4.1. By exciting a switch in two inputs simultaneously, the
circuit under test will exhibit drastically different timing and energy behaviour.
This is something the example probabilistic automaton will not do.

While with dtmcs we could answer the query for the average circuit delay
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or the circuit delay that is achieved in 99% of the cases (under the given input
distribution), there could always be a path from one model state to another that
exhibits a longer circuit delay but would be very unlikely to be taken. So, this
model would not deliver an absolute guarantee. Mdps deliver models that allow a
different kind of properties to be checked. This model type allows us to query the
absolute worst-case delay (or power dissipation) directly, and the model checker
will also deliver a witness, which is a state (or list of states) that exhibits the
queried behaviour.

Both model types can have designated initial states which, in general, must be
carefully chosen, because they likely affect the states which can be reached in the
model to a great extent. The model of an electrical circuit likely captures chaotic
states that can never be reached by manipulating its inputs, e. g. interconnected
network nodes that are charged to extremely different voltages. Thus, on the one
hand, it is important to identify the relevant set of initial states to reduce the
model size by removing well-known irrelevant states. On the other hand, these
chaotic states could be interesting when investigating single-event upsets. Hence,
the set of initial states is tied to the circumstances in which the properties that
are checked also depend on the exact properties that are to be checked.

4.1.2 Query Types
The benefit of probabilistic model checking lies in its ability to return quanti-
tative results directly, whose constructive parts are explicitly controlled during
modelling. This enables its user to gain insights into properties, variations and
trade-offs of implementations under scrutiny. The formalisation of both the model
and the query enables a traceable and reproducible exploration that can operate
fully automatic and without application-specific knowledge required from its user.
In quantitative analysis using model checking one important decision to be made
is which query language to use, and in this research my colleague Steffen Märcker
and I opted for the use of ctl with the extension of probabilities and ltl path
formulae. Ctl sets itself apart from ltl in which the latter has a linear notion
of time – that is a succession of states through the model – which means that its
formulae uniquely describe linear paths starting from a state of interest. In ctl,
branching can be considered in formulae which results in time being represented
as infinite trees of states instead of sequences of states. These trees can be ob-
tained by unravelling the model from a state of interest and recording all successor
states in a (usually infinite) computation tree, hence the name computation tree
logic. The general benefit of ctl over ltl is that there are fast algorithms known
to compute the results. Also, the two logic systems are not directly comparable,
i. e. one can express formulae in one that have no equivalent in the other. Hence,
we use an extension to ctl, called ctl∗, that allows us to use the expressiveness
of ltl inside of ctl without immediately losing access to the fast algorithms to
solve the formulae. Additionally, we use another extension of ctl which gives us
access to reason about probabilities and expectations of paths through the model,
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Figure 4.3: Overview of the design space exploration for a selected function and tran-
sistor.

pctl∗. I will not formally introduce ctl in this work as it would be of no benefit
for the reader and rather refer to the original work of Clarke and Emerson [10]
and the chapter on ctl in [3] pp. 313 ff. After introducing the transistor net-
work models, I will pass along the queries that quantify certain behaviour only
informally by using the relevant parts of the model.

4.2 Overview and Workflow
The automated quantitative analysis of circuits and circuit variants needs three
fundamental user inputs 1) the Boolean function that is to be analysed, 2) tran-
sistor device data that can be used to derive transistor model and 3) queries
that shall deliver interesting answers. Figure 4.3 shows how inputs 1) and 2) are
taken up by the circuit generator to create circuit variants, which are successively
analysed by the model checker according to the queries. I first demonstrated the
working toolflow in [47].

The switching function is given as a Python Boolean function to the circuit
generator which uses an adapted Quine-McCluskey algorithm to generate a set
of variants of single-stage logic gates according to a set of minimisation criteria.
It outputs the circuit variants as prism-gen files, one for each variant. These
files do not describe a complete experiment – which would need a complete test
fixture, describing the electrical surroundings like output loads, input transients’
characteristics, the supply voltage and additional circuit parameters that should
be quantified – but merely describe the electrical network models such that they
can be included like library elements into a higher-level experiment model.

The transistor device data is not fed directly into the dse but must first be
converted into a transistor model as described in Section 4.3.3. Afterwards, it is,
too, used as a library element in the process step of converting a particular circuit
variant from a prism-gen model into a flat prism model.
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Figure 4.4: Detailed workflow of the quantitative analysis for a selected circuit and
transistor.

4.2.1 Experiment setup
A more detailed workflow is shown in Figure 4.4 capturing the construction and
analysis of a single circuit. The experiment setup encompasses all inputs that go
into the analysis process.

1) Transistor model The designer needs at least one transistor model, which is
usually taken from the library. Metal-oxide semiconductor transistors down to
a gate length of about 10 nm can be captured by the transistor model shown in
Section 4.3.3. Below that, the physics of conductance start to change again and
other equations need to be used to capture the effects. In these cases, a new tran-
sistor can be instantiated by providing a parameter set instead of implementing
a full model. The parameter set captures the following parameters for the whole
device:

• 𝑉max [V] the nominal device operating voltage,

• 𝐶n
chan, 𝐶p

chan [F] the parasitic capacitance at the source / drain contacts,

• 𝛽n, 𝛽p [S] the mosfet equation’s guidance value for n- and p-type conduc-
tance,

and for each transistor gate separately:

• 𝑉th [V] the threshold voltage,

• 𝐼nmos
th , 𝐼pmos

th [A] the drain currents at 𝑉GS = 𝑉th and 𝑉DS = 𝑉max for n- and
p-type conductance,

• 𝑆𝑆n, 𝑆𝑆p [V/dec] the sub-threshold slopes for n- and p-type conductance
and
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• 𝐶gate [F] the gate capacitance.

The model can, then, be instantiated in the test fixture.

2) Circuit under test The circuit description may be the result of the circuit
variant generator or a manual description in prism-gen, the details of which
are introduced in Section 4.3. To allow maximum flexibility and code re-use, I
separated the circuit network description from the definition of the test fixture
and transistor. Although not a necessity, the circuit description is usually kept
in a separate file and loaded into the test fixture. The electrical network is de-
scribed as a bipartite circuit graph and is exemplified in the Model construction
box in Figure 4.4 for a 2-nand circuit (cf. Fig. 2.10 I). It is explained in detail
in Section 4.3.2. This description is a circuit blueprint, and the actual transis-
tors are only applied in the test fixture. Thus, the same circuit model can be
used to quantify the design for different transistors. It is also used to describe a
generic inverter that is instantiated multiple times in the test fixture to generate
technology-specific input signals from discrete pulses.

3) Test fixture The test fixture is the top-level specification, which binds together
the domain-specific aspects of the experiment, like, which circuit and transistor to
use, with the modelling and model checking aspects, i. e. what values to quantify
(and how), the input automaton, model initialisation and more. Listing 4.1 shows
the general structure of a prism-gen input file. It displays the run-down of a test
fixture description showing the functional parts in the commentary without going
into detail and includes simple examples. I refer the reader to the Appendix on
page 129 f. for a detailed description of the symbols and font key used to explain
the syntax of prism-gen.

Each prism-gen input file consists of a single top-level form of the form
(net ...) that encloses the content, regardless of it describing a transistor net-
work or a device specification or, as in this case, a test fixture. The identifier is
purely descriptive and has no functional meaning, but the (:type ...) argument
must be set to generate either a dtmc or mdp model as this influences the type
of state transitions and queries that can be used to build and check the model.

Usually, the first block of statements involve defining the primary model con-
stants. The three constants V_SCALE, T_SCALE and V_MAX must always be defined,
because other internal constructs for creating the input stimuli generator depend
on their existence. Yet, this is left to the user to allow them maximum freedom
in defining those constants in terms of other higher level constants or to express
relations between them. Especially for checking probabilistic queries, it can be
useful to express the test fixture functionally and leave the actual input proba-
bilities undefined. This is exemplified in Line 12 with the constant p_B which is
defined as the complementary probability to p_A, which is left undefined. Thus,
the actual input probabilities can be shifted when running the experiment without
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Listing 4.1: Abstract example of a test fixture in prism-gen.
(net identifier (:type pmc-model-type)

; ; a set of model constants, e.g.
; ; – voltage resolution, time resolution etc.

5 (constant identifier type [value])
(constant V_SCALE int)

; ; experiment parameters, e.g.
; ; – output load factor

10 ; ; – input switching probabilities etc.
(constant p_A double)
(constant p_B double (- 1 p_A))

; ; circuit terminals: outputs, inputs, power supply
15 (out-term circuit-output load-factor)

(plus Vdd-identifier :value Vdd-voltage)
(minus Vss-identifier :value Vss-voltage)
(input-node input-identifier :slope input-slope-timesteps)

20 ; ; input automaton
(input ...)

; ; transistor model
(load transistor-model-file library-prefix)

25
; ; input signal generation

; ; circuit instantiation
(load circuit-file identifier :nodes ({terminal}+

30 {transistor-type}+))
; ; model initialisation, i.e.
; ; initial values for all charge storage nodes and input signals
(init :vars ...)

35 ; ; additional model computations, e.g.
; ; – computation of specific transient crossing points,
; ; – hazard conditions etc.

; ; rewards definitions, i.e.
40 ; ; – defining which model values are quantised how

(rewards reward (condition input-variable))
(rewards V_output (T V_output)))
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changing the test fixture; yet, the constraint that all input probabilities amount
to 1 is maintained through the functional description.

The test fixture grounds the circuit network and defines all electrical reference
points, the inputs, outputs and the supply and ground terminals. Using the
(plus ...) and (minus ...) statements the designer establishes the logical and
electrical relations of the supply and ground terminals with the rest of the network.
They are explained in detail in Section 4.3.2. The test fixture defines the input
automaton, which generates the digital input stimuli which are, then, translated
into electrical stimuli via modelled inverters.

Both the transistor model and the circuit network are loaded as library ele-
ments via the load statement. Depending on use, this statement accepts a :nodes
argument to parametrise the model and connect its terminals to the surround-
ing network. In contrast to simulation, model checking needs an explicit model
initialisation. Simulation always follows a single trace exploring one timeline of
model evolution along its simulation run. Model checking explores all possible
model evaluations simultaneously. Thus, not initialising a model means that the
model checker is expected to explore all evaluations from all possible starting
states. This is usually not what we expect from an electrical test fixture. Hence,
the designer defines all voltages at all points in the electrical network as well as
the initial digital input signals.

Some experiments may involve computations which require additional knowl-
edge about the circuit and the query that it is checked against. Thus, there is
room to describe arbitrary computation and model extensions in a test fixture
file. Lastly, the test fixture defines rewards, which are a model checking term
for quantities. Listing 4.1 defines the output voltage as quantity of interest in
Line 42, which, as a fundamental unit of the network model, is trivially defined
as the voltage from the output terminal called output.

4) Query In the approach presented here, queries formalise the goal function that
shall be computed in an experiment. These can be rather abstract questions to
the test fixture, e. g. a performance measure such as circuit delay and energy
consumption, but also quality measures such as functional correctness or the
presence of output hazards. In addition, quantity measures can be related to the
stimuli generated by the input automaton, to characterise the long-run behaviour
of a circuit. Queries represent a generic characterisation of the set of traces that
have to be taken into account. Model checking is, then, able to reason about
the possibly infinite set of all traces that meet the criteria laid out in the query
without actually generating them. This expressive power is very different from
simulation-based approaches which rely on an explicit enumeration of the relevant
traces.

Queries are a direct input to the model checker and do not influence the
construction of the circuit model or test fixture. This makes them independent of
the circuit implementation and thus, they are provided as a library to pick from.
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Nevertheless, formalisation requires the designer to specify relevant model states
in generic terms and to impose constraints on the temporal sequence in which
they may occur in an experiment. The query, as the second input into the model
checker next to the model, shares a formal relation with the test fixture. Not all
types of models and queries are compatible with each other, e. g. pctl∗ queries
do not apply to transition systems with non-deterministic choices, generated by
mdp models, and will generate an error when used together.

The experiments in this thesis will feature queries capable of determining the
following results under various conditions:

• the worst-case input / output delay, power dissipation and energy consump-
tion (per operation)

• the long-run average input / output delay and energy consumption (per
operation)

• output hazards, i. e. spurious output switching events under the condition
that an input switch does not finally result in an output switch

I will explain their structure and relations to the results informally in Section 4.3.4.
The actual queries used will not be explained, because it is of little value to the
reader and would involve a thorough introduction into temporal logic which is
out of the scope of this document.

4.2.2 Quantitative Analysis and Results
The model construction and quantitative analysis are completely automated steps
of the workflow. It is sufficient to describe a set of experiments as shown in
Figure 4.3, which includes unmentioned details about specifying which models to
analyse with which queries under what experiment conditions. I provide tools to
start the whole process and collect the results as comma-separated values (csv)
files. These include unfolding the experiment description into individual scripts
and command files for easy distribution of the quantitative analysis over a range
of compute servers and collection of the results.

The types of results can be numbers and Boolean results, which represent
quantitative and qualitative results. Further, they can be rational functions that
describe the probabilistic behaviour parametrically. Their particular value lies in
their ability to describe a general circuit behaviour over a range of input condi-
tions, which can be later used to assess circuit behaviour under concrete envi-
ronmental conditions without the need to re-run the expensive process of model
checking again. I use this in this thesis to present a solution to the following ques-
tions: For a set of implementation variants of a single Boolean function, whose
input / output delays varies over a range of input signal distributions. Which
circuit performs best under which input signal distribution and how good. The
result will be a set of rational functions which cross each other at certain input
signal distributions.
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Results can also come in form of witnesses, which are complete model state
descriptions that cause a query to apply. This means there are no probabilistic
or non-deterministic choices left and the model deterministically evolves along a
path that is captured by said query. A designer can use these witnesses to explore
secondary effects of circuit states, which are not captured by the query and thus
not quantified. Many details of a circuit model, like the voltage at certain nodes
which are not the circuit outputs or currents flowing through individual transis-
tors are not returned by the abstract queries which determine related quantities
like power or energy. Nevertheless, for the understanding of a particular circuit
behaviour, it might still be interesting to look at all the electrically interesting
properties when encountering a peculiar phenomenon through a query. Witnesses
deliver this “back reference”, which allows a designer to jump back to a model
state which will result in the queried one, and then perform a simulation consid-
ering various other model properties after the fact. This allows additional insight
into why a circuit exhibits a certain behaviour.

4.3 Transistor Circuit Model
This section describes the model that drives this research and produced the results
that were shown in earlier and, especially, in the next chapters. The implementa-
tion of this model was done in the domain-specific language prism-gen, which was
specifically designed for conducting this investigation. It was necessary to create a
new language, because, while the model checker prism was the only available tool
able to perform the necessary model checking, it lacks the abstraction to supply a
high-level specification of an electrical circuit as a computable model. prism-gen
is the entry language and a transpiler that made this research possible. In the
following sections, I will interleave the presentation of the formal conception and
practical implementation of the components of the transistor circuit model.

4.3.1 Direct Logic Network Model
It is the scope of this research to investigate and model the behaviour of recon-
figurable transistor circuits with the focus on complementary static logic gates.
Thus, in a first iteration, I considered an abstract transistor device model that im-
plemented a six-valued logic of strong and weak binary signals as well as tri-state
and collision signals. It was clear from the beginning, that the reconfigurable
transistor would be driven by two independent gate inputs, which, in conjunc-
tion, would drive and configure the device and that only three of the possible
four states that were encoded by its two inputs would result in a behaviour that
would directly map to Boolean logic. The fourth state would excite ambipolar be-
haviour, and its influence on surrounding transistors would depend on their state
as well as the ambipolar one (cf. Section 2.2.2). Thus, it was necessary to use a
logic with more than two values. In addition to the value domain, I abstracted
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Figure 4.5: Direct logic transistor delay models. 𝛼. an exponentially distributed delay
around expectation 𝑄 = 1. 𝛽. a counting channel with probabilistically selected delay
values according to distribution Dist.

the time domain, i. e. switching delay, by an internal clock with an exponential
distribution around a mean switching time as shown in Figure 4.5 𝛼.

The transistor model in 𝛼 switches around an expected value 𝑄, but can switch
a little early or late. The transistor model uses 𝑃 as the dynamic load which
describes how much suppliers 𝑛 must drive the load factor 𝐻, which accumulates
over branches, as:

𝑃 = 𝐻
𝑛

Additionally, a resistance 𝑅 slows down signals which are sent through transistor
channels and which accumulate to a path resistance 𝑅path. Thus, the transistor
delay 𝐷 is computed as:

𝐷 = 𝑃 × 𝑅 × 𝐸𝑥

where 𝐸𝑥 is the expected delay, which comes from 𝑄 or Dist, depending on
whether delay model 𝛼 or 𝛽 is used. Communication delays are neglected but
could be easily considered by adding two-terminal devices which possess a clock
with an expected switching time that reflects the expected communication delay.
The technique is commonly known as a digital clock and has been successfully
used in more abstract circuit delay models that work with whole logic gates or
even larger sub-circuits. Although there are proven tools to describe and gener-
ate models using digital clocks, I implemented both variants 𝛼 and 𝛽, because
it was not clear from the beginning which model, if any, would yield a usable
representation.

The idea is that the mean switching times could be randomized around a mean
general switching time, to reflect production variation. Also, inputs are selected
randomly or probabilistically to excite the interesting circuit states. The clocks of
those transistors, that would produce the output value, would be modelled such
that their delay value reflected the output load as well as the circuit structure. All
this means, that the timing model (what logic value is output after what delay)
and the value model (which logic value is actually output) are two separate models
blended together, where the timing model influenced intermediate states in the
value domain.

The value of this model is that satisfiability, i. e. whether a transistor network
exactly performed an intended Boolean function, can be directly answered. This
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Figure 4.6: Direct computation of all valid inverter implementations for three mod-
els. Left a trivially correct cmos implementation. Centre an rfet implementation
with model variables 𝖪, 𝖱, 𝖷 and 𝖸 and two solutions. Right a sea-of-gates model (cf.
Sec. 2.1.1) with three components, two transistors and a join node, seven model variables
and four solutions.

means that there is a road to use the model checker to build meta-circuits as
shown in Figure 4.6 on the right. They capture a number of transistors and po-
tential connections in a sea-of-transistors. The elements are initially independent
from another and establishing connections between them is the task of the model
checker. Each output connector is labelled with a single variable, e. g. 𝖴 and 𝖵,
and can act as an additional input to one of the input connectors. Each element
has one or more input connectors that resemble switch-boxes. The input connec-
tors, labelled with small Greek letters 𝛼 to 𝜃, can select from a variety of signals.
Solutions are computed by checking these models against the goal logic function.
The four solutions to the right meta-circuit for the logic inversion function are
shown in Figure 4.6. They differ in their selection for the input pairs 𝛾, 𝛽 and
𝜁, 𝜀, which program the respective transistors to either pmos or nmos function.
By fixing the source contacts to opposing constant inputs – one transistor is fixed
to 0 or a selection of variables, the other is fixed to 1 or a selection of variables –
the designer can describe the expected complementary layout and avoid needless
redundant solutions without cutting off real solutions. Additionally, at the merge
node, the inputs 𝜂, 𝜃 are ordered, which means both solutions are doubled by
wiring the transistor outputs 𝖴 and 𝖵 to input 𝜂 and 𝜃, respectively. This can
also be addressed by removing one of 𝖴 and 𝖵 from the selection space of inputs
𝜂 and 𝜃. Limiting the input space by these two means can be achieved with only
local knowledge (of the function of the merge node or the transistor node), which
means that identifying these simplifications is independent of the goal function
and does not grow in complexity with more complex meta-circuit models.

Direct logic models can also serve for quantitative analysis, as the direct logic
transistor delay models from Figure 4.5 can be integrated into the sea-of-gates
models. Thus, additional constraints enable model checking to find not only all
functionally correct configurations but also the fastest designs.

A third major benefit of a direct logic model is that by staying in the same value
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domain for functional as well as quantitative purposes, a quantified circuit could
be abstracted into a much simpler model that consisted of a single logic function
and a set of delay channels that model its input / output delay. Thus, not every
component of more complex circuits needed to be modelled and quantified at the
transistor level of detail.

Yet, this model proved to be dysfunctional for several reasons. The exponential
delay model from Figure 4.5 𝛼 allows switches that are arbitrarily close to the
mean value but different from it (with arbitrarily small probabilities of those
corner cases ever happening). This produces models with many edges which grow
to an unmanageable size very quickly. The clocks in the circuit under test operate
independently of each other; they are not influenced by neighbouring conditions
but advance in no particular order. This means, that even if two transistors
would switch at the exact same time, the model checker would, categorically, still
order all switches that happen at that moment, even though the user is no longer
interested in this order. Any Newtonian physical system will behave the same
regardless of the order of events that happen at the same time. The mere existence
of this order meant that all orders of states would have to be kept and considered
during model checking, which exploded the state space with 1012 states for a
3-min circuit which was barely computable. 3-xor was not computable at all,
because no partial input selection would prematurely fix the output value, which
meant that all possible states would have to be considered for all possible input
combinations. Even though the number of edges could be reduced by employing
the counter model from Figure 4.5 (when used with a simple-enough distribution),
this still proved to be insufficient to reduce the network model to computable sizes.

Additionally, the restriction to a logic (even a 6-valued logic) proved to be
too restrictive to capture the intricacies that are influence output behaviour when
experiencing slow input transients. It turned out to be insufficient to model
slow (shallow) input transients as delayed but prompt input changes. Lastly, the
dynamic load 𝑃 proved to be insufficient to capture electrical power or energy
requirements. Thus, a separate power model independent of the delay model
would have to be devised.

Although, a direct logic model has interesting properties from a circuit ex-
ploratory point of view, I did not pursue its implementation further and created
a fundamentally different model.

4.3.2 Charge Transport Network Model
In the second attempt, I devised a model that directly operates in the analogue
domain and developed that in a joint effort with Steffen Märcker. The idea of this
model is to quantise the observable signals into voltage levels rather than logic
values. Instead of capturing the value and the time domain in a single device,
the network is separated into two categories of nodes and strictly laid out in a
bipartite graph.

Each node in the network is either a charge transport node or a charge storage
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Figure 4.7: Translation of the cmos 2-nand circuit into a charge transport model.
Transistors are split into functional devices and their surrounding capacitances. In the
bipartite graph these are subsumed into charge transport nodes (squares), that carry the
switching function, and charge storage nodes (circles), which capture the value domain.

node. Figure 4.7 shows a simplified translation of the well-known 2-nand circuit
into a charge transport model.

A charge storage node is a location in the network that has a definitive elec-
tric potential. In our model, these are absolute values and they are limited by
the model parameters 𝑉scale and 𝑉max which describe the resolution and interval
length of voltages that can be represented in the model. Because they are the
only nodes that represent electric potential, they are also tied to a definitive (but
not necessarily constant) capacitance which must be greater than zero. Thus, the
value domain (voltage) and the timing domain (via capacitance) are tied together
in these nodes in form of a virtual capacitance whose first terminal is connected to
a Kirchhoff-node in an electrical network and whose second terminal is connected
to ground (hence, the absolute voltage it represents). According to Kirchhoff’s
current laws, its capacitance is charged and discharged by the sum of all momen-
tary currents through the attached nodes at that network location. All connected
nodes are charge transport nodes due to the bipartite graph property.

A charge transport node characterises how charges are transported in terms
of well-defined momentary currents flowing through all its connections. Thus, it
must have two or more connections to surrounding charge storage nodes, which
establish an absolute voltage potential on their particular edge. The resulting
tensions are used, depending on the electrical device that a charge transport node
represents, to calculate the momentary currents at all edges. In its simplest form
it would resemble an idealised resistor and would possess a defined conductance.
Its product with the voltage vector created by the two connected charge storage
nodes would result in equal momentary currents, one flowing outwards and one
inwards. Instead of full vector arithmetic, it was sufficient in this work to define
the direction of the electrical current in relation to signed voltage differentials. On
the influx side, the current is negative such that it draws charge from connected
the storage node (in relation to its capacitance) and reduces its absolute voltage.
Likewise on the efflux side, the current is positive and raises the absolute voltage
of that storage node. Which side is influx or efflux is decided by the sign of the
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voltage difference between the two connected charge storage nodes. It is the user’s
responsibility to define the relations of currents and voltages in a meaningful
way. To improve the handling of circuit descriptions, these relations are not
exposed directly but remain hidden inside high-level device models. The network
model is as simple as that, which is why charge transport nodes usually carry all
the electrical properties (including intrinsic capacitance) and roughly align with
the “devices” in the network, while charge storage nodes can be viewed as the
“connections” between the devices.

The formal specification of the charge transport model is that of a bipartite
multigraph 𝑁 = (𝑆, 𝑇 , (𝑋𝑡)𝑡∈𝑇, 𝐸) where:

• 𝑆 is a set of charge storage nodes,

• 𝑇 is a set of charge transport nodes,

• (𝑋𝑡)𝑡∈𝑇 is a pairwise disjoint family of contacts at the charge transport
nodes,

• 𝐸∶ ⋃𝑡∈𝑇 𝑋𝑡 → 𝑆 × 𝑇 is a set of connections that forms a mapping from
contacts to edges between charge storage nodes and charge transport nodes
such that for all 𝑡 ∈ 𝑇 holds 𝑐 ∈ 𝑋𝑡 iff 𝐸(𝑐) = (⋅, 𝑡).

We describe a concrete model by composing charge storage and charge transport
nodes according to these rules. They communicate their state via the edges using
three functions that describe it in terms of the three aforementioned electrical
properties:

𝖢 ∶ 𝐸 → 𝐶 Capacitance in Farad (F),
𝖨 ∶ 𝐸 → 𝐼 Current in Ampere (A),
𝖵 ∶ 𝐸 → 𝑉 Voltage in Volt (V).

For the remainder of this section, we identify the function symbols 𝖢, 𝖨 and 𝖵
with their physical properties 𝐶, 𝐼 and 𝑉. Functions are assembled piece by piece
from partial formulae, as such, each storage node 𝑠 ∈ 𝑆 provides voltage 𝑉𝑠, each
charge transport node 𝑡 ∈ 𝑇 contributes a capacitance (as a device property) 𝐶𝑐
and a current 𝐼𝑐 for all its contacts 𝑐 ∈ 𝑋𝑡. Communication through network
connections are spontaneous. So, for each connection 𝑒 = (𝑠, 𝑡) ∈ 𝐸, we define:

𝑉 (𝑒) ≝ 𝑉𝑠 𝐼(𝑒) ≝ 𝐼𝑐 𝐶(𝑒) ≝ 𝐶𝑐

In its current form, local capacitances are constant 𝐶𝑐 = const, i. e. they do
not change throughout the evolution of the network model over its state space.
Local momentary currents 𝐼𝑐 are stateless mappings involving momentary path
conductance properties 𝐺𝑐,𝑘 and voltages of immediate connections 𝑉𝑐, 𝑉𝑘 with
𝑐, 𝑘 ∈ 𝑋𝑡, such that:

𝐼𝑐 ∶ 𝐺𝑐,𝑘 × 𝑉𝑐 × 𝑉𝑘 → 𝐼𝑐,𝑘 (4.1)
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These mappings are what defines the electrical properties of a charge transport
node and, thus, of transistor devices. Voltages computed in charge storage nodes
are the only stateful elements of the electrical network. Their update function is
defined as:

𝑉𝑠 ∶=
∑

𝑒∈𝐸(𝑒)
𝐼(𝑒)

𝐶 loc
𝑠 + ∑

𝑒∈𝐸(𝑒)
𝐶(𝑒)

× 𝑡 + 𝑉𝑠

with 𝐸(𝑒) = (𝑠, ⋅) and 𝐶 loc
𝑠 an additional load attached to 𝑠.

Model time 𝑡 and voltages 𝑉𝑠 are discretised, which enables me to express the
model with an enumerable set of states. Picking voltage over charge as the stateful
variable, makes the expression of charge storage node automata independent of
their connected charge transport nodes. The design of the network specifically
targets digital logic circuits. Each point of the network operates at the same
voltage levels, but depending on the network structure, vastly different amounts
of charge may collect at the storage nodes. Thus, the network’s state space
becomes more predictable by predefining an amount of voltage levels than by
computing the necessary amount of charge that a storage node needs to be able
to hold. Additionally, varying capacitances (or negative momentary capacitance)
would be hard to support when using charge as the state variable, because the
number of states in a charge storage node needs to be constant.

This choice comes at the expense of loss of precision when handling nodes with
extremely different capacitances in the same network. For large capacitances,
voltage updates might be so small that they get rounded to 0, while for small
capacitances, voltage updates might be so big that a lot of charge gets “lost”
when the voltage reaches one of its limits (meaning the amount of charge in the
network would not remain constant).

The model is discretised with two main scaling factors 𝑇scale, which replaces
𝑡, and 𝑉scale, which is used to express the update function in scaled integral units
of voltage. Additionally, all components of the network work completely syn-
chronous. Thus all voltage updates are computed atomically and rely only on
the previous (atomically-generated) state. In this work, probabilism and non-
determinism exclusively comes from the input automaton. Although devices with
probabilistic behaviour would be conceivable, my thesis does not target the inves-
tigation of device reliability or memory devices (e. g. floating-gate transistors),
which would benefit from such extension. Nevertheless, the model is completely
capable of supporting such behaviour, should the need arise.

Charge Storage Node

A charge storage node 𝑠 ∈ 𝑆 holds its momentary voltage as the discretised value
𝐷𝑠 ∈ [𝐷SS, 𝐷DD] ⊂ ℕ. The boundary values 𝐷SS and 𝐷DD are obtained from the
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three values 𝑉SS, 𝑉DD and 𝑉scale by:

𝐷SS = ⌊𝑉SS × 𝑉scale⌋ 𝐷DD = ⌈max(1 + 𝑉SS × 𝑉scale, 𝑉DD × 𝑉scale)⌉ (4.2)

Together with 𝑇scale and 𝑇props, the five values are the references to a charge
storage node. The discretised voltage levels 𝐷𝑠 are dimensionless, as I define
𝑉scale as V−1. The computation of 𝐷DD ensures that 𝐷SS ≤ 𝐷DD − 1, i. e. that
there are at least two distinct discretised voltages of which 𝐷DD is the larger
one. Additionally, due to discretisation and the inexact double arithmetic, the
computation of the momentary voltage of node 𝑠 is actually performed in two
steps. First, the voltage is computed as:

𝑉𝑠 = 𝑉SS + (𝑉DD − 𝑉SS) × ( 𝐷𝑠
𝐷DD − 𝐷SS

)

Both the rounding directions for the limits 𝐷SS and 𝐷DD and the computation for
the momentary voltage 𝑉𝑠 require that 𝑉SS < 𝑉DD. Also from the calculation of
𝑉𝑠, it follows that a charge storage node reaches its lower limit at the reference 𝑉SS.
Second, the state update function, which actually works on discretised values, is
rewritten as:

𝐷𝑠 ∶= max(𝐷SS,min (𝐷DD, 𝐷𝑠 + Δ𝐷𝑠))
This ensures the limitation of 𝐷𝑠 and the computation order – highlighted with
parenthesis – minimizes rounding errors.

A charge storage node that does not change its state (is neither charged nor
discharged), is considered stable. This allows a designer to trigger model state
evolution depending on the stability of the electrical network. Also, this allows a
designer to constrain queries by network stability, which allows them to include
model states in quantification that cannot be identified by measures like voltage
alone, i. e. delay quantification uses stability to distinguish intermediate output
transients from the final, relevant ones. A charge storage node 𝑠 is stable when:

stable𝑠
def
⟺ Δ𝐷𝑠 = 0 (4.3)

In prism-gen, charge storage nodes are visible parts of the circuit network
description. This means, the bipartite nature of the network is retained in the
high-level description. In other definitions, they are subsumed by the “devices” in
the network and are only indirectly represented via the connection specifications
between devices. For experimentation purposes, I kept the storage nodes as visible
parts, such that they can have additional properties assigned individually.

I distinguish three different types of charge storage nodes.

Voltage source These nodes provide a constant voltage and allow an arbitrary
flux of charge:

𝑉𝑠 = 𝑉 init
𝑠 ⇒ 𝐷𝑠 = 𝑉 init

𝑠 × 𝑉scale Δ𝐷𝑠 = 0
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They are not influenced by capacitances from connected charge transport nodes
and are defined as follows:

(net-node identifier [[ :nodes ({node-identifier}*) |
:input-voltage voltage |
:scaler factor-or-formula |
:digital-value logic-value ]]*)

(minus identifier [[ :nodes ({node-identifier}*) |
:references (V_SCALE) |
:value voltage |
:digital-value logic-value ]]*)

(plus identifier [[ :nodes ({node-identifier}*) |
:references (GROUND V_SCALE) |
:value voltage |
:digital-value logic-value ]]*)

Example:

; ; register 𝑉SS = 0V and 𝑉DD = 1.2V nodes with a
; ; discretisation of 10 000 steps/V (i.e. 100 µV)
(minus VSS :value 0 :references (10000))
(plus VDD :value 1.2 :references (VDD 10000))

All voltage sources use a defined voltage voltage in [V]. The general net-node
needs a scaler, which is either a numeric factor which is multiplied with voltage
or a formula which may contain the literal symbol VOLTAGE as a placeholder to the
variable name that contains voltage. The minus and plus statements abstract
this away to ensure that the condition 𝐷SS ≤ 𝐷DD − 1 is never violated by
computing the matching scaler internally based on the values for V_SCALE and,
for plus, with and additional reference to GROUND according to Equation 4.2.
Even if the rational value 𝑉SS ≥ 𝑉DD, will the discretised value 𝐷DD honour the
condition. This ensures numerical stability of all dependent computations in the
network model. minus and plus use the global symbols V_SCALE and GROUND as
default references. Thus, when a designer names the 𝑉SS node GROUND and defines
a constant V_SCALE, the :references need not be specified when creating the
voltage sources.

Voltage sources may also map a logic value to a voltage by providing and
integer to the :digital-value argument. The minus and plus statements supply
0 and 1 by default. This is used in writing input automata for experiments,
because in digital circuit design the automaton is usually easily defined in terms
of Boolean formulae. Using integrals allows a designer to use a logic with more
than two values, but computation in that logic would not be directly supported
in either prism-gen or PRISM Model checker (prism) and would have to be
simulated. Voltage sources are always considered stable.



74 4.3. TRANSISTOR CIRCUIT MODEL

The general net-node statement can be used to created other voltage sources
of interest, e. g. to drive a circuit against a fixed voltage to excite certain analogue
behaviour.

Dirac node These nodes, as their name suggests, work like a differentiator and
excite a pulse depending on the value of a Boolean variable 𝑥. They output a
constant voltage difference, i. e. describe a linear function, which is scaled by the
factor 𝑇slope:

Δ𝐷𝑠 = {
Δ𝑆𝑠 if 𝑥

−Δ𝑆𝑠 otherwise
where Δ𝑆𝑠 = ⌈ 𝐷DD − 𝐷SS

𝑇slope × 𝑇scale
⌉

𝑇slope describes the number of time steps required to perform a full output swing.
By construction of the network model, state changes take at least one time step,
which requires 𝑇slope × 𝑇scale ≥ 1.

These types of nodes are used to describe artificial input stimuli and are part
of the first conversion step from a Boolean input value to an input transient that
is realistic for a particular transistor technology. In prism-gen, these nodes are
created with:

(input-node identifier [[ :nodes ({node-identifier}*) |
:references (SUPPLY GROUND V_SCALE

T_SCALE T_PROPS) |
:slope attached-load |
:stable stablisation-formula ]]*)

Example:

; ; create a slow (100 steps) and a fast input (1 step)
(input-node A :slope 100)
(input-node B :slope 1)

Again, when the voltage sources are named SUPPLY and GROUND and the other
necessary constants are defined as well there is no need to explicitly specify the
:references argument at creation. The :slope argument defaults to 1, and the
:stable argument allows a designer to provide a different stabilisation formula.
By default, the stabilisation criterion is redefined as:

stable𝑠
def
⟺ 𝐷𝑠 = 𝐷DD ∨ 𝐷𝑠 = 𝐷SS

Another useful criterion, though, is to define it as ⊤ (T or true in prism-gen),
which marks the node as always stable. Stability is used to determine whether
the network is in equilibrium, which is used as a trigger to advance to the next
input stimulus during the quantitative analysis. Removing a node from this con-
sideration may be necessary to investigate overlapping input states, but must also
used with caution, as marking too many nodes stable may result in nonsensical
input patterns.



4. CONSTRUCTIVE DSE FOR STANDARD CELLS USING MC 75

Integrator node The common nodes that represent the connections in a circuit
diagram show integration behaviour, which is to be expected, because they are
assigned a capacitance that is always greater than zero. They change their voltage
according to Kirchhoff’s current law based on the current via the connections to
charge transport nodes. As voltages are discretised, the update is performed on
the integral voltage 𝐷𝑠:

Δ𝐷𝑠 = sgn(Δ𝑆𝑠)⌊|Δ𝑆𝑠|⌋ with Δ𝑆𝑠 = 𝐼𝑠
𝐶𝑠

× 𝑉scale
𝑇scale

Rounding updates towards zero enhances numeric stability, as it avoids that very
small residual updates, which are the result of discretisation errors, propagate
through the network.

They are created as capacity network nodes:

(cap-net-node identifier [[ :nodes ({node-identifier}*) |
:references (SUPPLY GROUND

V_SCALE T_SCALE) |
:load attached-load |
:stable stablisation-formula ]]*)

Example:

; ; create inverter output node and connect drain sides of pmos and nmos
; ; transistors
(cap-net-node inv_out :nodes (pmos_r nmos_r))

Each storage node has an identifier and takes up to four named arguments,
none of which are mandatory. The most common argument is the specification of
:nodes (...), which directly connects the storage node to its relevant transport
nodes. For special purposes, all model references can be redefined for this partic-
ular node. Due to the notion of charge transport nodes being the “devices” in the
network, the device property intrinsic capacitance is usually kept with the charge
transport node itself and communicated to the storage node when they are con-
nected (for this to make sense, charge transport nodes of complex devices have
individual capacitances on each connector). Thus, the capacitance of a charge
storage node is the sum of the capacitances of all connected charge transport
nodes. The :load argument adds the additional capacitance 𝐶 loc

𝑠 to the node on
top of the connected transport nodes.

Charge Transport Node

The other type of nodes describes the electrical devices that react to the voltage
differences that are created by connecting a number of charge storage nodes with
each other. Generally, they are supposed to capture the three electrical proper-
ties capacitance, resistance and inductance. The last one is not currently imple-
mented, as inductance does not play a major rôle in digital transistor circuits.
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Inductance only has a negligible influence at the scale of standard cells. Also, the
current design does not represent series capacitances directly as network nodes
but only resistors. Nevertheless, those are captured by complex charge transport
node definitions with more than two terminals.

All charge transport nodes can be subdivided into two types of components,
a) the node itself that shall capture resistive and capacitive effects and b) its
contacts, called terminals, that provide the connections to the surrounding charge
storage nodes. So, for a node 𝑡 ∈ 𝑇 with 𝑘 contacts, there exists the index set
𝑋𝑡 = 𝑐1, … , 𝑐𝑘.

Terminals in prism-gen provide a name under which the specific contact can
be referenced and a capacitance towards the 𝑉SS reference that they contribute
to a connected charge storage node. A definition for a charge transport node
𝑡 ∈ 𝑇 provides momentary currents 𝐼𝑐 for each of its terminals 𝑐 ∈ 𝑋𝑡 as shown in
Equation 4.1 on page 70. Additionally, the momentary voltage 𝑉𝑐 at the terminal
𝑐 ∈ 𝑋𝑡 denotes the voltage 𝑉 (𝑒) of the connection 𝑒 = (𝑐, ⋅, 𝑡) ∈ 𝐸. This makes
it easier to correctly identify voltages as charge storage nodes are usually repre-
sented by anonymous wires in a circuit diagram, and it would be cumbersome
and without merit to add 𝜑 symbols to denote voltages in all places.

Output terminal The simplest charge transport node is the output terminal,
which is used to attach a load to a circuit output. It is defined as:

(out-term identifier [[ :load contributed-load |
:current drawn-current ]]*)

Example:

(out-term out :load 1e-11)

Its only contact is named after the terminal itself, i. e. out when the output
terminal was created with the name out, as well. Additionally to specifying a
contributed load, an output terminal allows a designer to use it as a current
source by using the :current argument. So, in addition to capacitive loads,
resistive loads can also be attached to the circuit under test to further evaluate
its qualities.

RC circuit The smallest charge transport node that represents an electric “de-
vice” is the two-terminal RC circuit. It provides a series resistance and a capaci-
tance towards 𝑉SS on either end. RC circuits are defined as:

(rc-node identifier [[ :resistance series-resistance |
:load-l contributed-load-l |
:load-r contributed-load-r ]]*)

Example:

; ; create an RC circuit R with contacts R_r and R_l
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lg 𝗆𝟣 … 𝗆𝑛 rg

r

Figure 4.8: General mnemonic of the transistor model contacts. Conventionally, the
right contact is facing the circuit output and the right gate describes the program gate.
The exact meaning, though, depends on the parametrisation of the device, as it may be
perfectly symmetric and either outer gate may serve as program gate.

(rc-node R :resistance 1e3 :load-l 1e-12 :load-r 1e-12)

Charge transport nodes inherently define the names of their contacts in rela-
tion to their own name by convention. They usually provide a right contact and
a left contact named name_r and name_l respectively. These identifiers must be
used when specifying connections to charge storage nodes. Also, the arguments to
rc-node’s, or charge transport nodes in general, can be formulae that make use
of the other defined parameters. This allows a designer to specify other behaviour
like varistors and other two-terminal devices with variable resistance.

4.3.3 Transistor Model
The main charge transport node of this model is the transistor device. In the
course of this work, compact models for emerging technology devices, like the
polarity-controllable transistors shown throughout this thesis have not been de-
veloped, yet. Thus, in close collaboration with Steffen Märcker, I developed a new
generic transistor model that is able to deliver results with very little parametri-
sation and which can use data published for single experimental devices. This
model can be easily refined when more precise data becomes available, especially
regarding unusual electric configurations, like ambipolar scenarios, and the auto-
mated analysis be re-run to update our research results. The model shown here
is general enough to capture several emerging devices shown in [23, 57, 51]. I
also use it to model a commodity mosfet device [41] that serves as a comparison
to the emerging devices for calibration purposes. The transistor model is purely
functional, i. e. it does not increase the state space of the network model but
computes electrical currents completely from the momentary voltage values of
connected charge storage nodes.

In contrast to the common terminology used to describe unipolar mosfet
technology, reconfigurable transistor circuits are ambiguous in their use of source
and drain contacts for transistors, especially because their polarity change would
invert the naming of the contacts as well. This makes talking about the con-
nections hard which is why I will use a terminology based on information flow
throughout this section. Information flows from left to right, which means that a
left transistor channel contact faces one of the supply voltage rails while the right
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channel contact faces the output of the circuit as shown in Figure 4.8. By con-
struction of polarity-controllable nanowire transistors, the polarity-control gate is
placed near the output channel contact, which is why it is usually called the right
gate. Likewise the transistor gate closest to the left channel contact is called the
left gate. For reconfigurable nanowire transistors, these four contacts are manda-
tory, because channel doping is achieved electrostatically and not chemically via
the right polarity-control gate while the left gate is used for steering the chan-
nel open and close. Nanowire transistors are able to host more than two gates
as shown in [57, 51]. Transistor gates in-between the left and the right gate are
called inner gates. They are counted from left to right as m1, … , m𝑛. A transistor
with 𝑛 + 2 gates features the ordered set of gates 𝐺 = (lg, m1, … , m𝑛, rg).

Due to the principle symmetry of the left and right transistor gates, this is cov-
ered by the equations in the transistor model. Thus, in the following description,
I highlight which of the two outer gates is currently functioning as control gate
(cg) and which as polarity control gate (pcg) (or program gate). All voltages are
merely specified in relation to each other and named after their contacts as 𝑉l, 𝑉r,
𝑉lg and 𝑉rg. The four controlled states of the transistor which were introduced in
Figure 2.5 on page 25 are closed, pmos open, nmos open and ambipolar .

The transistor model realises these modes according to the following inequal-
ities:

pmos Channel closed or open for ℎ+ charge carriers
if 𝑉l > 𝑉r ≥ 𝑉rg (rg is pcg) or 𝑉r > 𝑉l ≥ 𝑉lg (lg is pcg)

nmos Channel closed or open for 𝑒− charge carriers
if 𝑉l < 𝑉r ≤ 𝑉rg (rg is pcg) or 𝑉r < 𝑉l ≤ 𝑉lg (lg is pcg)

ambipolar Channel is open for ℎ+ and 𝑒− charge carriers
if 𝑉l > 𝑉r and 𝑉l > 𝑉lg and 𝑉rg > 𝑉r or
if 𝑉l < 𝑉r and 𝑉l < 𝑉lg and 𝑉rg < 𝑉r

In pmos and nmos configurations the left inequalities are configurations in
which the left gate works as the control gate steering the channel, while the
right gate does polarity control. In the ambipolar configuration, their rôles are
ambiguous and turning off either gate results in the transistor assuming the open
states in either pmos or nmos configuration (cf. Figure 2.5).

The transistor models in this work assume a negligible gate leakage 𝐼𝑔 = 0A,
because reliable data is not available and gate leakage is known to be at least
an order of magnitude lower than channel leakage. Yet, channel leakage is also
neglected in this work, because simulations showed a very high ratio of 𝐼on/𝐼off

currents with seven orders magnitude for low power devices. 𝐼off currents were
so small that reliable simulation or test data was not available as of this writing.
Due to the directional definition of the transistor model as a charge transport
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node with a left and a right side, the channel currents 𝐼l and 𝐼r are defined in
terms of a directed inner drain current 𝐼D as follows:

𝐼l = {
−𝐼D if 𝑉l > 𝑉r

𝐼D otherwise
and 𝐼r = {

𝐼D if 𝑉l > 𝑉r

−𝐼D otherwise

The transistor is modelled as a piecewise combination of functions which model
the various aspects of its geometry and function. It is operated in directional
modes which govern the direction of its inner drain current 𝐼D while the value of
that current is the superposition of partial behaviour influenced by its multiple
independent gates.

Directional modes While the direction of 𝐼D is governed by the difference between
𝑉l and 𝑉r, the device does not behave linear with respect to them but operates
in three different directional modes. The first two, “left open” and “right open”,
are the modes of a properly programmed transistor, where the left inequality
describes p-channel polarity and the right inequality describes n-channel polarity.

l → r (Left open): Charge carriers can enter the channel from the left. In this
work, contact l is called the source, r is drain, the right gate rg acts as
program gate (pcg) and the following holds:

∀𝑔 ∈ 𝐺.𝑉𝑔 < 𝑉l or ∀𝑔 ∈ 𝐺.𝑉𝑔 > 𝑉l

l ← r (Right open): Charge carriers can enter the channel from the left. Contact
r is the source, l is drain, the left gate lg acts as pcg and it holds:

∀𝑔 ∈ 𝐺.𝑉𝑔 < 𝑉r or ∀𝑔 ∈ 𝐺.𝑉𝑔 > 𝑉r

l ↔ r (Both open): Charge carriers can enter the channel from both sides. The
device is ambipolar and both Schottky barrier gates steer the channel open.
It holds:

𝑉l > 𝑉lg and 𝑉r < 𝑉rg or 𝑉l < 𝑉lg and 𝑉r > 𝑉rg

These modes are not exclusive and according to published data in [23, 58] they
can be approximated as the maximum of the three currents calculated according
to the directional modes:

𝐼D(𝐕) ≝ {
max(𝐼l→r(𝐕), 𝐼l←r(𝐕), 𝐼l↔r(𝐕)) if 𝑉DS > 0V
0A otherwise

(4.4)

with 𝑉DS = |𝑉l − 𝑉r| and 𝐕 = (𝑉𝑐)𝑐∈𝑋𝑡
the vector of voltages for all transistor

gates for a transistor 𝑡.
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Multiple independent gates In the modelled transistor, all transistor gates except
the drain-side gate act as control gates in the left open and right open directional
modes. They operate as a wired-and, which means a single gate can close the
channel while all control gates have to agree to open it. Available tcad simulation
data shows that in the both open directional mode, only the Schottky barrier
gates control the channel. By closing off either side, the transistor reverts to
either the left open or right open directional mode. The data also shows that
the control gates restrict the current through the transistor channel resulting in
the minimum electrical current being effective in those directional modes. The
threshold voltages 𝑉th,𝑔 are modelled individually per transistor gate 𝑔 ∈ 𝐺 and
projected into the voltage differences between the gate and the channel contact
𝑐 ∈ {𝑙, 𝑟} as 𝑉𝑔,𝑐 = |𝑉𝑐 − 𝑉𝑔| − 𝑉th,𝑔. The directional currents are, then, defined
as:

𝐼l→r(𝐕) ≝

⎧{{
⎨{{⎩

min{𝐼pmos
D,𝑔 (𝑉DS, 𝑉𝑔,l) ∶ 𝑔 ∈ 𝐺} if ∀𝑔 ∈ 𝐺.𝑉𝑔 < 𝑉l

min{𝐼nmos
D,𝑔 (𝑉DS, 𝑉𝑔,l) ∶ 𝑔 ∈ 𝐺} if ∀𝑔 ∈ 𝐺.𝑉𝑔 > 𝑉l

0A otherwise

𝐼l←r(𝐕) ≝

⎧{{
⎨{{⎩

min{𝐼pmos
D,𝑔 (𝑉DS, 𝑉𝑔,r) ∶ 𝑔 ∈ 𝐺} if ∀𝑔 ∈ 𝐺.𝑉𝑔 < 𝑉r

min{𝐼nmos
D,𝑔 (𝑉DS, 𝑉𝑔,r) ∶ 𝑔 ∈ 𝐺} if ∀𝑔 ∈ 𝐺.𝑉𝑔 > 𝑉r

0A otherwise

𝐼l↔r(𝐕) ≝

⎧{{
⎨{{⎩

min{𝐼pmos
D,lg (𝑉DS, 𝑉lg,l), 𝐼nmos

D,rg (𝑉DS, 𝑉rg,r)} if (𝑉l > 𝑉lg) ∧ (𝑉r < 𝑉rg)

min{𝐼nmos
D,lg (𝑉DS, 𝑉lg,l), 𝐼pmos

D,rg (𝑉DS, 𝑉rg,r)} if (𝑉l < 𝑉lg) ∧ (𝑉r > 𝑉rg)

0A otherwise

Single gate The drain current for an assumed single gate transistor is modelled
after the standard mosfet equations [54], which describe it as a piecewise func-
tion in the gate voltage 𝑉𝑔,𝑐 and the source-drain voltage 𝑉DS with three non-
overlapping intervals:

Sub-threshold ∶ 𝑉𝑔,𝑐 ≤ 0V ≤ 𝑉DS
Saturation ∶ 0V < 𝑉𝑔,𝑐 ≤ 𝑉DS

Linear ∶ 0V ≤ 𝑉DS < 𝑉𝑔,𝑐
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The drain current for every single gate 𝑔 ∈ 𝐺 (neglecting all other gates) and a
specific channel polarity pol ∈ {nmos, pmos}, 𝐼pol

D,𝑔 , is constructed from:

𝐼pol
D,𝑔(𝑉DS, 𝑉𝑔,𝑐) ≝

⎧{{
⎨{{⎩

𝐼pol
D0,𝑔(𝑉DS) × (SSpol

𝑔 )𝑉𝑔,𝑐 Sub-threshold

𝐼pol
D0,𝑔(𝑉DS) + 𝛿pol

𝑔
2 × 𝑉 2

𝑔,𝑐 Saturation

𝐼pol
D0,𝑔(𝑉DS) + 𝛿pol

𝑔 × (𝑉𝑔,𝑐 × 𝑉DS − 𝑉 2
DS
2 ) Linear

with 𝐼pol
D0,𝑔(𝑉DS) ≝ 𝐼pol

th,𝑔 × 𝑉DS
𝑉DD

This construction deviates from the standard equations in various aspects. First,
the partial function describing the sub-threshold behaviour does not usually de-
pend on 𝑉DS. Yet, I scaled the drain current at the threshold voltage 𝑉th,𝑔, 𝐼pol

th,𝑔,
with 𝑉DS to compensate for measured effects that don’t concur with the standard
equations. Second, by using the scaled threshold current 𝐼pol

D0,𝑔, all three pieces of
the function meet in (𝑉th,𝑔, 𝐼pol

D0,𝑔), which mitigates a jump in the drain current
that is exhibited while crossing the threshold voltage using the standard mosfet
equations.

These equations depend on the momentary gate voltages 𝐕 and a set of mea-
sured (or otherwise established) parameters that characterise the isolated influ-
ence of a single transistor gate on the drain current in either channel polarity: the
threshold voltage 𝑉th,𝑔, the threshold current 𝐼pol

th,𝑔, the off-current 𝐼pol
off,𝑔 and the

gate capacitance 𝐶gate. I define the conductance per voltage 𝛿pol
𝑔 , which is related

to the usual mosfet conductance expressed as 𝛽 but scaled to fit the adapted
model, and the sub-threshold slope SSpol

𝑔 as follows:

𝛿pol
𝑔 ≝ 2 ×

𝐼pol
on − 𝐼pol

th,𝑔

(𝑉DD − 𝑉th,𝑔)2 and SSpol
𝑔 ≝ (

𝐼pol
th,𝑔

𝐼pol
off,𝑔

)

1
𝑉th,𝑔

The on-current 𝐼pol
on is ultimately limited by the Schottky barriers and, thus,

independent of a particular gate. It is the drain current that is observed for a
fully opened transistor and 𝑉DS = 𝑉DD. The equations computing 𝐼l and 𝐼r via
𝐼D implement Equation 4.1 and establish compatibility with charge storage nodes.
This model is purely functional, i. e. it consists only of closed-form equations. Yet,
it is also able to model classic mosfets like Finfets [41] and stacked nanowire
devices as found in [11] as special cases. I use this to evaluate the precision of this
model against reliable known test data for the cmos device from [41].

prism-gen model The transistor model itself is directly integrated in prism-
gen. No additional discretisation is necessary, but the model directly works on
the equations shown above. To satisfy operational demands when working with
prism, I use a polarised model of the transistor that establishes 𝑉l→r ≥ 0V such
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that the current 𝐼l→r ≥ 0A flows out of the right contact. This reduces the
number of cases for computing the directional currents and makes currents of
p- and n-conducting transistors easier to compare with each other during early
device characterisation. Obviously, the actual polarity is taken into account when
connecting transistors to charge storage nodes.

A single transistor gate is described as:

(gate-def identifier [[ :threshold threshold-voltage |
:load gate capacitance |
:threshold-slope-n ss-nmos |
:threshold-slope-p ss-pmos |
:p-threshold-n corrected-Ith-nmos |
:p-threshold-p corrected-Ith-pmos |
:leakage leakage-current ]]*)

Example:

; ; define a single transistor gate
; ; currents and capacitances rescaled to µA, µF
(constant Vth double 0.4)
(gate-def sb-gate :threshold Vth

:p-threshold-p 9e-3 :p-threshold-n 2e-3
:threshold-slope-p
(pow (/ 0.4 9.5e-6) (1/ Vth))
:threshold-slope-n
(pow (/ 0.12 9.8e-6) (1/ Vth))
:load 40.0e-12)

A transistor gate definition gate-def describes a single manifestation of a
transistor gate. This means it captures the characteristics of a gate of a particu-
lar technology node with considering all physical and geometrical parameters (as
far as they influence electrical performance). Generally, arguments that describe
currents are usually named p-*, because they do not necessarily literally describe
currents but get adjusted by prism-gen to fit the charge transport model. The
same goes for capacitances, which are usually called loads and may start with
h-*, symbolising the load factor 𝐻. The reason is that loads describe equiva-
lent capacitance values where the capacitance always connects the signal path
to ground. In the current iteration, all series capacitances are converted into a
resistance/current and a capacitance towards ground.

Incidentally, due to how the transistor model and the charge storage nodes
are modelled, the currents and capacitances could be re-scaled to 1 × 10−6 to
improve numerical stability. This shift was applied throughout all experiments
and circuits that were created in this thesis and care must be taken to not mix
models with differently scaled currents and capacitances. The example above
shows values that are consistent with a Schottky gate of the germanium nanowire
transistor from Figure 2.6 on page 26. These gate definitions are, then, used to
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define transistor types:

(rfet-def identifier [[ :gates ({gate-definition}*) |
:beta-n channel-resistance-nmos |
:beta-p channel-resistance-pmos |
:h-channel-l channel-cap-left |
:h-channel-r channel-cap-right ]]*)

Example:

(constant Cchan double 40.0e-12)
; ; create an rfet with 2 Schottky barrier gates and a migfet with 3 gates
(rfet-def 2gfet :gates (sb-gate sb-gate)

:beta-n (* 2 (/ 13.94 (pow (- V_MAX Vth) 2)))
:beta-p (* 2 (/ 11.65 (pow (- V_MAX Vth) 2)))
:h-channel-l Cchan
:h-channel-r Cchan)

(rfet-def 3gfet :gates (sb-gate md-gate sb-gate) ... )

Independent of a particular gate, the model needs to know the channel re-
sistance 𝛿pol (in prism-gen still referred to as beta-pol) and the parasitic ca-
pacitances that the transistor channel contributes on either contact side. The
transistor gates that are applied to these definitions in the :gates argument are
ordered from left to right. Thus, the left Schottky barrier gate could have different
electrical characteristics, when the physical design of the transistor is asymmetric.
Migfets are created by naming more gates in the :gates argument. Inner gates,
that do not reside over a Schottky barrier usually have substantially different elec-
trical characteristics, which is why the example above refers to a separate (not
otherwise shown) md-gate definition for the inner gate. As the examples show,
the designer can use literal values, define constants and re-use them in definitions
or describe parameters as formulae directly.

A complete circuit definition looks as follows:

(net 3majority (:nodes (A inv_A B inv_B
C inv_C out SUPPLY GROUND))

; ; load library of transistors into lib and create 3 of them
(load "transistor-def.net" lib)
(rfet-node mgfet_R0 :type lib/3gfet)
(rfet-node mgfet_R1 :type lib/3gfet)
(rfet-node mgfet_R3 :type lib/3gfet)
; ; create output charge storage node and connect all inputs/outputs
(cap-net-node net_out :nodes (out mgfet_R0_r

mgfet_R1_r mgfet_R2_r))
(connect A mgfet_R0_l)
(connect inv_A mgfet_R0_lg mgfet_R0_rg mgfet_R1_m1)
(connect B mgfet_R2_l)



84 4.3. TRANSISTOR CIRCUIT MODEL

(connect inv_B mgfet_R2_lg mgfet_R2_rg mgfet_R0_m1)
(connect C mgfet_R1_l)
(connect inv_C mgfet_R1_lg mgfet_R1_rg mgfet_R2_m1))

The circuit, a 3-input majority logic gate, which is planned to be integrated
into a larger experiment, is defined with an interface in the first two lines of the
example. This interface consists of direct and inverted signals for the three inputs
𝖠, 𝖡 and 𝖢, as well as the output signal 𝗈𝗎𝗍 and the reference voltages. The
example goes on to load another prism-gen source file, which contains transistor
definitions like in earlier examples. They are immediately used to instantiate the
three needed transistors. These instances provide a connection interface which is
related to their instance names. Thus, the transistor mgfet_R0, which is created
as a 3-gate migfet, provides the contacts mgfet_R0_l, *_r etc., according to the
naming scheme shown in Figure 4.8 on page 77. The last block of code creates
the charge storage node that connects all transistor drain contacts to form the
circuit output and connects all charge transport node endpoints to a respective
charge storage node.

Closer inspection of the example suggests that, apparently, the reference volt-
ages 𝑉DD and 𝑉SS are not used in this circuit implementation. Actually, though,
their use is implied in the instantiation of the charge storage node net_out. The
cap-net-node construct features a :references argument (cf. page 75) which,
by default, establishes SUPPLY and GROUND as the reference voltage for a partic-
ular node. Mentioning the references in the circuit interface ensures that the
cap-net-node construct picks up whatever references are supplied when this cir-
cuit is loaded into a surrounding experiment description.

Example Technology Germanium Nanowire Transistor

Throughout this work, I use the following transistor model of the germanium
nanowire technology shown in Figure 2.6 on page 26 whose data stems from a
device shown in [56]. As a nanowire technology, it features a channel length of
48 nm with gate lengths (along the axis of the wire) of 24 nm. This leaves a gap
between the two gates of 24 nm, because the gates overlap the channel by 50%
(cf. Figure 2.2,

1. 21).

The prism-gen model extends the device to a migfet by adding hypothetical
inner control gates whose characteristics were drawn from additional tcad simu-
lations. Each inner control gate extends the channel length by 40 nm. I assumed
𝐶𝑐 = 40 aF for all transistor contacts, and a nominal supply voltage 𝑉DD = 1.2V.

Figure 4.9 shows the 𝐼–𝑉 diagram of the prism-gen model as a heat map.
The transistor, with its two gates lg and rg, spans the heat maps in their range
between 𝑉𝑔 = 0V… 1.2V, the colour displays the drain current 𝐼D flowing through
the device, which is connected to 𝑉l = 1.2V and 𝑉r = 0.0V. To highlight the



4. CONSTRUCTIVE DSE FOR STANDARD CELLS USING MC 85

NMOS

PMOS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
𝘝𝗅𝗀 (V)

𝘝 𝗋
𝗀

(V
)

5

10

𝘐𝖣 (µA)

On-current (linear scale)
I.

NMOS

PMOS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
𝘝𝗅𝗀 (V)

𝘝 𝗋
𝗀

(V
)

1e-03

1e-01

1e+01
𝘐𝖣 (µA)

Off-current (𝗅𝗈𝗀𝟣𝟢 scale)
II.

Figure 4.9: prism model of a single germanium nanowire rfet. 24 nm feature size,
comparable to Figure 2.6 on page 26.

on-behaviour (i. e. large magnitudes), the left heat map uses a linear scale for
showing the drain current 𝐼D, whereas the right heat map uses a logarithmic scale
to emphasise the off-behaviour (i. e. small magnitudes). The dashed lines mark
the zones in which the device behaves like a conventional transistor subdividing
the graphs each into the three normal operating zones between the off-state and
the two on-states. The bottom-right corner shows the ambipolar behaviour of
the device which is the result of taking the maximum of the possible currents, as
described in Equation 4.4. This is an estimate made due to a lack of experimental
data and insight into how exactly the device behaves in the ambipolar region.

Recalling Figure 2.6 (p. 26), the tcad data shows that 𝐼D in the full am-
bipolar case (bottom right corner) is higher than either full on-current, but it is
also not the sum of both on-currents but less. This simulation result remains
unexplained as of this writing, and due to lack of experimental data with a real
device, it could neither be proved nor disproved. Figure 4.10 overlays the tcad
data with the prism data to show four error plots. Due to the limited simulation
data, the x axis only shows five distinct data points. The top half displays the
absolute error Δabs in micro Ampere, again, on a linear (left) an a logarithmic
scale (right). In absolute terms, the nmos and pmos curves look as expected. The
three corners are easiest to describe in the prism-gen model, which is why they
are a good match with the tcad data. The transients down the pmos curve differ
from each other for 𝑉lg = 0V. This can be explained by the fact that devices
at this scale do not entirely behave according to the mosfet equations. Most
prominently, there is a large deviation in the ambipolar regime in which the de-
vice steers the channel wide open immediately after crossing the pmos threshold
voltage at 𝑉rg = 0.8V, 𝑉lg = 1.2V. A similar, while less pronounced, excitation
can be seen along the 𝑉rg = 0V axis.

Sub figure 𝛽 shows that the on-currents are not exact matches although they
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Figure 4.10: Difference between germanium nanowire tcad simulation and the prism
model.

can be determined relatively easily from experimental or fem data. The reason
is, that at those points the device barely enters saturation mode. I have no tcad
data for an overstressed device that is used outside its nominal operating regime,
which would deliver relevant data to fit the curves of the mosfet equations. My
assumption, therefore, was to use conservative numbers which make the prism-
gen model perform a bit weaker than the real device.

The lower half of Figure 4.10 shows the error in relation to the current’s
magnitude Δrel. What immediately catches the eye is the strong relative error
of about 3 times around the threshold voltage for the nmos behaviour. Oddly,
the same deviation is missing for the pmos behaviour. To explain this error, we
must look at how the tcad simulation arrived at its results. The tcad model is
a geometry- and material-based model, which incorporates properties like oxide
thicknesses and crystal growth patterns. This underlines, that at those scales,
devices are not free geometric forms but must adhere to a number of geometric
constraints, which in turn determine how and at what magnitude their electrical
properties can be influenced. One important electrical property was that nmos
and pmos on-currents match as closely as possible. This is achieved by exciting
mechanical stress on the nanowire via its all-around Schottky-barrier gates. The
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inv 1
Time (ps) pmc tcad

𝑉out = 0.6 V 23 24
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Figure 4.11: Time response of two buffers to an artificial input signal with a slope of
10 ps × 𝑉DD

−1. The solid curves show the prism-gen model, the dashed curves the tcad
model. 𝐻 = 1 (𝐶out = 80 aF)

stress influences electron and hole transport differently. It looks like this also
slightly shifts forward the nmos threshold voltage, such that the device starts
conducting early. The currents around the threshold are very small, which is why
this results in a high relative error that goes unnoticed on the absolute scale.
Although the relative error goes up to 100% in the intermediate states between
the four corners, it must be noted that the current in theses regions is one to two
orders of magnitude smaller than the on-currents. The graphs also show that the
relative errors remains consistent across the device states, thus showing that the
prism-gen model is able to capture the relevant properties of the device.

As a last remark, I want to note that the tcad model of the germanium
nanowire transistor which acts as the baseline of all qualitative and quantitative
comparisons is at technology readiness level (trl) 2. Working transistors have
just been shown but neither working circuits nor circuit integration has taken
place using this technology. This also shows, how early my modelling approach
can be used to explore the logic circuit design space that opens up with a radically
different device.

Circuit delay quantification error The question becomes: How large is the mod-
elling error, and how does it influence circuit delay quantification? In my work
on quantitative characterisation of reconfigurable logic gates [47], I showed that
circuit delay quantification is close to the tcad simulation.

Figure 4.11 shows the main result of quantifying the circuit delay error. The
experiment was conducted as an fem simulation using the tcad model resulting
in the dashed curves and using the prism-gen model. In both cases, the circuit
under test consists of a buffer (i. e. two inverters in series) that drives a load
equivalent to one inverter. The red curves show the first inverter that is fed with
an artificial input signal with a slope of 10 ps × 𝑉DD

−1 and sharp corners. These
excite a relatively sharp transient overshoot in the tcad model as a result of
high-frequency-sensitive negative virtual capacitances that are not modelled in
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𝐼on = 109 µA
𝐼D0 = 0.8 µA

𝑉DD = 1.0 V
𝑉th = 0.3 V

𝐶gate ≈ 127 aF
𝐶chan ≈ 127 aF

1 H = 2 × 𝐶gate ≈ 254 aF

Figure 4.12: Comparison of circuit delays in relation to output load 𝐻. The red curves
show perfect alignment after fitting the prism-gen model to spice for 𝐻 = 1. The blue
curves show a good alignment and perfect output load scaling invariance in the control
experiment with a 2-nand gate.

either the prism-gen model or the mosfet equations. The table on the right
presents the delay values in pico seconds at the points where the inverter outputs
cross 1/2𝑉DD. It shows that the differences are stable at 1 ps to 2 ps through the
whole buffer.

The germanium fet tcad models are very early designs. So, it is important
to compare my modelling approach also to a proven technology, for which I chose
the cmos 32 nm process from [41]. In this comparison, an inverter implemented
in the cmos prism-gen model is fitted to a reference inverter implemented in the
pre-existing spice model, see Figure 4.12. It shows the input-output delay the
circuits under test over an increasing output load 𝐻 = 1 … 4 inverter equivalents.
The two red curves, which show the aligned inverters not only match for 𝐻 = 1 but
also scale correctly to higher loads. Thus, the prism-gen model can be expected
to work in complex circuit designs just as well as in this micro-benchmark. The
blue curves show the delays for a two-input nand implementation employing the
previously aligned device model. Although the results differ slightly depending
on the model, the slopes match exactly with 2.5 ps/H. So, the modelling error
remains invariant to scaling and thus to the surrounding context in which the
device model is being used.

4.3.4 Queries for Quantitative Analysis
Apart from the network model and the efficient description of logic gates, the
quantitative analysis needs queries that answer interesting questions or quantify
relevant properties. Their use should enable circuit designers to gain insights into
the trade-offs of different implementations of a single switching function. I con-
sider, delay, power dissipation and energy consumption to be the main physical
properties of interest in this regard. Implementation area, another critical mea-
sure for circuit designers, which is a function of the number of transistors and



4. CONSTRUCTIVE DSE FOR STANDARD CELLS USING MC 89

the complexity of their interconnect, can be answered without employing model
checking. Ideally, the queries implementing the quantification of these physical
properties are independent of a particular circuit implementation, and I show
that their dependence can be reduced to the number of inputs and the model
quantisation parameters 𝑉scale and 𝑇scale.

Advantage of model checking One advantage of model checking over simulation
techniques is that it can query the results directly from the model without the
need for the experimenter to present the model checker with (or even know of) the
critical input patterns that will excite the circuit to deliver the result. The analysis
in the next chapter shows that relevant results sometimes hide in input patterns
that are usually excluded from simulations to reduce the number of stimuli that
have to be tested. This also means, that model checking delivers the offending
input patterns to extremal queries as witnesses, in addition to the result. Not only
does the experimenter not need to know about the relevant patterns beforehand
but they are also a direct result of the quantitative analysis. These features
enable a thorough investigation over a wide range of circuit implementations as a
push-button technique with no manual intervention.

For proper operation, quantitative analysis relies on the exploration of a pro-
gram graph, that is the product of two graphs. The first is the model, which
consists of the circuit network model and the input automaton that excites its
inputs, while the second is the query. In the model, the input automaton must
be correctly interlocked with the network model to produce a meaningful graph.
It is easy to see, that the input automaton should only advance once the circuit
network model has itself advanced to a certain state, which I call the stable state.
This work focuses on the exploration of single-stage logic gates, and due to the
typical structure of migfet circuits, that favour a transistor path lengths of 1,
there are no intermediate charge storage nodes between the power supply nodes
and the output node. Additionally, this work focuses solely on complementary
static logic gates, which means they are truly memory-less (i. e. have no feedback
paths). So, it is sufficient to observe the outer connections of a circuit to observe
whether it is stable or still transitioning. Let the set of charge storage nodes
that are either controlled by an input or constitute the output, 𝐼 ⊆ 𝑆, be called
the interface of a circuit. The circuit has stabilised iff. all interface nodes have
stabilised (cf. Equation 4.3):

stable ≝ ⋀
𝑠∈𝐼

stable𝑠

This criterion is used by the input automaton to control its advance. As described
in previous sections, the stable criterion is accessible to the designer through the
:stable argument, which allows the addition of intermediate charge storage nodes
for more complex circuit designs.
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Circuit delay In the circuit design community, there is no fixed standard on how
to measure circuit delay and tool suppliers like Cadence and Synopsys come with
their own defaults. Exact information on the start and the ending of a switching
transient are also hard to obtain for these tools, which is why the community
uses various rules of thumb for the definition of those two points which define the
measure, e. g. a 10-90 delay starts the measurement when the input crosses 10%
of its full swing and stops when the output crosses 90% of its transient curve.
Additionally, there is no single true measurement of circuit delay, because it may
depend on the context in which the circuit shall perform which determines the
relevance of the shape and steepness of input and output transients. And their
relevance determines whether much of them should be counted into the delay or
may actually mask the relevant circuit performance details that the designer tries
to extract. In this work, I use those states in the program graph as the starting
point of the quantification at which the input automaton advances, triggering
a change in the inputs. At this state, the input’s charge storage node becomes
unstable but still assumes its equilibrial voltage level. The set of start reference
states switch that trigger a change in inputs ̂𝐼 ⊂ 𝐼 is defined as:

switch ≝ ⋁
𝑖∈ ̂𝐼

switch𝑖

switch𝑖 ≝ ¬stable𝑖 ∧ (𝐷𝑖 = 𝐷SS ∨ 𝐷𝑖 = 𝐷DD)

The ending reference point relates to the output and is set to be the crossing
of the half swing. In certain designs, though, the output may cross 1/2𝑉DD multi-
ple times before finally stabilising at it intended value, a phenomenon known as
glitching or output hazard. For the delay quantification, only the last crossing
shall be used as a reference, which, due to perfect knowledge, can be achieved
with model checking. The set of ending reference states cross𝜔 for a number of
outputs 𝑂 ⊂ 𝐼 is defined as:

cross𝜔 ≝ ⋁
𝑜∈𝑂

cross𝑜 ∧ ⋀
𝑜∈𝑂

𝑜 has crossed after switch and won’t cross
again on all paths of program graph

cross𝑜 ≝falling𝑜 ∨ rising𝑜

falling𝑜 ≝(𝑉𝑜 > 1/2𝑉DD) ∧ 𝑉𝑜 ≤ 1/2𝑉DD on all paths of program graph
rising𝑜 ≝(𝑉𝑜 < 1/2𝑉DD) ∧ 𝑉𝑜 ≥ 1/2𝑉DD on all paths of program graph

The first line ensures that there are no more crossings of a particular output
after the current switch occurred. It is specified in temporal logic, and its exact
definition is not beneficial for the reader and would require extensive introduction
into the specifics of the temporal logic language (see [3] Chap. 6). Thus, it is left
out of this document and may be referred to via the queries source file attached
to this work. The definitions for falling and rising ensure that the output is on
one side of the reference point and will cross to the other side.
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For a correct delay calculation, the ending reference must relate to the same
switch as the start reference. Thus, we may only consider those states where an
input switch causes an observable effect at the output.

effect ≝ ⋁
𝑜∈𝑂

effect𝑜

effect𝑜 ≝ switch happened and no further switch happens until output 𝑜 crossed

Using these effective selectors, the worst-case delay Δ𝑡max
𝐽 after switching any

input 𝐽 ⊆ 𝐼 can be described as: the maximum over all expectancy values, that
count discrete time steps from switch to cross𝜔, over state 𝑠 ∈ 𝐽 that perform a
switch that also has an effect on the output.

A similar metric is defined for the average expected delay Δ𝑡avg in which the
probability that a particular switch that excites an effect occurs is taken into ac-
count. Also, the reader can take from above definitions, that it is straightforward
to to match other delay definitions by adapting the start and ending references
switch𝑖 and cross𝑜.

Power dissipation and energy Due to the design of the network model, I can read
the momentary power consumption directly from the model. For each charge
transport node 𝑇 in the model, its current voltage difference 𝑉𝑡 between two
connected charge storage nodes and the partial current through the node 𝐼𝑡 is
always known. Thus, momentary dynamic power dissipation is defined as:

𝑃 ≝ ∑
𝑡∈𝑇

𝑉𝑡 × 𝐼𝑡

The maximum dynamic power dissipation is, thus, computed over all states
in which the circuit is switching. These switching events, though, need not nec-
essarily be affecting the output.

The same is done for computing energy consumption per operation. Due to
the discrete model, the integral equals the sum of momentary power values over
all model states that occur between the start and the end references. Each time
step has the same length, which is 𝑇scale. Thus, rescaling the sum with 𝑇scale
directly yields the energy consumption for the whole time interval.

4.4 Circuit Variant Generation
The last part of my approach to a comprehensive design space exploration of re-
configurable logic gates is the generation of circuit variants that can be quantified.
As explained in Section 2.1.2, the only logic gates that can have multiple im-
plementations as complementary static logic circuits, are reconfigurable circuits,
which must be implementing a (partially) self-dual Boolean function. Thus, the
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circuit variant generation concentrates on unfolding design space in terms of these
functions.

4.4.1 Function Expansion
The expansion algorithm targets single-stage implementations of static logic cir-
cuits of the size of standard cells. Its input is a self-dual Boolean formula speci-
fying the switching function. The output is set of implementations as prism-gen
circuit descriptions. Any (partially) reconfigurable circuit uses three sets of tran-
sistors, those that are statically configured to pmos and nmos and reconfigurable
transistors. The main goal of the algorithm is to minimise these three sets of tran-
sistors. This means that certain special-purpose implementations that favour a
balance between P- and N-branches in the number of transistors will be excluded
from the results. Examples of these balanced implementations can be found in [2].
The algorithm was largely developed by Steffen Märcker, who is my co-author of
[47], where we first published its application. It was first published in [34]. The
foundation of the algorithm is the well-known Quine-McCluskey Algorithm [35],
whose idea is to compute a set 𝑀 of minimal product terms, called prime impli-
cants, that, applied in a disjunction, compute the equivalent to a Boolean function
given by a set 𝐹 of product terms, i. e. 𝑀 ⟺ 𝐹. As an extension to the Quine-
McCluskey algorithm, prime implicants may imply additional minterms from a
set of optional terms 𝑂, such that, 𝐹 ⇒ 𝑀 and 𝑀 ⇒ 𝐹 ∪𝑂. For an 𝑛-ary Boolean
function 𝑓∶ 𝔹𝑛 → 𝔹 there be:

𝑃𝑓 ≝ {(¬𝑏1 ∧ … ∧ ¬𝑏𝑛) | (𝑏1 ∧ … ∧ 𝑏𝑛) is minterm in dnf of 𝑓}
𝑁𝑓 ≝ {(𝑏1 ∧ … ∧ 𝑏𝑛) | (𝑏1 ∨ … ∨ 𝑏𝑛) is maxterm in dnf of 𝑓}

where ¬𝑏 describes the negated literal 𝑏, eliminating double negation. A set 𝑇
of terms is compact if there is no strict subset 𝑇 ′ equal to 𝑇, i. e. ∄𝑇 ′, 𝑇 ′ ⊂
𝑇 .𝑇 ′ ⟺ 𝑇. For a Boolean function 𝑓, the algorithm works as follows:

1. Enumerate the tuples of minimal term sets 𝑃, 𝑁 and 𝑅 that make up the
circuit transistors:

(a) Compute set of dual terms 𝑅𝑓 = 𝑃𝑓 ∩ 𝑁𝑓

(b) Compute set of prime implicants 𝑅′
𝑓 of 𝑅𝑓 using Quine-McCluskey

Algorithm
(c) For each compact set 𝑅 ⊆ 𝑅′

𝑓 and optional terms 𝑂 ⊆ 𝑅𝑓 such that
𝑂 ⟺ 𝑅:
i. Compute set of prime implicants 𝑃 ′

𝑓 of 𝑃𝑓𝑂 using Quine-McCluskey
Algorithm including optional terms 𝑂

ii. Compute set of prime implicants 𝑁 ′
𝑓 of 𝑁𝑓𝑂 using Quine-McCluskey

Algorithm including optional terms 𝑂
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iii. Yield tuples (𝑃 , 𝑁, 𝑅) for all compact sets 𝑃 ⊆ 𝑃 ′
𝑓 and 𝑁 ⊆

𝑁 ′
𝑓 such that 𝑃 ⟺ 𝑃 ′

𝑓 and 𝑁 ⟺ 𝑁 ′
𝑓 that are unique (not

equivalent under variable renaming)

2. Enumerate reconfiguration mappings 𝑟 ∶ 𝑅 → {𝑥1, … , 𝑥𝑛} for each tuple
(𝑃 , 𝑁, 𝑅):

(a) Yield a balanced mapping ̃𝑟 such that all reconfiguration variables ap-
pear equally often

(b) Yield biased mappings 𝑟𝑘 for each variable 𝑥𝑘 occurring in all terms in
𝑅 that are unique (not equivalent to each other under renaming) such
that ∀𝑡 ∈ 𝑅.𝑟𝑘 ∶ 𝑡 → 𝑥𝑘

3. Yield a circuit for each tuple (𝑃 , 𝑁, 𝑅, 𝑟):

(a) Instantiate a transistor for each term in 𝑃 and 𝑁 according to the
“inner” reconfiguration mode (cf. Table 2.3)

(b) For each reconfiguration mapping 𝑟 and the reconfiguration modes “in-
ner”, “single” and “transmission”:
i. Instantiate a transistor for each term 𝑡 in 𝑅 according to reconfig-

uration mode and reconfiguring the transistor according to 𝑟(𝑡)

As thoroughly described in Section 2.1.2, a reconfigurable function can be con-
sidered a higher order function in the reconfiguration variable that selects between
two subordinate functions, and this is equally described by Shannon decomposi-
tion. Depending on application, if this selection between two sub-functions occurs
sufficiently rarely, there may be a benefit to a biased reconfigurable circuit that
puts a high load onto the single reconfiguration variable, as is done in Step 2.b
of the algorithm. So, a design space opens up between balanced implementations
that try to equally distribute the load across all inputs and biased implementa-
tions that may yield maximum performance for some of its inputs. To generate
all reconfiguration variants, Step 2 has to be repeated for each input variable
and the Quine-McCluskey Algorithm is modified to prevent it from removing the
respective variable of interest in the computation of 𝑅′

𝑓 in Step 1.
Each function 𝑓 will contain one tuple (𝑃 , 𝑁, ∅), which is a fully static im-

plementation. For each function 𝑓 that is self-dual, the algorithm will yield tu-
ples (∅, ∅, 𝑅), which are fully reconfigurable implementations. All other tuples
(𝑃 , 𝑁, 𝑅) will yield semi-static implementations. The algorithm enumerates ev-
ery circuit, it creates, in the scheme 𝑓, 𝑖, 𝜇, 𝑚 where 𝑓 is the function name, 𝑖
is the running index of the tuple (𝑃 , 𝑁, 𝑅, 𝑟) in the list of generated tuples, 𝜇
mapping that was used, i. e. 𝜇 = { ̃𝑟, 𝑟1, ..., 𝑟𝑘} for a 𝑘-ary function, and 𝑚 is the
reconfiguration mode that was used in Step 3.b. For example a 3-xor circuit
might yield an implementation called: 3-xor,2,𝑥0,in.

Since the algorithm has to consider each subset of dual terms in Step 1, it has
to consider at most 22𝑛−1 variant, multiple minimal representations of each term
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not accounted for. This makes the worst-case run time double-exponential in the
number of variables. Nevertheless, the prototypical implementation used in this
work showed acceptable performance for switching functions up to five inputs.
A study of several Boolean functions their design space and their quantitative
analysis is shown in the next chapter.



Chapter 5

Quantitative Analysis of
Standard Cells

We have seen in the previous chapters how polarity-controllable transistors lend
themselves naturally to build certain kinds of reconfigurable circuits from them.
These circuits implement self-dual Boolean functions, which, by their nature,
match perfectly with the way fets are operating, such that each pair of dual
terms can be implemented with the same set of polarity-controllable transistors.
Chapter 2 describes the process in detail and concludes that, for transistors which
use electrostatic channel polarisation (as opposed to chemical polarisation with
dopants) through additional gates, this opens a new design space along various
axes. The previous chapter explained the mechanics of the design space explo-
ration in full and the evaluations in this chapter will make use of all the device
and circuit models provided by it, especially the 24 nm germanium nanowire tran-
sistors.

The first axis of the design space exploration conducted in this chapter stems
from the fact that multiple sets of “minimal” terms can implement a reconfigurable
function. This axis is guided by the cover of reconfigurable terms over the whole
set of terms that implement the target function. There is always at least one
minimal set of terms which is not covered by any reconfigurable terms (thus,
representing the static variant). The function might be covered completely by
multiple sets of reconfigurable terms, and there may be sets of terms that partially
cover the target function. This axis is called the topological axis of the dse.

The second axis describes that transistor polarity control operates in the signal
domain, which means that circuit input signals can be naturally used as recon-
figuration inputs. One property of mutually exclusive terms is, that they can
be reconfigured in any input, because each input in one term has a dual in the
other term. This means that every self-dual Boolean function can be reconfig-
ured via one or more of its input signals. While being functionally equivalent,
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these circuit implementation variants will have varying performance characteris-
tics. While self-duality usually imposes the need for having the inputs available
as direct and negated signals, some Boolean functions feature variants that can
save on one of the input inverters. This gives them dramatic energy and power
savings compared to faster, more balanced variants (cf. Figure 5.6, page 107). In
contrast, reconfiguring a circuit in exactly one input may reduce the load on the
other inputs. In some applications, this dramatically decreases the critical path
delay, when the slow input can be routed to a non-critical path. The 3-min and
3-xor logic gates in Figure 3.3 show, how this can be used to an advantage in
a larger circuit design. This axis realises the reconfiguration type and expresses
that reconfiguration is either achieved by using one particular input, or it may be
balanced across multiple inputs.

The third axis of the design space of reconfigurable circuits lies in the input
connections to each of the transistors. The nanowire transistors used in this work
are semiconductor-metal heterostructures that erect Schottky barriers at either
end of their channel. Thus, their two outermost transistor gates enclose the
Schottky barriers (cf. Figure 2.2) and need to perform more electric work than
the inner transistor gates that are located around the semiconducting part of the
wire. While the polarity control gate is always located at the acting drain side of
the device, the other gates can be freely assigned to any input, which results in
the transistor reconfiguration modes described in Table 2.3 and that constitute
this axis.

The dse that is conducted in this chapter orients itself largely along these
three axes. A particular point in all three axes describes a single circuit variant,
sometimes called an implementation for better distinction. I show an analysis of
the smallest possible self-dual Boolean function, 3-input minority, followed by the
3-input xor function. The results will show that there is no simple answer to
the benefits and drawbacks of each implementation. While some implementations
clearly outperform others, there are surprising benefits of variants that seem not
to perform well but do under certain constraints.

In this thesis and especially in this chapter, the term static circuit bears a
different meaning than usual for describing static cmos logic gates. A circuit or a
part of a circuit is called static if it is not reconfigurable, i. e. the polarity-control
gates of affected transistors are connected to a static signal. A circuit is called
semi-static if it consists of static and reconfigurable parts.

All circuits constructed in this chapter are always static logic gates in the
sense that their outputs assume a stable fixed value eventually for stable fixed
input values as opposed to dynamic logic gates, which need timely set and read
cycles to produce correct results. Also, all variants created by the dse algorithm
are always complementary logic gates, regardless whether they are reconfigurable,
semi-static or static.
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5.1 Analysis of 3-Input Minority Logic Gate
Chapter 2 shows that the 3-input minority function is one of the simplest logic
functions that are self-dual and, thus, have reconfigurable variants. In this section,
I show the results from the circuit dse and explain the particulars of the most
interesting variants. This is followed by multiple experiments on the whole family
of circuit variants to carve out the design space that is spanned up by the family.
The structure of its circuits requires the use of inverted input signals, which can
likely be shared with other logic gates in large circuit designs. So, in addition to
showing their performance results in the time, power and energy domain, I also
show their susceptibility to input inverter load and output load in the worst case.

5.1.1 Circuit Variants
The automatic exploration of the 3-input minority function yielded seven dis-
tinct circuit topologies enumerated 1–7. In this evaluation, the biggest topology
number always describes the static implementation, regardless of the particular
circuit. Each of these topologies can implement one or more reconfiguration types
and modes. For the 3-min, the only topology with two reconfiguration types is
number 3. Incidentally, the 3-min function does not support the transmission
gate reconfiguration mode, because none of its topologies provides a combination
of transistors and inputs that exclude short-circuits under all input conditions.
So, the transmission gate reconfiguration mode is left out in this analysis. This
reconfiguration mode is not to be confused with driving a transistor with an input
signal, which is commonly referred to as transmission gate or pass gate logic. The
transmission gate reconfiguration mode describes that the signals connected to the
transistor gates, including the polarity-control gate, are independent of the input
signal at the source contact, see Table 2.3 on page 33 for a detailed explanation.
All topologies and variants have been first described and quantified in my joint
work with Steffen Märcker in [47]. Before that, only a few variants have been
known and crafted manually.

It would be tiring to present them all in full in this work, because after un-
derstanding the concept, there are strict rules to build each variant. Figure 5.1
presents an alternative form as stick diagrams. The sticks resemble the circuit
topologies through their orientation, where horizontal lines stand for transistors
that are reconfigured, top vertical lines describe the static pull-up network and
lower vertical lines describe the static pull-down network connected to their re-
spective power rails. It turns out to be sufficient to annotate the reconfigurable
branches with their respective input signal to fully describe the reconfiguration
types that these variants implement. Topologies are counted with numbers and
their reconfiguration types are added to form principle variant names like 1,bl or
6,bl/A. Thus, while in Figure 2.10 I, the variant 2,A was drawn with vertical tran-
sistors showing a clear separation into what seems to be a pull-up and pull-down
network, this was only done to achieve immediate recognition as a classical cmos
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Figure 5.1: The eight principle variants of 3-min as stick diagrams. Horizontal lines
depict reconfigurable branches denoting the source input. Thus, the variant 1,bl, top
left, can be written as shown with three lines on top of each other. Vertical lines show
the pmos/nmos branches. The fully static implementation, having no reconfigurable
branches, needs six branches overall.

circuit. In the stick diagrams, variant 2,A can be seen as three horizontal sticks,
all of them annotated with input 𝖠 or its inverse. It still is a complementary
design, but no longer static.

The reconfiguration modes, single and inner in case of the 3-min, are left
out, as they do not contribute to the circuit’s functionality. It must be noted,
though, that static branches are always implemented in inner mode because of
its performance benefits in a static configuration. This needs to be reconsid-
ered, once leakage becomes a notable influence on the overall power budget that
might outweigh the performance penalty of Schottky-barrier gates. Also, when
the transistor type does not show the performance differences between inner and
Schottky-barrier gates, the single modes may be beneficial for static branches, as
well.

Regarding the 3-min function, variant 1,bl was found via this dse and is also
shown in full in the top-left corner of Figure 5.1. It is easy to see why this variant
uses a balanced reconfiguration type; each input signal reconfigures exactly one of
the three transistors, whose connection pattern visually resembles the minimized
Boolean function of 3-min:

𝑓3-min = (𝖠 ∧ 𝖡) ∨ (𝖡 ∧ 𝖢) ∨ (𝖠 ∧ 𝖢)

Variant 2,A is the well-known implementation shown in [23] and Figure 2.10
I. It is also described as a nand/nor circuit because of its physical structure.
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Figure 5.2: Topologies 3 and 4 of 3-min show the difference between a balanced reconfig-
uration and a reconfiguration that is restricted to a single input. Variant 3,A highlights
how the complementary restricted reconfiguration in 𝖠 makes it a different topology
from 4,A, necessitating a change in the input connections to all four transistors.

Reconfiguration in a single signal, without loss of generality, 𝖠, forces two tran-
sistors to reconfigure on 𝖠 and one transistor to reconfigure on 𝖠. As self-dual
functions are invariant in the choice of their reconfiguration inputs, the variant
notation 2,A means that a circuit designer can also use inputs 𝖡 or 𝖢 at their
discretion. See also Table 2.2 for an example truth table and further explanation.

Variant 3,A is a similar implementation. It shows, that taking away a sin-
gle reconfigurable branch, reducing from three to two, must be accompanied by
adding two new static branches. Either static branch can only perform half the
work of a reconfigurable branch, which also explains the relation of three recon-
figurable branches in variant 1,bl to six static branches in 7,bl. Other than that,
it keeps the complementary nature of the reconfigurable branches. While this
assessment is correct in this narrow focus on the circuit structure, replacing two
static transistors with a reconfigurable one is usually paid up with adding an
inverter to produce the reconfiguration signal. This means, two transistors are
actually replaced with three. It is easily seen that the break even (in numbers of
transistors) occurs at replacing four static branches with two reconfigurable ones
that are reconfigured in the same input. This is exactly what happens in variants
3,A and 4,A while variant 2,A even reduces the overall number of transistors.
The effects on power dissipation and dynamic energy consumption are complex
and are subject of the following pages.

Reconfiguration in a single signal does not always result in a circuit structure
that uses complementary reconfigurable branches, though. Topology 4 employs a
balanced reconfiguration type and a reconfiguration in 𝖠 that is not complemen-
tary. Figure 5.2 highlights the subtle differences that distinguish topology 3 from
4. Although the transistor pattern looks exactly the same, switching from topol-
ogy 3 to 4, all transistors need changed input connections, because the underlying
Boolean terms to create either topology are different. Switching from variant 4,bl



100 5.1. ANALYSIS OF 3-INPUT MINORITY LOGIC GATE

to 4,A, however, only involves reconnecting the inputs to the highlighted tran-
sistor. This topology is the only one for the 3-min function that facilitates both
reconfiguration types (balanced and restricted to a single input). The dse algo-
rithm generates those variants of either type that distribute load across the inputs
most evenly.

What might go unnoticed at first glance is, that the variants shown in Fig-
ure 5.2 have quite different power signatures, as well. The variants 3,A and 4,A
need only invert one of their input signals, 𝖠, while the balanced variant also needs
the signal 𝖢. Additionally, topology 4 always puts predefined loads on its three
input signals, because none of them directly drives the output, while topology 3,
due to its complementary implementation, needs to employ one of its inputs as a
driver.

Topologies 5 and 6 share the same similarities as topologies 3 and 4. Again,
apart from having a single reconfigurable branch, they were constructed from
different input terms. Also similar to topology 3, topology 5 must exclude the
reconfiguration signal 𝖠 in all static branches (cf. Fig. 5.2, left), while topology
6 can distribute the input signals more evenly, which is why the variant is called
6,bl/A. One could view topology 6 to be a closer relative to variant 4,bl, unfolding
the highlighted transistor into two static branches controlled by signals 𝖠 and 𝖢.
As this leaves only signal 𝖠 for reconfiguration, although it was constructed as a
balanced reconfiguration type, this variant gets the double name 6,bl/A.

There is nothing of surprise in topology 7. It, too, reflects the minimized
3-min function, just that the complementary output values must be generated
explicitly, doubling the amount of needed transistors. An implementation with
single-gate transistors would make use of signal sharing between parallel paths;
but due to the lower virtual series resistance of multiple-gate devices, it is almost
always beneficial to just double the input signal to avoid signal paths through
two transistors. Also, as mentioned earlier, all transistors use inner mode con-
nections, i. e. the source-side Schottky barrier gate is connected to its respective
source voltage and not used for an input signal. This makes the circuit even
larger but, given the intended device technology, shows the best speed and energy
characteristics.

5.1.2 Worst-Case Analysis
It is common practice to judge circuit performance based on its worst-case char-
acteristics. This makes sense regarding the ubiquitous presence of sequential logic
in large circuits. The first analysis is done on all circuit variants, i. e. each topol-
ogy, reconfiguration type and mode. For the 3-min function, this amounts to 15
circuits.

The parameters of this worst-case analysis shall be defined as follows:

• Each circuit is loaded with a single inverter, 𝐻 = 1.
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Figure 5.3: Input stimulation and conversion into analogue signals. Both inverters are
modelled and use the transistor technology of the circuit under test.

• Modelling parameters are set to:

𝑇scale = 10−12 𝑇props = 10−13 𝑉scale = 105

• Each input is driven by an artificial ramp with a full-swing delay of 1 ps
which is first converted to a physical input signal by an inverter of the same
technology before connected to the circuit under test. Delay quantification
starts at the outputs of these inverters (see also Figure 5.3).

• Each physical input signal 𝖷 may be connected to a second inverter to
produce the inverted signal 𝖷 when the inverted signal is needed. The
inverter producing 𝖷 is always included in the delay calculation.

• The input automaton generates all combinations of full-swing signal transi-
tions. The circuit under test is in equilibrium before a new input transition
is explored.

• The quantified delay 𝑡max is the worst-case delay.

• The quantified power dissipation 𝑃max is the worst case, independently de-
termined from 𝑡max. Thus, 𝑃max and 𝑡max do not necessarily reflect the
same switching event.

• The quantified dynamic energy consumption 𝐸max reflects the maximum en-
ergy consumption for the (energetically) worst-case switching event. Static
energy consumption is disregarded. 𝐸max over 𝑡max is quantified for two
sub-cases:

– Worst-case over all three inputs, (𝐸max, 𝑡max)𝖠,𝖡,𝖢

– Worst-case over two inputs excluding input 𝖠, which is the preferred
reconfiguration input, (𝐸max, 𝑡max)𝖡,𝖢

• The three experiments (𝑃max, 𝑡max)𝖠,𝖡,𝖢, (𝐸max, 𝑡max)𝖠,𝖡,𝖢 and (𝐸max, 𝑡max)𝖡,𝖢
are performed for two sub-cases:
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– The power dissipation / energy consumption for the input inverters
producing 𝖷 is considered and affects the overall results, writing power
as 𝑃 pwr

max and energy as 𝐸pwr
max.

– The power dissipation / energy consumption is not considered and the
circuits are quantified in isolation, writing power as 𝑃 iso

max and energy
as 𝐸iso

max.

This analysis results in six scatter plots shown in Figure 5.4 on page 103. They
present all 15 variants as points, whose fill colour is determined by their topol-
ogy; the darkest coloured points represent the variants with the most numerous
reconfigurable branches. Each point is encircled with a coloured border, which
represents the reconfiguration type. The shape of the points represents the recon-
figuration mode, where the triangle shows single mode and the circle shows inner
mode configuration. Thus, the static variant comes out as the bright yellow circle
with a dark purple border. All Pareto-optimal circuits are connected by a black
line. Each of the six plots is scaled exactly the same to allow visual comparison
and to show where the results of each experiment fall “inside the box”. The wide
plots show (𝑃max, 𝑡max)𝖠,𝖡,𝖢 and the left half-wide plots show (𝐸max, 𝑡max)𝖠,𝖡,𝖢.
Their delay values on the x-axis are exactly the same.

𝘗𝗆𝖺𝗑 and 𝘌𝗆𝖺𝗑 for three inputs There is a lot to unpack from this experiment,
so, let us focus on the wide plots 𝛼 and 𝛿, first. The plots show, that the re-
configurable 3-min variants can, indeed, work very power-efficient by sacrificing
delay performance. In the isolated case (𝛿), the power savings become almost
six-fold between variants 2,A,sg and 7,bl,in. Variants 1,bl,* are highly susceptible
to whether inverters are counted towards the power budget or not. They are the
only principle variants to employ three inverters, so the number of transistors
ranges between 3 and 9 depending on whether inverters are counted or not. It
is still worthwhile to look at the power budget in isolation, because the reconfig-
urable variants can expose their input inverters to the surrounding circuit. These
signals are not available when using the static variant 7,bl,in and their power
budget must be added on top in this case. Thus, the validity of the shown results
highly depends on the context they are used in. A prospective process devel-
opment kit will benefit from having both quantified models in its library. The
models that include inverters would expose three inputs while the models without
inverters would expose three to six inputs and could leave the optimisation to the
technology mapper.

The half-wide energy consumption plots 𝛽 and 𝜁 on the left show, that for
the worst case scenario, in which the inverters cannot be used elsewhere in the
circuit, the static variant 7,bl,in is the absolute optimum; no circuit is faster or
consumes less energy per operation. In isolation, however, principle variant 1,bl,*
can perform their operation using less energy, despite being considerably slower.
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Figure 5.4: 3-min worst-case analysis. Results in top half consider inverters producing
𝖠, 𝖡, 𝖢 to be part of the circuit, affecting power dissipation and energy consumption.
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𝘌𝗆𝖺𝗑 without reconfiguration input The other half-wide plots 𝛾 and 𝜂 on the right
of Figure 5.4 consider only events that do not involve switching input signal 𝖠;
they consider, however, both cases for 𝖠 being fixed to 0 and 1. These cases can
be viewed as showing the circuits’ behaviour when operated as a reconfigurable
nand/nor, opposed to the left plots which treat the circuit as 3-min. Reconfigu-
ration happens orders of magnitude less often than signal changes during normal
operation and the right half-wide plots show the extreme case, in which reconfig-
uration performance is disregarded. Their distributions look quite different from
the plots on the left. In the upper-side plot, all circuits consume less energy on the
right compared to the left. This is expected, because a) the input switching events
are less extreme, involving at most two inputs and b) all variants need an inverter
when reconfiguring in 𝖠 and this is not counted (because 𝖠 never switches). It
is obvious that the static variant 7,bl,in cannot take advantage of this scenario.
Some reconfigurable variants, however, not only gain in energy efficiency but also
outperform the static variant in delay.

Transistor reconfiguration allows a considerable reduction of parallel paths.
For the given circumstances, the static variant cannot make use of its available
parallel paths, losing a lot of energy in short-circuit currents in a switching event
without gaining much performance. It even costs performance compared to vari-
ants 2,A,in and 2,A,sg, which become the new Pareto-optimal variants. They
completely benefit from the fact that they can perform the same sub-function
(either nand or nor, depending on input 𝖠) with half the number of transistors.
Variant 2,A,in cuts its delay down from 63 ps to 26 ps. Depending on the appli-
cation, this may well be the faster variant and more energy efficient, i. e. when
input 𝖠 only switched in a completely different timing regime. This is similar to
an fpga switch box, where particular signals are always static during operation
and only switch during reconfiguration, while others in the same switchbox must
act on user signals.

In isolation, the results are even more pronounced. All reconfigurable variants
outperform the static variant in energy consumption per operation. Under these
conditions, principle variant 1,bl,*, which is reconfigurable in all inputs, reduces
dynamic energy consumption to as low as 110 nJ, which is in the order of a single
inverter.

Reconfigurability can be used to “unload” the inputs of the sub-functions
and concentrate the load in the reconfiguration input. Variants 7,bl,in (yellow
circle) and 1,bl,* (purple triangle/circle) demonstrate perfectly balanced circuits,
in terms of input load distribution. Each of their inputs must perform equal work
to make the circuit switch. Their energy and delay results are very similar to each
other regardless of whether two or three inputs are allowed to switch. Now, by
putting most of the effort on the reconfiguration input, we can create very fast and
power-efficient variants. The most extreme cases are variants 2,A,in (grey/yellow
circle) and 5,A,in (green/yellow circle). On the left in 𝛽 and 𝜁, they are the
variants with the worst delay performance (about 65 ps). On the right, though,
in 𝛾 and 𝜂, they are the two variants that outperform the static implementation
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Figure 5.5: 3-min worst-case energy consumption. When input inverters can be shared
with other circuits, i. e. their energy consumption distributes over more circuits, recon-
figurable implementations become more energy-efficient than the baseline static variant.

with a 31 ps and 36 ps delay, respectively.

Input Inverter Sharing

As I wrote earlier, another benefit of the reconfigurable variants is that they
expose the input inverters that they use to implement reconfiguration. These can
be shared in a larger design, reducing the overall effort that is needed to produce
this input signal as was shown for reconfigurable circuits in [42]. In vlsi designs
it is a common occurrence that inverted signals are produced as part of the larger
function. They are also produced as part of buffers that are needed to meet
signal quality demands and slew rate constraints. So, whenever this happens, the
reconfigurable implementations may provide an energy and power advantage over
the static implementation.

The next experiment quantifies dynamic energy consumption of the reconfig-
urable variants when the input inverters are shared. Modelling and experiment
parameters are kept the same as for the (𝐸max, 𝑡max)𝖠,𝖡,𝖢 experiment and Fig-
ure 5.5 reproduces its results for an inverter sharing factor of 1.

The assumption is that sharing the inverter with another logic gate means
that only 50% of the energy consumption of the inverter is counted towards the
3-min circuit. Each step on the x-axis corresponds to the number of circuits that
each input inverter is shared between. So, the minimum factor is 1, because each
used inverter is at least connected to the circuit under test. The energy for each
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circuit variant 𝑐 and inverter sharing factor 𝑠 is computed as follows:

𝐸max(𝑐, 𝑠) = max(𝐸iso(𝑐) + ∑
𝑖∈Inv𝑐

1
𝑠

× 𝐸(𝑖, 𝑠 − 1))

where Inv𝑐 is the set of input inverters used by circuit variant 𝑐, and 𝐸(𝑖, 𝑠 − 1) is
the dynamic energy consumption of input inverter 𝑖 that is connected to circuit 𝑐
and 𝑠 − 1 additional inverter loads, i. e. shared between 𝑠 circuits.

Obviously, each input inverter drives a higher load and gets slower the more
it is shared between circuits. So, depending on how this inverter is used inside
the 3-min variant, sharing may eventually increase dynamic energy consumption
as a result of a very slow slew rate.

Figure 5.5 shows only those reconfigurable variants that fall below the value
of 𝐸max(7,bl,in, ⋅) = 264 nJ of the static implementation, which is represented
by a black horizontal line. The static implementation does not employ input
inverters and is, thus, unaffected by sharing. The points at the left show the values
𝐸pwr

max from Figure 5.4 for each variant, repeating that without input sharing, no
reconfigurable variant is more energy-efficient than the static implementation in
the worst case.

The nand/nor topology of variants 2,A,* proves to be beneficial regarding
inverter sharing, outperforming the static variant for all succinct cases. Variant
1,bl,sg (not shown) follows the same curve shifted up by almost 150 nJ. Looking
back at Figure 5.1, we can see that it has almost the identical structure as 2,A,sg.
Just the inputs are connected differently. This asymmetry is, what gives variant
2,A,sg the advantage. In this experiment, I enforce that all input inverters are
shared between 𝑠 circuits, much to the disadvantage of variant 1,bl,sg. It would
perform much better in an asymmetric setting, in which only one of the input
inverters is shared while the others can deliver their power exclusively to the
circuit.

The only other variant breaking the static energy consumption is variant
4,A,sg. While this variant starts as low as variant 2,A, it cannot benefit as much
from inverter sharing and is more susceptible to high input loads. All remaining
implementations follow this curve, exceeding their initial energy consumption for
very high inverter loads. For these implementations, the energy consumption of
the input inverters start to dominate the product term in the energy equation.

It can be observed that the single mode proves to be the more energy-efficient
implementation. Its exact effect depends on multiple variables like the actual
transient in the worst-case switching event and the threshold voltage difference
between Schottky barrier gates and inner gates. This explains why the two modes
(dashed and solid curves) of the same variant are sometimes closer together or
further apart and do not exactly follow the same trend.
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Figure 5.6: 3-min worst-case analysis for multiple output loads.

Output Load Sensitivity

The experiments so far analysed the 3-min function for an output load 𝐻 = 1.
This made sense, given that a high output load shadows the internal character-
istics of a circuit that stem from its topology and input connection pattern. For
a general judgement about the suitability of a particular implementation in a
specific application, its load-dependent behaviour is an important information.

This experiment is conducted with the same modelling parameters as before.
Input inverters are considered as internal parts of the circuit. Additionally, the
circuits are quantified for multiple output loads 𝐻 = 1, 4, 7. This experiment
shows the development of the circuit performance across realistic output loads.
For this experiment, I concentrate on those circuits that will end up on the Pareto
front for at least one of the output load configurations. They are shown in the
usual shapes and colours while the suboptimal implementations are shown greyed
out for reference. As detailed in Figure 5.4, in the worst case over all inputs,
the static variant 7,bl,in solely dominates the energy consumption performance.
Thus, Figure 5.6 shows (𝑃max, 𝑡max)𝖠,𝖡,𝖢 at the top, but it shows (𝐸max, 𝑡max)𝖡,𝖢
at the bottom.

Both graphs show three sets of results, one for each output load value, result-
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ing in three distinct Pareto fronts. The first observation from the 𝑃max graph (𝛼)
is, that with rising load more and more circuits become eligible implementation
choices. This means that many of the reconfigurable circuits are usable in the
right environment. The ever growing distance between the static implementation
and the other circuits in the group shows that the small design of the recon-
figurable circuits makes them very susceptible for output load changes. This is
commonly known from other primitive circuit implementations and can be usually
addressed with transistor scaling. There is also a growing distance between the
static implementation 7,bl,in and the reconfigurable variants along the vertical
axis, meaning that the static implementation is most susceptible for output load
changes regarding power consumption. This is best seen in case of variants 1,bl,*
(dark blue/purple). For 𝐻 = 1, they are not Pareto-optimal. They are still high-
lighted, because both are Pareto-optimal for 𝐻 = 7, becoming even more power
efficient than variants 6,A,* (green/yellow).

The lower graph 𝛽, that displays 𝐸max over 𝑡max for inputs 𝖡 and 𝖢, clearly
shows that even when the only thing that is known is, that one input is used
significantly less often than the other two (effectively resulting in a reconfiguration
scenario), variants 2,A,* outperform the static implementation for small output
loads and stay competitive across the range of output loads.

5.2 Analysis of 3-Input Exclusive OR Gate
Another interesting function is the 3-input exclusive or function. It is known
to be critical in arithmetic operations and cryptography because of its perfect
symmetry. So, there is neither a dominant input variable nor, being a non-unate
function, a dominant input value. Every single-input switch triggers an output
change regardless of the current input combination. This property results in a
large set of 19 principle variants and a total of 49 circuit implementations in:

8 topologies

6 reconfiguration types 𝖠, 𝖡, 𝖢, balanced with preference for 𝖠 or 𝖢 (bl/A,
bl/C) and fully balanced (bl)

3 reconfiguration modes single, inner and transmission gate mode.

The 3-xor function is not primitive, in the sense, that there exists no static
complementary implementation of a single logic stage with three independent in-
puts. All implementations as cmos circuits require two stages one way or another.
They either implement the function from two cascaded circuits (e. g. two 2-xor
circuits) or resolve input dependencies by inverting input signals, which also sends
each affected signal through two logic stages. This means, that there is no obvious
benefit for the static implementation anymore, which, in case of the 3-min circuit,
could avoid using input inverters at all. The structure of the Boolean function
also enables the use of the third transistor reconfiguration mode, the transmission
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Figure 5.7: The 19 principle variants of 3-xor as stick diagrams. They result in 49
implementations.

gate mode. Not all Boolean functions allow implementations in this mode. See
Table 2.3 on page 33 for a recapitulation of the effects of each mode.

These conditions hold for all principle variants except the static implementa-
tion 8,bl,in. The 19 principle variants are shown as stick diagrams in Figure 5.7.
It can be seen that they are generally similar in structure to the 3-min principle
variants. Some topologies show a wider range in the number of reconfiguration
types that they can implement. Topology 3, 4, 5 and 6 can favour different input
signals without repeating themselves in the static part, creating implementations
with slightly different characteristics. One thing they have in common is, that
they need all three input signals direct and inverted, with few exceptions; vari-
ants 1,bl,tg, 5,A,tg and 5,C,tg, only need two input signals inverted. Due to this,
reconfigurable circuits show real benefits over the static implementation, also in
worst-case scenarios.

The two most interesting implementations are two transmission gate mode
variants 1,A,tg and 1,bl,tg shown in Figure 5.8. They are special for various rea-
sons. Variant 1,A,tg was first described in [65] and was found via hand-crafting.
When redrawn as a complementary transistor circuit, with the two transistors
sourced by 𝖠 going on one side and the rest going on the opposite side, variant
1,A,tg is a natural extension of 3-min 1,A (the nand/nor variant). An additional
limitation in [65] came from the fact that the two Schottky barrier gates were con-
nected with each other and had to be used in unison. At the time, it was lucky
circumstance that transistor devices that have to be used in an 𝖷,𝖸,𝖷 configu-
ration are sufficient to implement 3-xor without producing short-circuits. This
variant is special, because it manages to strike a good balance between the loads
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worst-case. Variant 1,A,tg was discovered by [65] while the other was found in this dse.

of each input signal despite preferring the single input signal 𝖠 to reconfigure:

𝐻(𝖠) = 𝐻out + 1 𝐻(𝖡) = 3 𝐻(𝖢) = 2
𝐻(𝖠) = 𝐻out 𝐻(𝖡) = 2 𝐻(𝖢) = 1

Since 𝐻out ≥ 1, all inputs are within 2 inverter equivalents of each other. (Here-
inafter, I sometimes use 𝐻out to highlight the attached output load when com-
puting some load 𝐻 in inverter equivalents for some point in the circuit. Where
in most places, I refer to the output load just as 𝐻.) Additionally, because the
inverted signals suffer a delay penalty anyhow, their lower loads relative to their
direct counterparts contribute to an optimal delay performance of that variant
for small output loads.

The second implementation that stands out, is variant 1,bl,tg. Figure 5.8
highlights that only two devices actually change, but these changes have signif-
icant consequences. By connecting signals 𝖡 and 𝖢 to the source contacts, this
implementation can avoid using the inverter for signal 𝖠 altogether. The changed
loads on the input signals are as follows:

𝐻(𝖠) = 𝐻out + 2 𝐻(𝖡) = 𝐻out + 2.5 𝐻(𝖢) = 𝐻out + 2
𝐻(𝖠) = 0 𝐻(𝖡) = 1 𝐻(𝖢) = 0.5

As can be seen, the load of all inputs depends on the output load now. The missing
load from input inverter 𝖠 is compensated by using 𝖠 as the reconfiguration
input for both transistors, again leading to a balanced load distribution across
the inputs. The unconditional output load dependence is slightly detrimental
to its worst-case delay performance, but losing one inverter, which reduces the
number of transistors by 20%, has an enormous effect on power dissipation and
energy consumption.
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Figure 5.9: 3-xor worst-case analysis for multiple output loads.
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5.2.1 Worst-Case Analysis
The worst-case analysis of the 3-xor circuit variants is performed as described
in Section 5.1.2. The performance metrics for the circuits in isolation, 𝐸iso

max and
𝑃 iso

max, are not shown or further considered in this thesis.
The results for varying output loads 𝐻 = 1, 4, 7 can be seen in Figure 5.9 on

page 111.
For small output loads 𝐻 < 4, the static variant 8,bl,in (yellow/blue circle)

is no longer Pareto-optimal. Variant 1,A,tg (dark blue/yellow square) and 1,bl,tg
outperform the static implementation in all three measures 𝑡max, 𝑃max, 𝐸max.
For 𝐻 = 1, delay is reduced from 57 ps to 52 ps, a 9% improvement, while energy
consumption per operation can be reduced down to 38%.

While the reconfigurable variants are still more susceptible to output load
increase, which is a result of their small size with merely one or two active tran-
sistors in any switching event, variant 1,A,tg can hold up for good, making it a
competitive option in conditions with a reduced output load.

In case of measuring (𝐸max, 𝑡max)𝖡,𝖢 (𝛾), the results become even more pro-
nounced. Many more variants, some of which are only shown shaded, because
they are not Pareto-optimal, can outperform the static implementation for small
loads, and the static implementation only becomes competitive for output loads
greater than 𝐻 = 4. As before with the 3-min function, topology 1 dominates
the field, with variant 1,A,in being the fastest variant with 45 ps and with vari-
ant 1,A,sg being slightly slower but more energy efficient than the former, beaten
only by variant 1,bl,tg. The transmission gate mode variants are usually the least
power efficient implementations of their respective principle variant. Due to the
setup of their input connections, they are somewhere in between the inner mode
that also uses the reconfiguration signal at both Schottky barrier gates and the
single mode; because they can reduce the number of gates by connecting one of
the variables of the min-term that implements a particular transistor solely to the
source contact and to none of the gates.

Independence of worst-case states The worst-case energy consumption experiment
(𝐸max, 𝑡max)𝖠,𝖡,𝖢 (𝛽) shows one additional circuit on the Pareto front, variant
5,C,tg (green/yellow square). This is interesting, because it sits in an unlikely
sweet spot, that makes it a viable candidate under energy consumption require-
ments, but which is not also Pareto-optimal under power dissipation, although
both measures are related by the circuit delay. The reason for this peculiar phe-
nomenon is that all the three worst-case quantities result from pairwise different
switching events. Model checking not only returns the results directly but also
provides witness states that are causal to the obtained numbers. In this case,
the witness states are those states in the program graph of the experiment model
and query, at which the circuit is still in equilibrium but the input automaton
has already decided on the next input combination. By virtue of constraining
the input automaton to only generate new input transitions when the circuit is
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in equilibrium, combined with the queries considering only those input switches
that also effect an output transition, these witness states are exactly the set of
interesting states. So, the witness states contain all necessary information to di-
rectly infer the switching event in terms of logic inputs that switch from one value
to another, although the model itself mostly speaks about voltages and currents.
For this circuit, the model checker returned the following state transitions:

St (𝑡5,C,tg
max ) = {(0∗, 0∗, 0∗)}

St (𝑃 5,C,tg
max ) = {(1∗, 1∗, 1)}

St (𝐸5,C,tg
max ) = {(0∗, 1∗, 0∗)}

St is the function that returns the set of logic state transitions that caused the
quantified result. The notation (𝑎∗, 𝑏∗, 𝑐∗) represents the ordered vector of circuit
inputs 𝖠, 𝖡 and 𝖢, where an asterisk marks an input that is about to flip. Thus,
(0∗, 0∗, 0∗) describes the state transition (0, 0, 0) → (1, 1, 1). This means that,
because maximum delay neither occurs during maximum power dissipation nor
during maximum energy consumption, it must be better for the latter two switch-
ing events. For 𝐸max, it is good enough to reduce energy consumption down to a
Pareto-optimal level.

This shows, that it is not good enough to start from a delay-driven simulation
to find the worst-case delay 𝑡max and assume that 𝑃max and 𝐸max result from the
same switching event. Not only are the states before the event pairwise different,
but so are the states after the switching event. Hence, the events are not even
adjacent to each other in any testing scenario.

Understanding the 𝘌𝗆𝖺𝗑 Outlier

The results of experiment (𝐸max, 𝑡max)𝖡,𝖢 (Fig. 5.9 𝛾) show another noteworthy
outcome. For an output load 𝐻 ∈ {1, 4}, the static variant 8,bl,in (yellow/blue
circle) consumes exactly the same amount of energy per operation in the worst-
case; 𝐸𝐻=1

max = 687.88 nJ and 𝐸𝐻=4
max = 687.99 nJ. This means, that either dynamic

energy consumption is independent of output load, or the causal states are so
unusual that energy consumption inside the circuit dominates the overall energy
budget in the switching event. Again, the model checker returns witness states
that cause the observed behaviour:

St (𝐸8,bl,in
max,𝐻=1) = {(1, 0∗, 0∗)}

St (𝐸8,bl,in
max,𝐻=4) = {(1, 0∗, 0∗)}

St (𝐸8,bl,in
max,𝐻=7) =

⎧
{
⎨
{
⎩

(1, 0∗, 0 ) ,
(1, 0 , 0∗) ,
(0, 1 , 0∗) ,
(0, 0∗, 1 )

⎫
}
⎬
}
⎭

From the topology of the circuit (cf. Fig. 5.7), we can see that high short-circuit
currents are more likely when multiple input signals switch simultaneously, be-
cause the circuit features many parallel branches in the pull-up and pull-down
networks. This is the case for 𝐻 = 1 and 𝐻 = 4, where inputs 𝖡 and 𝖢 switch
from 0 → 1. What is interesting about these state transitions, is, that they
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3-XOR, state transition (𝟣, 𝟢∗, 𝟢∗), 𝘏 = 𝟣

3-XOR, state transition (𝟣, 𝟢∗, 𝟢∗), 𝘏 = 𝟦

Figure 5.10: Simulation of switching events that cause 𝐸8,bl,in
max for 𝐻 ∈ {1, 4}. Results

are in model space resolution.

should not change the output at all. Since, the 3-xor implements the odd parity
function, i. e. the function that determines whether the number of ones in the
input are odd, switching a pair of inputs must result in the same output value as
before, because switching a pair of inputs can never affect the parity of the input
set (hence the name of the function). For 𝐻 = 7, these are no longer the causal
states, but switching either signal 𝖡 or 𝖢 from 0 → 1 causes the highest dynamic
energy consumption. Remember that signal 𝖠 cannot switch in this experiment,
but also see that it is part of the set of causal states in both polarities. This hints
at the output load being dominant for larger loads regardless of what happens in
the other two cases.

But what happens in the cases for 𝐻 = 1 and 𝐻 = 4? Starting from the causal
model states, I simulated the state transitions. As the causal states are the states
right after the input automaton has selected a new target input state, there is
no other non-deterministic choice involved. The simulation follows a single path
along the program graph of the experiment until the circuit is in equilibrium
again. Thus, the resulting input and output traces can be directly extracted from
the model checker and are shown in Figure 5.10. It shows that input 𝖠 remains
constant 1 and that the signals 𝖡 and 𝖢 switch from 0 → 1 as described by the
witness states. In both cases, the output (black) deviates significantly in time
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and magnitude before settling back at 1.2V. Both sets of traces end when the
circuit is back in equilibrium, which, for 𝐻 = 1, is after 1269 steps (≈ 127 ps) and
for 𝐻 = 2, is after 1578 steps or ≈ 158 ps.

Looking back at how this circuit is modelled as a charge transport network,
each transistor in circuit 8,bl,in directly connects one of the power supply lines
with the output. No reconfiguration takes place, nor are inputs fed directly to
the output via pass gates. This means, that there are no chains of charge storage
nodes, but the network consists (apart from the power supplies) of a single charge
storage node at the output of the circuit. Because the capacitance attributed
to the node is constant, the voltage changes represented by the black curves
reflect the equivalent of all charges that contribute to the energy consumption
of the circuit. So, the area under both curves must be identical (because the
consumed energy is also the same), and the difference in magnitude and extent
comes from the difference of capacitance attributed to the charge storage node.
The capacitances compute to the following inverter equivalents:

𝐻(𝑥) = 𝑥 + 𝑝 × 𝐻p
chan + 𝑛 × 𝐻n

chan with 𝐻p
chan = 𝐻n

chan = 1
2

𝐻(1) = 1 + 8
2

= 5 𝐻(4) = 4 + 8
2

= 8

where 8 comes from the eight transistor drain contacts being connected to either
1 or 4 inverter equivalents at the output. The proportion of 8/5 of the output load
corresponds exactly to the proportion of the magnitudes of the deviations of the
output from its normal value (see Max Dev in Figure 5.10) with 576 mV/365 mV.
This gives further confidence in the precision of the model and its quantitative
results.

These deviations can be clearly problematic, because the transistor device
model defines the threshold voltages of the Schottky barrier gates to be 𝑉th =
400mV and for the inner gates to be even lower with 𝑉th = 200mV. Depending
on the transmitted amount of energy, both output hazards may be sufficiently
large to trigger a spurious switching event in the next logic stage. To check this, I
slightly altered the experiment shown in top of Figure 5.10 for 𝐻 = 1 with respect
to the one below. Instead of attaching a capacitance equivalent to one inverter, I
attached an actual standard-sized inverter of the same technology to the output
of the 3-xor circuit. This inverter is itself loaded with 𝐻 = 1. The dashed black
line shows that the inverter reacts to the output hazard but is not triggered to
switch over.

Output hazards Using another model checking query, I can enumerate those state
transitions that do not ultimately trigger a circuit output change but which lead
to output hazards that exceed a threshold of 400mV, corresponding to 𝑉th at the
Schottky barrier gate. This query is built similarly to the ones used to determine
𝑡max, 𝑃max and 𝐸max:
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Hazard34 For all paths on which the inputs are not stable (i. e. in transition), and
which eventually encounter an output transition that is either 34% above
the minimum output voltage of 0V or 34% below the maximum output
voltage of 1.2V, do the following: Enumerate the causal states that are
obtained by a switch but that do not effect𝑜 for all outputs 𝑜.

Of course, the query is independent of the particular circuit and works the same for
any number of inputs and outputs. For multiple outputs, the query enumerates all
state transitions affecting any output, but adapting the query to filter transitions
for a particular output can be done by fixing effect𝑜 to a particular output 𝑜.

The 3-xor has 8 × 8 possible state transitions of which exactly half actually
change the output. As output hazards can only occur during state transitions that
should not affect the output, the number of possible state transitions in which
output hazards can occur is 32.

Table 5.1 shows all circuits and their state transitions that cause output haz-
ards larger than 400mV, queried with Hazard34. The shown results range from
one to six affected state transitions across 24 affected variants, which result in
the hazard ratio of hazardous transitions over possible hazardous state transitions.
Hence, the hazard ratio can change in steps of 3.125% for the 3-xor circuits. It
reaches its maximum with 18.75% in the static variant 8,bl,in, but the median of
circuits is only affected in 6.25% of the transitions. One other detail in this table
is, that all circuits that produce output hazards, do so by switching two inputs in
the same direction, with one exception. Variant 2,A,in produces the hazard when
two inputs switch in opposite directions.

Only 24 out of 49 total variants produce large hazards. Closer inspection
of Table 5.1 reveals that four principle variants are not affected at all: 1,bl, 2,bl,
4,bl/A and 5,bl. This means, the reasonably fast and exceptionally power-efficient
variant 1,bl,tg does not produce serious output hazards.

5.2.2 Functional Verification
This section is a small deviation, because it concerns itself with a 2-xor circuit
instead of 3-xor. It is done, to show an interesting case for the use of quanti-
tative analysis for functional verification, and it aligns well with the surrounding
sections, because two 2-xor circuits in series are often used to implement the 3-
xor function using standard cmos devices. Apart from the strong quantification
possibilities, model checking and formal methods in general are predestined to be
used for functional verification. This topic has not been touched so far, because
the way the dse algorithm constructs the circuits, guarantees that they are func-
tionally correct. In this thesis, a circuit works functionally correct if and only if
for every switch that effect𝑜, has an effect on output 𝑜, the output transitions to
the correct output value that is specified by its equivalent Boolean function even-
tually. The limit at which the Boolean output value is considered to be reached
is defined to be ±200mV from the ideal voltages 𝑉SS / 𝑉DD, which represent the
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Table 5.1: 3-xor variants and state transitions that exhibit output hazards
that are greater than 0.4 V. Enumerated with Hazard34.

Variant 𝑣 Affected transitions St(𝑣) Hazard ratio

1,A,sg { (1∗, 1, 1∗) , (0∗, 0, 0∗) } 6.25 %

1,A,tg { (1∗, 1, 1∗) , (0∗, 0, 0∗) } 6.25 %

2,A,in { (0∗, 1∗, 0) , (0∗, 0, 1∗) } 6.25 %

3,A,sg
⎧{
⎨{⎩

(1∗, 1, 1∗) , (1∗, 1∗, 0) , (1∗, 0, 1∗) ,

(0∗, 1, 0∗) , (0∗, 0∗, 1)

⎫}
⎬}⎭

15.625 %

3,A,tg { (1∗, 1, 1∗) , (0∗, 0, 0∗) } 6.25 %

3,bl,tg { (0∗, 0∗, 1) } 3.125 %

3,B,in { (1∗, 0, 1∗) , (0∗, 1, 0∗) } 6.25 %

3,B,sg { (1∗, 0, 1∗) , (0∗, 1, 0∗) } 6.25 %

3,B,tg { (1∗, 1∗, 0) , (1∗, 0, 1∗) , (0∗, 0∗, 1) } 9.375 %

4,A,in { (1∗, 1∗, 0) , (1∗, 0, 1∗) , (0∗, 1, 0∗) , (0∗, 0∗, 1) } 12.5 %

4,B,in { (1∗, 0, 1∗) , (0∗, 1, 0∗) } 6.25 %

4,B,sg { (1∗, 0, 1∗) , (0∗, 1, 0∗) } 6.25 %

4,B,tg { (1∗, 0, 1∗) , (0∗, 1, 0∗) , (0∗, 0∗, 1) } 9.375 %

5,A,in { (1∗, 0, 1∗) , (1, 0∗, 0∗) , (0, 1∗, 1∗) , (0∗, 1, 0∗) } 12.5 %

5,A,tg { (1, 0∗, 0∗) , (0, 1∗, 1∗) } 6.25 %

5,C,in { (1∗, 1∗, 0) } 3.125 %

6,A,in { (1, 0∗, 0∗) , (0, 1∗, 1∗) } 6.25 %

6,A,tg { (1, 0∗, 0∗) , (0, 1∗, 1∗) } 6.25 %

6,bl/A,in { (0, 1∗, 1∗) } 3.125 %

6,bl/A,sg { (0, 1∗, 1∗) } 3.125 %

7,bl/A,in { (1, 0∗, 0∗) , (0, 1∗, 1∗) } 6.25 %

7,bl/A,sg { (1∗, 1∗, 0) , (1∗, 0, 1∗) , (1, 0∗, 0∗) , (0, 1∗, 1∗) } 12.5 %

7,bl/A,tg { (1∗, 1∗, 0) , (1∗, 0, 1∗) , (0, 1∗, 1∗) , (0∗, 1, 0∗) } 12.5 %

8,bl,in
⎧{
⎨{⎩

(1∗, 1∗, 0) , (1∗, 0, 1∗) , (1, 0∗, 0∗) ,

(0, 1∗, 1∗) , (0∗, 1, 0∗) , (0∗, 0∗, 1)

⎫}
⎬}⎭

18.75 %
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logic values 0/1. The output may assume arbitrary values arbitrarily often before
finally coming to rest in the correct voltage range. The query that verifies func-
tional correctness must obviously depend on the circuit under test, specifically on
the Boolean function it implements.

For this experiment, I selected a complementary cmos implementation of the
2-xor function that was found via an evolutionary algorithm and demonstrated
in [63]. Its circuit diagram is shown in Figure 5.11. Two aspects make it in-
teresting to investigate. First, it was generated under circumstances similar to
this thesis. In both cases, a dse method was employed to generate new circuit
implementations. While the dse algorithm in this thesis is known to produce cor-
rect results, it is also clear that it has serious shortcomings. Its implementation
method is severely self-limited to implementing actual min-terms in each transis-
tor, neglecting transistor sharing completely. Additionally, its underlying method
is known to have exponential complexity, making it known to fail quickly for a
growing number of inputs. The evolutionary algorithm used in [63], promises
better scaling behaviour at the expense of losing correctness. Second, the circuit
implementation resulting from the evolutionary construction does not work in all
cases, at least not with the device I have used, although it is a production device.

With model checking this is directly verifiable and the offending state tran-
sitions are enumerable. The query that verifies the functional correctness of a
2-xor circuit is defined as follows:

func On all paths, the following proposition must hold for all states which satisfy
stable𝐼:

(𝑉𝖠 < 𝑉DD
2

∧ 𝑉𝖡 < 𝑉DD
2

) ∨ (𝑉𝖠 > 𝑉DD
2

∧ 𝑉𝖡 > 𝑉DD
2

) = 𝑉out < 0.2V⋀

(𝑉𝖠 < 𝑉DD
2

∧ 𝑉𝖡 > 𝑉DD
2

) ∨ (𝑉𝖠 > 𝑉DD
2

∧ 𝑉𝖡 < 𝑉DD
2

) = 𝑉out > 0.8V

It is obvious that this proposition can be generated automatically from the
Boolean function and from knowledge about the experimental setup. Once the
circuit has reached equilibrium on its current input stimulus, the experiment setup
ensures that the input voltages are either charged to 𝑉DD or 𝑉SS. Due to how the
input stimuli are generated from inverters, these voltages are not reached with
numerical precision. So instead of testing for matching voltages, it suffices to
check whether the input voltages are in the upper or lower half of the domain.
As stated earlier, the output is expected to deviate less than 200mV from its
intended voltage for the circuit to be considered functionally correct.

For the circuit shown in Figure 5.11, the query func determined that it is
not correctly operating in all state transitions. Figure 5.12 shows a trace for the
following seven state transitions:

(0∗, 0)† → (1∗, 0) → (0, 0∗)† → (0∗, 1)† → (1, 1∗)† → (1∗, 0) → (0, 0∗)†
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𝘝DD 𝘝DD

𝘝SS 𝘝SS

¬A ¬A¬AA

A

B ¬B

¬B

2-XOR

Figure 5.11: 2-xor design resulting from an evolutionary search shown in [63].

2-XOR, faulty transitions, 𝘏 = 𝟣

Figure 5.12: 2-xor circuit from [63]. Implemented with the 32 nm cmos transistor
prism-gen model from the device shown in [41]. The device operates at a nominal
supply voltage of 1 V. Results are in model space resolution.

The trace shows, that the circuit only works correctly for state (0, 0) which also
resolves the stable states with a partially charged output. Transitions to non-
functional states are marked with a dagger (†). As explained in the previous
chapter, the input automaton does not end the charging of the output prema-
turely. The circuit actually is in equilibrium with the partially charged output
seen in the trace, before the input automaton selects the next transition non-
deterministically.

For completeness sake, the experiment was set up with the same modelling
parameters as earlier experiments in this chapter, only the supply voltage and
the transistor device were changed and the input automaton was simplified to
switch only one input at a time. The device used to implement this circuit is the
model I used for studying the charge transport network modelling precision in
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the previous chapter. This device is a model of a 32 nm cmos production device
shown in [41]. Its performance and characteristics can be trusted the most of the
prism-gen models, because it has been shown to work the same compared to its
commercial spice models. As is often seen in cmos devices, they do not feature
equal pmos and nmos performance. So, the shown circuit needs considerable
transistor scaling not only to optimise its performance but to make it work at all.

The quantitative formal analysis not only adds a verification of the circuit
functionality on the electrical level, but it also incorporates the specifics of the
used transistor devices. So, even while the circuit worked for the device that
was used by its original authors, it is worthwhile to have a method to verify its
functional correctness on new devices, as well.

5.2.3 Probabilistic Analysis
Long-Run Average Quantification

Despite the usual metrics to characterise circuit performance being focused on
the worst-case, the circuit, obviously, spends most of its time in its average cases.
For asynchronous logic, the average case is the defining metric (apart from neces-
sary consideration of catastrophic worst-case behaviour) for circuit performance.
On the one side asynchronous logic is not well regarded in the eye of the wider
scientific public, because it is expensive to build. It needs more transistors than
synchronous logic, is provably unable to achieve the same peak performance (both
because handshake signals contain actual information while clock signals do not)
and is hard to synthesise from abstract circuit descriptions (a bad synthesis re-
sults in performance penalties, not misbehaviour). On the other side, on average,
it is much more power efficient and has a better delay performance, because it
does not have to scale its clock frequency back to meet the worst case at all times.
While delay performance is immediately perceived from surrounding actors, en-
ergy efficiency is only perceived in large quantities that are averages across a large
set of operations, which is true also for synchronous logic. This is a domain where
probabilistic model checking has a lot to offer for circuit characterisation.

In this experiment, which was first shown by myself and Steffen Märcker in
[47] for the 3-min function and in its current form in [48], I investigate the average
circuit performance of the 3-xor function for two different sets of input switching
probabilities. The modelling parameters and the experiment setup are the same
as in the previous experiments with the following differences:

• Each circuit is loaded with 𝐻 = 1, 4, 7 inverter equivalents.

• The quantified delay 𝑡avg is the long-run average delay. It describes the av-
erage delay that the circuit would exhibit, when all switching events would
be tried ad infinitum according to a fixed probability distribution that de-
termines the likelihood that any circuit inputs switch or not.
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Figure 5.13: 3-xor long-run average analysis for multiple output loads.

• The quantified dynamic energy consumption 𝐸avg describes the long-run
average energy consumption according to the same method as 𝑡avg. 𝐸avg
over 𝑡avg is quantified for two sub-cases:

– Long-run average for an input probability distribution of 𝑝𝖠 = 𝑝𝖡 =
𝑝𝖢 = 1/2, called (𝐸avg, 𝑡avg)0.5

– Long-run average for an input probability distribution of 𝑝𝖠 = 10−5,
𝑝𝖡 = 𝑝𝖢 = 1/2, called (𝐸avg, 𝑡avg)10−5

Please note that the input switching probabilities are independent of each
other and, thus, do not add up. Their probability merely describes how likely
it is that a particular input switches in the next switching event. Thus, for all
switching events to be equally likely to occur in the long-run, each input must
switch with probability 1/2 and not 1/3 as one might be tempted to think.

The results of this experiment are shown in Figure 5.13. As before, they
highlight the Pareto-optimal variants grouped by output load. The lumps of
circuits are closer together now, as their average performance is naturally closer
together than their performance at the extremes. Nevertheless, the general trend
across the implementations remains clearly visible, the reconfigurable circuits are
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more susceptible to increasing output load, weakening their delay performance
considerably. The static variant cannot gain from small a output load, but is
least affected by its increase.

Notably, many reconfigurable variants outperform the static implementation
8,bl,in for 𝐻 = 1. For the reconfigurable scenario, in which signal 𝖠 is switched
considerably less often, it is the overwhelming majority. Additionally, contrary to
the worst case, all reconfigurable variants are always more energy-efficient than
the static variant, regardless of the input switching probability or output load.

The two best-performing reconfigurable variants 1,A,tg and 1,bl,tg are also
Pareto-optimal in many cases. While variant 1,bl,tg, dominates the energy con-
sumption performance due to its saving of a third input inverter, variant 1,A,tg
shows a mixed performance. For the average experiment (𝐸avg, 𝑡avg)0.5, this vari-
ant does perform very well at first, but is superseded by variant 5,C,tg for high
loads. In the reconfiguration scenario (𝐸avg, 𝑡avg)10−5 , this variant also performs
exceptionally well on average, proving to be very stable and almost able to keep
up with the static variant up to 𝐻 = 7. It, too, saves one inverter and strikes a
seemingly good balance between reconfiguration and a powerful drive that sustain
high output loads. Specifically, it avoids inverting signal 𝖢, giving it a performance
advantage in the reconfiguration scenario, where, on average, half of the switches
are performed with the fast signal 𝖢. On top of that, variant 5,C,tg does not
suffer from large output hazards. This seems to be generally true for the trans-
mission gate mode variants, as can be seen for 𝐻 = 7. All variants that are close
behind the Pareto-front are transmission gate variants that can make use of this
reconfiguration mode, which does not force the source signal to be also used as a
reconfiguration signal on the same transistor, reducing the load of that input.

Parametric Delay

So far, the figures showed that the delay of the reconfigurable variants varied with
the change of output load and with the activity of signal 𝖠. The model checker
is able to quantify the average delay depending on the switching probability of
signal 𝖠. This is not achieved by sampling, but the model checker computes the
average delay as a function with probability 𝑝𝖠 as its parameter. How this is
done, is detailed in the work of Steffen Märcker [34]. Though, one important
precondition is that the probability distribution to enter a certain Boolean state
must be the same as the probability distribution to leave it to the following
state. The circuit models that are discussed in this chapter fulfil this precondition.
With this parametric delay function determined for a particular circuit, circuit
designers are now able to directly compute the expected average delay. Without
any application knowledge, they would just use 𝑝𝖠 = 0.5 and would arrive at
the same values that were shown in the upper graph of Figure 5.13. It is now
clear, that the lower graph in that figure, displays another point on the curve for
𝑝𝖠 = 10−5. Using the function, any point can be computed without the need to
run the whole model checker on a specific set of parameters again.
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3-XOR, Parametric average delay depending on 𝘱𝖠, 𝘱𝖡 = 𝘱𝖢 = 0.5
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Figure 5.14: 3-xor parametric average delay analysis for multiple output loads.

For the 3-xor function, I have computed the parametric delays for a range
of circuit implementations. The results are shown in Figure 5.14 for all variants
that are at least once Pareto-optimal in Figure 5.13. The graphs show the re-
sulting rational functions, not sampled data points, for switching probabilities
𝑝𝖡 = 𝑝𝖢 = 0.5. While the left graph shows the functions for each circuit for out-
put load 𝐻 = 1, the right graph shows the set of functions for output load 𝐻 = 4.
For small output loads, variant 1,A,in can be the fastest variant in a known recon-
figuration scenario, in which signal 𝖠 is used for reconfiguring the circuit. Just
below a 10% probability of switching 𝖠 variant 1,bl,tg becomes better on average.
The optimum curve is highlighted with a black dashed line and follows the best-
performing variant. It switches over a second time to variant 1,A,tg at around
35% probability. The graph also shows, that variant 1,A,tg is largely unaffected
by the switching probability of signal 𝖠 and that multiple candidates exist that
are better than the static implementation 8,bl,in shown in black.

On the right side for 𝐻 = 4, the picture gets different. Multiple variants,
1,A,tg, 1,bl,tg and 8,bl,in, have almost the same average delay when signal 𝖠
does not switch. Again, variant 1,A,tg turns out to perform unaffected by the
switching probability of 𝖠, still outperforming the static implementation. Yet,
below 30% switching probability, variant 5,C,tg performs best, outperforming
the static implementation at around 55% probability. The high susceptibility to
output load shows for variant 1,A,in, which is unable to compete against any other
variant for 𝐻 = 4.

For asynchronous designs, parametric average delay performance would be a
valuable addition to the synthesis library. In complex designs, input switching
probabilities can be very well computed, because the individual signals are by
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no means independent. Data is usually transmitted in words and their encod-
ing allows for simple approximations upfront. Also, the results show, that the
approximations can be rough to allow for an improved circuit selection.

In this chapter, we have seen the automatic design space exploration and quan-
titative analysis at work for two highly-relevant logic gates. It turns out, that the
analysis needs to look at various metrics under multiple experiment conditions
to convey the complex performance results (good and bad) that come with the
various reconfigurable circuit implementations. One important outcome was that
performance results for different metrics may come from different circuit input
transitions in different circuit states. Thus, the exhaustive analysis proved fruitful
in that it cannot miss the correct result or mislead the experimenter in the analy-
sis. The results of new analyses like parametric average delay and output hazards
would be useful for down-the-road use in electronic design automation (eda) pro-
cesses, because they convey functional aspects of standard-cell behaviour beyond
delay and power dissipation that could lead to overall better circuit designs. Also,
the effects of hazards on the following logic stage was investigated. Lastly, the
nature of formal methods also enabled us to map an uncommon 2-xor circuit
implementation to a new device and verify (or, here, disprove) its functionality.



Chapter 6

Conclusion and Future Work

In this thesis, I establish the notion of transistor reconfiguration that needs to be
separated from the common understanding of reconfiguration as used for field-
programmable logic circuits. Chapter 2 motivates my research with hand-crafted
logic gates and the establishment of the fundamental effects of the polarity-
controllable transistor that enable reconfiguration and their interplay inside par-
ticular circuits. It further introduces the design space that the technology provides
with its reconfiguration modes and its balanced and biased reconfiguration types.

Chapter 3 compares the reconfigurable standard cells both on a structural
level and in terms of absolute delays. By comparing circuit implementations
across two transistor device technologies, one polarity-controllable lab technology
and one established cmos production device, it serves to show the complexity in
evaluating the viability of reconfigurable circuit designs. Although reconfigurable
implementations are structurally beneficial, they do not necessarily show indis-
putable performance improvements, warranting closer and broader investigation.
In this chapter, I show the abilities of reconfigurable standard cells to serve in
explicit reconfiguration and implicit reconfiguration. I develop and improve a
small alu and optimise a well-known conditional sum adder design by replacing
sub-structures with reconfigurable standard cells without altering the circuit’s
function. The improved arithmetic circuits benefit from the compact standard
cell designs and especially excel in low-power scenarios while at the same time,
their functional enhancement shows potential to increase timing performance by
reducing logic stages.

As a result from these insights, I develop a transistor technology evaluation
methodology in Chapter 4 that specialises in early technology evaluation. Its focus
is to research digital circuit designs using reconfigurable transistors that are at a
very early design stage. The methodology allows easy access to device parameters
and allows the creation of new transistor devices with little effort and only few
input data points. Additionally, circuit and experiment description are carried
out in the same input language, which allows device and/or circuit parameters to
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change as part of an automatic experiment series. This allows a researcher to home
in on wanted device properties that need the development focus. Although using
the same input language, device description, circuit design and experiment setup
are separated use cases that allow the description of devices and circuits indepen-
dent from each other or a particular experiment. Nevertheless, they also allow
the re-use of experiment setups for multiple circuits. The whole methodology is
facilitated by modelling the electrical transistor network as a charge transport
network that is computable by the probabilistic model checker prism. It incor-
porates the transistors and capacitive nodes, which represent voltages and cause
currents, as well as input conversion from logical inputs to voltages. The chapter
also shows the use of generalised model checking queries that enable the analysis
of particular measures of interest, like delay performance or energy consumption,
that are independent of the circuit under test. A design space exploration algo-
rithm that generates a set of circuit variants from a Boolean input function and
its implementation completes the methodology and allows an automated analysis
of a range of circuit variants over a multiple quantities and experiment variants.
The transistor device models are compared against tcad data and the result-
ing logic gates are compared with simulations made with commercially available
spice models. They demonstrate the accuracy of the device and charge transport
network models.

In Chapter 5, I use this methodology and the tooling that comes with it to con-
duct an extensive performance analysis of two reconfigurable circuits, the 3-input
minority logic gate and the 3-input exclusive OR gate. The Chapter presents the
complexity of judging the performance of reconfigurable circuits, as it depends
highly on the application scenario. It shows that reconfigurable circuit variants
can outperform static implementations especially in situations of strongly biased
inputs. They are representative for user-level reconfiguration scenarios, in which
a particular function is selected over long periods of time. Circuit reconfiguration
is shown to provide benefits by allowing input inverters to be shared amongst
standard cells, further reducing complexity and necessary energy budget. The
methodology proves to be precise in identifying the causing circuit states and
transitions that decide on a circuit’s performance. It shows that especially worst-
case results of different measures may be caused by different state transitions of
the same circuit. Some worst-case results are even caused by hazardous transi-
tions that might have gone unnoticed in simulations, because they arguably do
not belong to the usual input testing set. Using the formal analysis approach,
the hazards can be automatically analysed traced back to the causing states after
the fact, explaining the underlying circuit behaviour. Additionally, circuits are
analysed regarding their general tendency to exhibit hazards, which is important
for certain asynchronous logic schemes like NULL convention logic, because it
may affect the correctness of its operation. The ability to verify the correctness
of a circuit is used to investigate a 3-xor design, proposed by another group and
found via an evolutionary search, with an available state-of-the-art cmos device.
It is found to be very susceptible to transistor device performance and does not
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work with unscaled transistor devices. My research concludes with a probabilis-
tic and parametric analysis of reconfigurable 3-xor circuit variants and it shows
that the performance gains that can be achieved with reconfigurable circuits on
average are much higher than the worst-case results suggest. This is especially
interesting for energy consumption and power dissipation, because these measures
are only relevant on larger scales where all parts do never exhibit their worst-case
behaviour at the same time. Additionally, short but large deviations from the
average quantity can be tolerated without immediately sacrificing functional cor-
rectness. Thus, a worst-case quantity that almost never happens might not bear
any significance to the application scenario.

6.1 Future Work
The proposed modelling and quantitative analysis framework is focused on early
device characterisation and its design space exploration targets reconfigurable
circuit variants created from polarity-controllable transistors. In this regard, the
modelling and analysis is completely device-independent and new devices like car-
bon nanotube or 2-D material devices like carbon nanoribbon fets, single-layer
MoS2 transistors [16, 44] or tunnelling fets [6, 25, 26] can be added. They would
be modelled as closed form functions that reproduce the voltage transfer charac-
teristics and that depend solely on contact voltages and momentary currents as
described in Chapter 4.

For practical reasons, this framework targets the prism model checker as its
computational basis, for it is the only tool capable of computing the parametric
long-run average measures and the only one providing the witness states of its
quantitative results. Another valuable compute platform would be the Storm
model checker, as it has a modern code base supporting multiple compute cores,
though it is at least lacking the aforementioned properties at the time of this
writing.

Further automated processing of the design space exploration results is obvi-
ous. They can be ranked and categorised and serve as input data to improved
process design kits that are based on the measured transistor technology. This
would make the new-found standard cells immediately useful for experimentation
in practical vlsi circuit applications. The intended process design kit’s charac-
terisation conditions have to be replicated yielding the required worst-case delay
results and output load-dependent slow-down factors used by current eda li-
braries. As these conditions are independent of the specific logic gate, circuit
characterisation and conversion can be fully automated as well.

Beyond this immediate application, parametric averages of the measured quan-
tities could be a valuable addition to the metrics that go into the selection process
used by eda design tools. The resulting rational functions could be used in en-
hanced pdks that can guide the standard cell selection depending on known input
switching probability distributions. This could lead to a substantial improvement
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in average performance, without unduly sacrificing worst-case performance. It
would especially accommodate asynchronous circuit design automation which is
much more dependent on average performance numbers.

Lastly, this framework could serve as an early feedback to semiconductor re-
search. By performing an early analysis on a default set of standard cells, re-
searchers gain quick insight into the absolute and relative performance of the lab
device compared to established or other researched technologies. The support for
multiple device technologies within the same experiment setup enables researchers
to investigate the compatibility of new devices with established transistors. This
would be beneficial when the new device is targeted as a back-end technology to
support a faster device technology used for high-power, high-performance appli-
cations. The freedom to describe new input drivers and modify transistor devices
also supports the research of transistors that are used to act as sensors (light,
chemicals). Additionally, the charge transport network model naturally repli-
cates the analogue transient behaviour of the modelled devices and, thus, can
be used to produce early insights into the function of the researched technology.
This also extends to memory technology devices like memristors or ferroelectric
devices that exhibit stateful behaviour. The network model naturally supports
feedback loops and stateful elements.

One conceivable extension to the approach would be to construct well-defined
abstractions that capture the quantitative and, as much as necessary, the qual-
itative results of the detailed analyses of individual standard cells. These ab-
stractions could be composed to quantify larger circuits or standard cells in more
complex experiment setups saving on the model state space while retaining the
quality of the experiment results. Another use case of this extension would be
to use probabilistic model checking to determine realistic application-dependent
input probabilities for standard cells of interest. They can, in turn, be used to
compute realistic long-run average performance data to further improve combina-
tional circuits by placing the right reconfigurable standard cell implementation at
the right locations in the circuit. Integrating all this data into eda tools and pdks
would make these insights usable to the enhanced tool flows that also optimise
average performance.



Appendix A

Notational conventions

This document uses the following notational conventions to describe syntactic and
semantic elements of the prism-gen domain-specific language.

In general, source code is displayed in typewriter font both in separate list-
ings and within paragraphs. prism-gen is a language with strong relations to
CommonLisp and uses its typical list notation and formatting style. This means
that the closing parenthesis are written after the end of the last element even in
lists that span multiple lines and not on a line of their own (as is common in
curly-brace languages like C). In multi-line lists, lines starting from the second
line are indented as follows:

• by two characters if the first line contains only a single word,

• to the beginning of the second list element or

• to a later element if that maintains the inner semantic of the list.

(constant
T_SCALE
1e12)

(input-node drv_A
:slope 5)

(cap-net-node output :stable T
:nodes (drv_A))

Comments are introduced by one or more semicolons and they are typeset in
italic font. Additionally, the phrase “Example:”, on a line of its own, is used to
separate the definition of a language construct from an example of its use.

This document uses the Backus Naur Form (bnf) to describe the grammar
of language constructs. To maintain the visual resemblence of the final language,
grammar descriptions use the previously explained list style and augment them
with a change of font or visual elements to convey the necessary information.
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name Denotes a terminal symbol or a piece of code that is written as-is. These
are keywords of the language or literal values.

name Denotes a non-terminal symbol, which can be the name of a parameter or
value or another bnf rule that is explained elsewhere.

Modified BNF Syntax
The main extension to regular bnf syntax is the following:

[[X]] An expression of this form describes that a list X is to be spliced into the
surrounding list and that its elements can appear in any order.
X must be of the following form:

X1 | ... | Xn Each element Xi can have the form Y, Y* or {Y}1.
The expression [[X]], thus, means that a list of the form

(Xi1 ... Xin) 1 ≤ 𝑛 is spliced into the surrounding expression, such that if 𝑗 ≠
𝑘 and 1 ≤ 𝑗, 𝑘 ≤ 𝑛, then either Xij ≠ Xik or Xij = Xik = Xv, where for
some 𝑣, 1 ≤ 𝑣 ≤ 𝑘, Xv has the form Xv*. This means an element is only
allowed to appear more than once if it has the form Xv*. Additionally, an
element Xij must appear if it has the form {Xv}1.

[[X]]+ This notation adds the additional restriction that at least one of the ele-
ments in X must be used.

For example, the expression

(x [[A | B* | {C}1]] y)

means that at most one A may appear in the resulting list, any number of B’s and
exactly one C. The following are valid applications of this bnf rule:

(x C y)
(x A C y)
(x C A y)
(x B C y)
(x C B y)
(x A B C y)
(x B A C y)
(x B C A y)
(x C B A y)
(x C A B y)
(x A B B C y)



Appendix B

prism-gen Programming
Interfaces

Charge Storage Nodes
A charge storage node node provides the following programming interface:

𝑉node → V_node

𝐶node → C_node (capacitive nodes only)

𝐷node →
⎧{
⎨{⎩

node_i (voltage sources)

node_chrg (dirac and integrator nodes)

Bool(node) → node_d

Δ𝐷node → (represented via update value 𝐷′
node)

𝐷node → node_next (new value after state update)

𝑉node → V_node_next (dto.)

stablenode → stable_node

Charge Transport Nodes
There is no common interface to the internal of charge transport nodes. Parametri-
sation is usually done on a device level where the device in question is a single
object that understands the documented set of parameters. Nevertheless, each
device provides a set of connection points that are inherent to the context of the
device. The rfet-node transistor has a different set of connectors, named after
the gates and channel contacts, than a simple resistor. So, their interfaces can be
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looked up in the corresponding sections in Chapter 4 or the program documenta-
tion that comes with prism-gen.
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Terms & Abbreviations

(n)and

(n)or

3-min 3-input minority

3-xor 3-input exclusive or

Finfet

NoC network on chip

alu arithmetic logical unit

and

asic application-specific integrated circuit

bnf Backus Naur Form

cca conditional carry adder

cg control gate

cgra coarse-grain reconfigurable architecture

clb configurable logic block

cmos complementary metal-oxide semiconductor

cpld complex programmable logic device

cpu central processing unit

csv comma-separated values
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ctl computation tree logic

ctl∗

dfe dynamic function exchange

dnf

dpr dynamic partial reconfiguration

dse design space exploration

dsl domain-specific language

dtmc discrete-time Markov chain

eda electronic design automation

epfl École polytechnique fédérale de Lausanne

fdsoi fully-depleted silicon on insulator

fem finite element method

fet field-effect transistor

fpga field-programmable logic array

genw germanium nanowire

inv

invz

ip core intellectual property core

ltl linear time logic

lut lookup table

maj

mdp Markov decision process

migfet multiple independent gate field-effect transistor

min

mos metal-oxide semiconductor
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mosfet metal-oxide semiconductor field-effect transistor

mux multiplexer

nand

nfet n-channel field-effect transistor

nmos

nmux inverting multiplexer

nor

or

pal programmable array logic

pcg polarity control gate

pctl∗

pdk process design kit

pfet p-channel field-effect transistor

pla programmable logic array

pld programmable logic device

pmc probabilistic model checking

pmos

prism PRISM Model checker

prom

rfet reconfigurable field-effect transistor

rtl register transfer level .

sb Schottky barrier

sinw silicon nanowire

spice simulation program with integrated circuit emphasis

sram static random access memory
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tcad technology computer-aided design

tigfet three independent gate field-effect transistor

trl technology readiness level

vhdl very large-scale integrated circuit hardware description language

vlsi very large-scale integrated

x(n)or

xnor equivalence

xor antivalence


	Introduction
	Emerging Reconfigurable Transistor Technology
	Testing and Standard Cell Characterisation
	Research Questions
	Design Space Exploration and Quantitative Analysis
	Contribution

	Fundamental Reconfigurable Circuits
	Reconfiguration Redefined
	Common Understanding of Reconfiguration
	Reconfiguration is Computation

	Reconfigurable Transistor
	Device geometry
	Electrical properties

	Fundamental Circuits

	Combinational Circuits and Higher-Order Functions
	Programmable Logic Cells
	Critical Path Delay Estimation using Logical Effort Method
	Multi-Functional Circuits

	Improved Conditional Carry Adder

	Constructive DSE for Standard Cells Using MC
	Principle Operation of Model Checking
	Model Types
	Query Types

	Overview and Workflow
	Experiment setup
	Quantitative Analysis and Results

	Transistor Circuit Model
	Direct Logic Network Model
	Charge Transport Network Model
	Transistor Model
	Queries for Quantitative Analysis

	Circuit Variant Generation
	Function Expansion


	Quantitative Analysis of Standard Cells
	Analysis of 3-Input Minority Logic Gate
	Circuit Variants
	Worst-Case Analysis

	Analysis of 3-Input Exclusive OR Gate
	Worst-Case Analysis
	Functional Verification
	Probabilistic Analysis


	Conclusion and Future Work
	Future Work

	Notational conventions
	prism-gen Programming Interfaces
	Bibliography
	Terms & Abbreviations

