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Abstract—Autonomous systems are highly vulnerable to a
variety of adversarial attacks on Deep Neural Networks (DNNs).
Training-free model-agnostic defenses have recently gained pop-
ularity due to their speed, ease of deployment, and ability to

— work across many DNNs. To this end, a new technique has
A emerged for mitigating attacks on image classification DNNs,
=) namely, preprocessing adversarial images using super resolution
N upscaling low-quality inputs into high-resolution images. This
defense requires running both image classifiers and super resolu-
tion models on constrained autonomous systems. However, super
resolution incurs a heavy computational cost. Therefore, in this
D paper, we investigate the following question: Does the robustness
of image classifiers suffer if we use tiny super resolution models?
To answer this, we first review a recent work called Super-
Efficient Super Resolution (SESR) [1]] that achieves similar or
better image quality than prior art while requiring 2 x to 330 X
" 'fewer Multiply-Accumulate (MAC) operations. We demonstrate
> that despite being orders of magnitude smaller than existing
== models, SESR achieves the same level of robustness as significantly
larger networks. Finally, we estimate end-to-end performance of
super resolution-based defenses on a commercial Arm Ethos-U55
micro-NPU. Our findings show that SESR achieves nearly 3X
o higher FPS than a baseline while achieving similar robustness.

Index Terms—Super-Efficient Super Resolution, Hardware-

| Efficient Adversarial Defense, Gray-box attacks, Deep Networks

1. INTRODUCTION

With the rise of autonomous systems, there is now an
incredible demand for robust deep learning at the edge. Current
= autonomous systems are highly resource-constrained and need

to maintain high performance under strict energy consumption
constraints. To improve robustness, many state-of-the-art de-

(\] fense techniques rely on adversarial training (or robust train-
*" ing) which comes at a heavy computational cost. Specifically,
. 2 adversarial training can take up to ten times the normal forward
>< and backward pass steps compared to a conventional training
B method [2]]. Furthermore, adversarial training may not even be
possible in a practical system if the model is being deployed on
a given hardware by a third party and they cannot perform any
training (say, due to a lack of access to the third party model’s
internal parameters/structure or datasets/adversarial samples
due to privacy or regulatory concerns or even lack of exper-
tise) [3[|-[5]. Hence, training-free adversarial defense mecha-
nisms have gained equal importance in the recent years [J3]], [6]—
[9l. These techniques are particularly important in autonomous
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systems that deploy a large number of DNNs and it may
not be possible to defend all of them effectively via robust
training. Therefore, a model-agnostic, fast, training-free defense
of modern inference pipelines is highly important.

For this model-agnostic training-free adversarial defense, it
has been recently proposed that image Super Resolution (SR)
can significantly improve the robustness of deep networks [3].
Specifically, Mustafa et al. [3] provide a comprehensive study
where pretrained models such as Enhanced Deep Super Res-
olution (EDSR) networks [10] and denoising methods such as
wavelet denoising are used as preprocessing steps to defend
against adversarial attacks. The main idea behind this approach
is that since SR models are trained to output images on the
natural image manifold, they can bring off-the-manifold images
(e.g., those perturbed due to attacks) back to the natural image
manifold by introducing high-frequency feature details into
the image. Note that, this training-free model-agnostic defense
works in the gray-box settings [3]], [[11]], where the classification
model under attack is fully known to the adversary, but the
defense method is unknown. We will assume the same gray-
box attack settings in this work. Practically, this is a reasonable
assumption since even if attackers have access to the classifi-
cation models, the SR network may not be accessible to them
(particularly if the models are being deployed on a specific
hardware by a third party).

To this end, it has been shown that models like EDSR are
highly successful at this defense [3|]. However, with nearly
42M parameters, EDSR-like methods are completely infeasible
for constrained autonomous systems. Hence, in this paper, we
address the following key question: Does the robustness of SR-
based training-free defense methods suffer if we use extremely
tiny SR models that are suitable for deployment on resource-
constrained devices? To answer this, we first review a recent
network called Super-Efficient Super Resolution (SESR) [1]]
that achieves state-of-the-art results in hardware-efficient SR.
SESR has been demonstrated to achieve similar or better image
quality (in terms of PSNR) than existing SR methods while
using 2x-330x fewer Multiply-Accumulate (MAC) operations.
We then explore how the robustness of classification methods
changes as a function of the computational complexity of SR
models. Overall, we make the following key contributions:

o« We discover that tiny SR networks such as SESR [l
or other tiny publicly available networks such as FSR-
CNN [12] can result in nearly as much robustness as



large networks like EDSR-base or EDSR [10] against a
variety of adversarial attacks. SESR models are two or-
ders of magnitude smaller than methods like EDSR-base,
thus making training-free adversarial defense mechanisms
feasible for highly resource constrained devices. We show
improvements of up to 6x in MACs over FSRCNN with
similar robustness accuracy.

« We demonstrate concrete latency improvements for SESR-
based training-free defense by using performance esti-
mators for commercial micro-Neural Processing Units
(micro-NPUgs, i.e., microcontroller-scale Al accelerators)
such as Arm Ethos-U55 which can accompany Arm
Cortex-M (microcontroller-based) systems. Our results
show that end-to-end latency (i.e., combined classification
and SR) for SESR improves by up to 3x compared to
FSRCNN on Ethos-U55.

The rest of the paper is organized as follows: Section
describes the related work. Next, Section first explains the
SR-based training-free adversarial defense pipeline for DNN
inference and then reviews the SESR model structure and
its training methodology. Extensive empirical results are then
presented in Section Finally, after some discussion on open
problems in Section |V] the paper is concluded in Section

II. RELATED WORK

One of the most successful defense methods is adversarial
or robust training, which, unlike other defense measures, tries
to improve the fundamental robustness of deep networks.
Adversarial training does this by supplementing training data
with adversarial instances in each training loop. As a result,
when confronted with attacked examples, adversarially-trained
models are more robust than conventional models. In recent
years, numerous research efforts have been devoted to exploring
mechanisms that directly or implicitly address robustness in
deep learning by either adding adversarial examples to the
dataset or incorporating them into the objective function for
optimization [13]], [14]. The prominent attacks on machine
learning models that we focus on in this work rely on the
gradient of the model to estimate the local optima perturba-
tions that will deceive the classifier. In addition to adversarial
training, a body of research focusing on robust optimization
investigates the use of regularization algorithms to limit the
impact of tiny perturbations in the input on output decisions.
This stream of works [15]], [[16] applies a regularization penalty
to the functional loss in order to lessen the network’s sensitivity
to small perturbations in the inputs.

The above model-specific techniques frequently result in
deep learning models with reduced generalization capacity.
Despite substantial attempts, robust training has not completely
overcome the sensitivity of deep learning models to attacks.
Furthermore, adversarially trained or regularized models that
are resistant to a certain attack can be easily defeated by other
types of attacks. Hence, the dependability of these model-
specific techniques suffers greatly as a result of this type of poor
generalization to different attacks. As a result, training-free
model-agnostic defense mechanisms that can defend against

adversarial attacks without knowing the target model’s archi-
tecture or parameters have emerged as a promising approach
for real-world deployment.

In comparison to model-specific defense mechanisms,
model-agnostic methods use input transformations to remove
adversarial perturbations before feeding them into neural net-
work classifiers. A number of input transformation methods,
such as image cropping-rescaling, bit-depth reduction, JPEG
compression [8]], total variance minimization, and image quilt-
ing, or a combination of these methods, have been proposed
in the literature to suppress the human-imperceptible, high-
frequency noise components and improve the model’s robust-
ness. In [11], a combination of total variation minimization
and image quilting is used to defend against strong attacks.
[7] deflects attention by carefully altering less crucial image
pixels, where they randomly sample a pixel from an image, and
replace it with another randomly selected pixel from within a
small square neighborhood. Denoising in the wavelet domain
has been demonstrated to outperform other approaches such
as total variation minimization [3], [[7]. [6] performs image
alterations by padding an image and taking multiple random
crops before sending the ensembles through a CNN classifier.

The biggest obstacle facing most transformation-based de-
fenses is that the transformation degrades the quality of non-
adversarial images, leading to a loss of accuracy. This has
hampered the effectiveness of transformations as a practical
defense, as even those that are good at removing adversarial
transformations fail to keep the model accurate on clean images.
Although previous image transformation techniques introduced
artifacts while countering adversarial noise, the recently pro-
posed SR-based image transformation scheme [3|] demonstrates
the potential to preserve critical image content while having a
minimal impact on the classifier’s performance on clean, non-
attacked images. However, the high computational complexity
and significant runtime cost of the high-end SR models utilized
in [3] makes them unsuitable for defense against adversarial
attacks on resource-constrained devices. To this end, our work
is the first to show the true capability of tiny SR networks
in successfully defending CNN classifiers and maintaining
robustness comparable to that of high-end SR models.

III. APPROACH

In this section, we first describe the main idea behind SR-
based adversarial defense [3] and the precise problem we
address in this paper. Then, we review a recent development in
efficient SR methods, namely, the SESR network [1].

A. Adversarial Defense using Super Resolution

When adversarial perturbations are added to the images,
they are moved out of the natural image manifold [3]. As
a result, such adversarial images are easily misclassified by
the downstream classification models. On the other hand, SR
networks are trained to take a low-resolution input and generate
a high-resolution output image. The typical loss functions
used to train SR are Mean Absolute Error (MAE) [10]], Mean
Squared Error (MSE) [[12f], or even some advanced methods like
Generative Adversarial Networks (GANs) [[17]. The MAE/MSE
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Fig. 1. Overview of the approach: (a) As explained in [3]], adversarial attacks move the images out of the natural image manifold. However, performing SR
on the attacked images adds important information back into the image, thereby moving it back into the natural image manifold. Therefore, conducting SR on
attacked images can improve adversarial robustness in the gray-box settings. (b) The defense mechanism used in this paper for analysis of various SR networks.
(c) Structure of prior SR methods like EDSR-base [10], EDSR [10], and FSRCNN [[12].

loss functions try to minimize the error between the network’s
output and high-resolution training images. Hence, the SR
networks learn to output images on the natural image manifold.
Therefore, when adversarial images are passed through a SR
model, they are mapped back to the natural image manifold.
This is illustrated in Fig. Eka) and, as explored in [3], is the
main idea behind SR-based defense against gray-box attacks.
Inspired by [3], we study the SR-based adversarial de-
fense from a computational cost standpoint which is important
to practically deploy this defense mechanism on resource-
constrained autonomous systems. Specifically, we show our de-
fense method in Fig. Ekb). We start with JPEG compression []]
and wavelet denoising [J3]], [7] of the input images. Then, we
perform x2 SR on the denoised, compressed images. Finally,
the upscaled images are passed through the classification net-
work. Note that, this is a training-free defense method: Neither
the super resolution method nor the classification networks
need to be adversarially trained. This is why the defense
works for gray-box attacks where the classification network
is fully known to the attackers but the SR network is unknown.
Therefore, they cannot pass the gradient through the SR model
to craft fully-white-box adversarial images. Gray-box attacks
are known to be more difficult than black-box attacks [11]].
So far, the prior work does not focus on the computa-
tional efficiency of SR-based defense of inference pipelines.
Specifically, Mustafa et al. [3] have used large models like
EDSR [10]] to evaluate robustness. The structure of EDSR-
base and the complete EDSR network is shown in Fig. [Tfc, top,
center). As evident, the EDSR network has more than 64 layers,
most of them containing 256 channels. This results in nearly
42M parameters. Such SR networks are prohibitively expensive
and cannot be deployed on resource-constrained edge devices.
Therefore, in this paper, we address the following problem:
Does the SR-based adversarial defense remain effective if we
use extremely small SR networks that can be deployed on
constrained autonomous system hardware? Hence, we explore
the use of tiny SR networks for this gray-box defense. One such

tiny SR network called FSRCNN [[12] is shown in Fig. [T[c).
FSRCNN is a small VGG-style network (i.e., no residual
connections). Compared to EDSR, FSRCNN only uses 24.3K
parameters and is orders of magnitude more efficient. In the
next section, we will describe another method called SESR [1]]
which is even more efficient than FSRCNN.

B. Super-Efficient Super Resolution (SESR)

The SESR network [1] exploits linear overparameteriza-
tion [18], [19] to achieve state-of-the-art results in efficient
SR. The idea is to train a very large network that can be
analytically collapsed into a very efficient inference network.
This is possible because SESR relies on Collapsible Linear
Blocks which first expand the number of channels from f; to
p (p >> f;) using a k x k convolution, and then project it
back to f, channels using a 1 x 1 convolution (p >> f,). If
the number of input channels (f;) and output channels (f,) are
equal, the inputs are added to the output via a short-residual.
The key property of a Collapsible Linear Block is that it does
not contain any non-linear activation functions. Hence, they can
be analytically collapsed into a single kx k x f; x f, convolution
(i.e., the expansion stage disappears and the resulting layer
is highly efficient). Likewise, the short-residual can also be
collapsed into the convolution weights (see [1]] for details).

Thus, the large network shown in Fig. 2fa) collapses into the
hardware-efficient network shown in Fig. 2{b). The inference-
time network resembles a VGG-style network like FSRCNN
except that it also has two long-residuals. The small SESR
networks that contain merely f; = f, = 16 channels at interme-
diate layers are named as SESR-M{m}, where m € {2,3,5} is
the number of 3 x 3 layers in the inference network. Meanwhile,
a larger network called SESR-XL contains 32 intermediate
channels and eleven 3 x 3 layers. Overall, SESR methods
achieve state-of-the-art results in efficient SR with nearly 2X-
330X reduction in MACs over prior art with similar or better
PSNR. This allows SESR to achieve real-time (up to 36-
46FPS) when performing extremely expensive [1080p to 4K]
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Fig. 2. Super-Efficient Super Resolution (SESR) network [1]]. At training time,
a large network shown in (a) is trained that can be analytically collapsed into
a highly efficient network shown in (b). SESR achieves state-of-the-art results.

SR task on a tiny mobile-NPU (e.g., Arm Ethos-N78 NPU
suitable for deployment in mobile devices like phones, TVs,
displays, etc.) [1]. In addition to hardware-efficiency, the use
of collapsible linear blocks has advantages in deep learning
optimization properties (see [1f], [19] for details). Next, we
propose to use these tiny SESR networks and analyze their
impact on adversarial robustness in gray-box attack settings.

IV. EXPERIMENTAL SETUP AND RESULTS
A. Experimental Setup

Baseline classifiers and datasets. We produce adversarial
images by attacking three different classifiers: MobileNet-V2,
ResNet-50, and Inception-V3. We evaluate and compare differ-
ent SR-based defense mechanisms for these three classifiers.
All experiments are carried out on a subset of 5000 images
from the ImageNet (ILSVRC) validation set. For each classifier,
the 5000 images are chosen such that the corresponding model
achieves a top-1 accuracy of 100% on the clean, non-attacked
images since it is not useful to evaluate defense mechanisms
on images that have already been misclassified.

Adversarial attacks. Throughout this paper, we use
four standard attack techniques: Fast Gradient Sign Method
(FGSM) [20], Projected Gradient Descent (PGD) [21f], Auto-
PGD (APGD) [22], and Diverse Input Iterative FGSM
(DI’FGSM) [23]]. These methods are implemented using pub-
licly available codeF_] provided by [24]. We use ¢ = 8/255 for
all attacks. Adversarial images are passed through the defense
method shown in Fig. [T(b) within a gray-box setting.

Defense mechanisms. We compare our proposed SESR-
based defense technique against a number of image upscaling-
based methods. Specifically, we investigate two major types
of image upscaling techniques: interpolation-based methods
and deep learning-based methods. While interpolation-based
methods, such as Nearest Neighbor, have a low computational
complexity, they achieve poor image quality. Deep learning-
based SR techniques, on the other hand, have been shown to
significantly outperform interpolation-based methods in terms
of PSNR. We compare the performance of SESR-based defense

Uhttps://github.com/Harry24k/adversarial-attacks-pytorch

TABLE I
PSNR RESULTS (IN RGB COLORSPACE) FOR SR METHODS

Model Parameters | MACs | PSNR (x2 SR, DIV2K)
FSRCNN [12] 243K 5.82B 32.92
EDSR-base [10] 1.19M 106B 34.62
EDSR [10] 42M 3400B 35.03
SESR-M2 |[1] 10.6K 0.948B 33.26
SESR-M3 [1] 12.9K 1.154B 33.44
SESR-MS5 [1]] 17.5K 1.566B 33.64
SESR-XL [[1] 113.3K 10.13B 34.14

to that of recently proposed state-of-the-art deep learning-based
SR techniques such as EDSR and FSRCNN in protecting
against adversarial attacks. Of note, the SR networks upscale
the input image from 299 x 299 to 598 x 598. The classification
models then operate on this large 598 x 598 image.

B. PSNR Results for SR methods

We start by training the various SR networks on the DIV2K
dataset with x2 scale. Note that, since classification methods
require input in RGB colorspace, we trained our SESR net-
works as well as EDSR and FSRCNN directly in RGB] Table [l
shows the PSNR results for different methods on the DIV2K
validation set. Here, MACs are for upscaling 299 x 299 images
to 598 x 598. Clearly, SESR-M2 outperforms FSRCNN with 6 x
fewer MACs. For larger networks, SESR-XL achieves nearly
0.5dB less PSNR but with nearly 10x fewer MACs. In the
next section, we evaluate how these different compute cost vs.
image quality tradeoffs affect adversarial robustness.

C. Robustness Results

Table [l shows the robustness of three classification networks
(MobileNet-V2 [25], ResNet-50 [26], and Inception-V3 [27])
to various gray-box attacks when the images are upscaled
using Nearest Neighbor interpolation and SR networks shown
in Table Il Note that, before the images are upscaled (using
either deep learning based SR or Nearest Neighbor), they pass
through JPEG compression and wavelet denoising stages. From
the results, three observations are clear:

1) Tiny networks like FSRCNN [12] and SESR []1]] result in
more or less the same amount of adversarial robustness
as extremely large EDSR-base and EDSR [10] models.

2) Against gray-box attacks, compact networks such as
MobileNet-V2 are far less robust compared to larger
CNNss like ResNet-50 and Inception-V3. For instance, the
best accuracy achieved by MobileNet-V2 is about 44%
against the APGD attack, whereas ResNet-50 (Inception-
V3) achieves up to 52% (72%) against the same attack.

3) It is easy to think that if smaller SR networks perform
very well against gray-box attacks, can we just use
traditional upscaling instead of deep learning-based SR?
The answer to this question is: No, we still need deep

2MACs and number of parameters for SESR and FSRCNN in our work are
different from those reported in [1f], [12]]. The reason is that [1]], [12] perform
SR on Y (luma)-channel only after converting the RGB image into Y-Cb-Cr
colorspace. Throughout this paper, we will work directly with RGB.
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TABLE II
ACCURACY RESULTS FOR VARIOUS CLASSIFICATION AND SUPER RESOLUTION NETWORKS ACROSS DIFFERENT ADVERSARIAL ATTACKS

[ Classification Network [ SR method | Parameters | MACs [ FGSM [20] | PGD [21] | APGD [22] | DI’FGSM [23] |
No Defense — 3.42 6.01 30.8 0.02
Nearest Neighbor — — 10.07 15.91 21.06 6.47
EDSR-base [10] 1.19M 106B 17.46 33.37 41.77 13.14
EDSR [10] 42M 3400B 17.00 32.49 40.27 13.14
MobileNet-V2 [25] FSRCNN [12] 24.336K 5.82B 19.83 35.02 43.98 13.66
SESR-M2 [1]] 10.608K 0.948B 19.61 34.72 43.84 13.8
SESR-M3 [1]] 12912K | 1.154B 1933 3454 4344 13.94
SESR-MS5 [1]] 17.520K 1.566B 19.15 34,76 43.3 13.94
SESR-XL [[1] 113.3K 10.13B 18.36 33.65 42.39 13.46
No Defense - 852 17.07 22.85 0.22
Nearest Neighbor — — 19.96 31.48 32.65 20.68
EDSR-base [10] 1.19M 106B 31.66 48.66 50.56 30.48
EDSR [10] OM 3400B 31.06 46.43 49.08 30.5
ResNet-50 [26] FSRCNN [12] 24.336K 5.82B 32.65 49.8 51.76 31.24
SESR-M2 [1] 10.608K 0.948B 32.34 49.66 51.82 31.24
SESR-M3 [1]] 12912K | 1.154B 31.96 49.46 51.74 31.38
SESR-MS5 [1]] 17.520K 1.566B 32.2 49.64 51.82 31.2
SESR-XL [1] 113.3K 10.13B 31.92 48.96 51.24 30.48
No Defense — 25.89 10.24 11.42 0.52
Nearest Neighbor — — 58.22 69.15 71.75 51.6
EDSR-base [10] 1.19M 106B 60.22 69.55 7217 5492
EDSR [10] DM 3400B 60.12 69.57 72.49 55.38
Inception-V3 [27]] FSRCNN [12] 24.336K 5.82B 60.12 69.93 71.97 54.24
SESR-M2 [1]] 10.608K 0.948B 60.1 69.49 72.35 54.56
SESR-M3 [1]] 12.912K 1.154B 60.08 69.57 72.15 54.6
SESR-M5 4] 17.520K 1.566B 60.26 69.83 72.33 54.84
SESR-XL [1]] 113.3K 10.13B 60.16 69.47 72.35 55.04
learning-based SR models to achieve some degree of TABLE III
defense. This is particularly true for compact networks ROBUSTNESS RESULTS: NO-JPEG vs. JPEG
like MobileNet-V2 (and also for ResNet-50), where a
large gap exists in robust accuracy between the Nearest [ NoJPEG PEG |
Neighbor and SR models. Interestingly, Inception-V3 isa | Classification SR [ PGD | APGD || PGD | APGD |
very robust CNN that recovers robust accuracy even with EDSR-base [10] | 45.92 | 48.15 || 48.66 | 50.56
Nearest Neighbor upscaling (with JPEG + Wavelet). : EDSR [10] | 46.67 | 49.09 || 46.43 | 49.08
) ) ResNet-50 [26] FSRCNN [12] 4671 | 43.87 498 | 51.76
Hence, the proposed SESR-based adversarial defense is SESR-M2 [I] 4494 | 4691 || 49.66 | 51.82
quite effective against gray-box attacks even though it requires SESR-XL (1] [ 4446 | 46.04 || 4896 | 5124
significantly fewer computational and memory resources EDSR-base [10] | 67.37 | 67.39 || 69.55 | 72.17
g y p y : EDSR [10 6743 | 6795 || 69.57 | 72.49
Inception-V3 [27] [TFSRCNN [12] 6639 | 66.71 || 69.93 | 71.97
D. Effect of JPEG SESR-M2 (1] | 6681 | 6685 || 6949 | 7235
Next, as a quick ablation study, we also analyze the impact of SESR-XL [1} 67.23 | 67.27 || 6947 | 72.35

JPEG compression on adversarial robustness when it is used in
conjunction with SR and wavelet denoising. As demonstrated in
Table JPEG in conjunction with SR and wavelet denoising
consistently outperforms just SR and wavelet denoising. Hence,
JPEG provides an additional layer of robustness.

E. Latency on Arm Ethos-U55 micro-NPU

Finally, we quantify the concrete latency improvements ob-
tained by using SESR for adversarial defense on a commer-
cial micro-NPU called Arm Ethos-U55. Since Ethos-US55 is
a very small NPU (0.5 TOP/s) that is meant to accompany
highly resource constrained microcontrollers like Arm Cortex-
M-based systems, we have used only the MobileNet-V2 net-
work for classification. As mentioned earlier, in the defense
setting considered, the MobileNet-V2 network does not take
the traditional 224 x 224 image (which requires about 300M
MACS), but instead takes an upscaled 598 x 598 image. The

upscaled image increases the MAC count for MobileNet-V2
from 300M to nearly 2.1B MACs. However, from Table |I, we
can see that traditional SR methods like FSRCNN take 5.82B
MAC:s to upscale an image from 299 x 299 to 598 x 598, which
is significantly higher than even the enlarged MobileNet-V2.
This further highlights the importance of SESR models that
significantly reduce the compute cost over other SR networks.

Table shows the inference latencie of the enlarged
MobileNet-V2 and various SR networks. Clearly, in end-to-
end latency (i.e., combined classification + SR), SESR-M2
significantly outperforms FSRCNN by achieving nearly 3x
higher FPS and about the same robust accuracy. Hence, SESR

3The performance estimator for Arm Ethos-U55 micro-NPU is publicly
available at https://git.mlplatform.org/ml/ethos-u/ethos-u-vela.git/about/.
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TABLE IV
LATENCY ON ARM ETHOS-U55: ENLARGED MOBILENET-V2 + SR

SR Model Classification SR Total FPS
Latency (ms) | Latency (ms) | Latency (ms)
FSRCNN [12] 143.73 189.91 5.26
SESR-M5 [IC 46.18 26.76 72.94 13.70
SESR-M3 [1] ’ 22.38 68.56 14.58
SESR-M2 [1] 20.19 66.37 15.06

networks enable a highly efficient defense against gray-box
attacks on a tiny microcontroller-scale micro-NPU.

V. OPEN CHALLENGES

Based on our analysis, we highlight the following open chal-
lenges in SR-based gray-box adversarial defense, particularly
for constrained autonomous systems:

o For gray-box attacks, compact models like MobileNet-V2
are still significantly less robust than other networks such
as ResNet-50 and Inception-V3. Hence, better methods are
needed to make the compact networks more robust.

e Can we build even smaller SR networks that result in
higher robustness? Specifically, while robust accuracy
stays more or less the same for most SR networks, it falls
significantly for cheap interpolation techniques (especially
for MobileNet-V2). Hence, further research is needed to
understand at what limit the upscaling-based defenses fail
and robustness starts to decrease significantly.

o Finally, certain classifiers seem to be more robust to
any upscaling technique (like Nearest Neighbor with
Inception-V3) than others. Therefore, more research is re-
quired to shed light on how SR and classification networks
work together to achieve robustness. This could be useful,
for example, in creating both efficient SR networks and
efficient classifiers for constrained autonomous systems.

Exploring the above challenges in future research can drive
significant progress in hardware-efficient SR-based defenses.

VI. CONCLUSION

In this paper, we have explored the computational effi-
ciency aspect of SR-based adversarial defense mechanisms.
Specifically, we have answered the question: Does robustness
suffer if we use highly efficient SR networks in the inference
pipeline? To this end, we have exploited SESR networks — that
achieve the state-of-the-art in efficient SR — to defend various
classifiers against adversarial attacks. Our detailed experiments
have demonstrated that tiny SR networks like FSRCNN or
SESR achieve as much robustness as extremely large CNNs
like EDSR. We have also shown that SESR achieves up to
3x improvement in end-to-end latency compared to FSRCNN
when performing the SR-based adversarial defense on com-
mercial micro-NPUs like the Arm Ethos-U55. Thus, SESR
networks make SR-based defense more realistic on tiny micro-
NPUs. Being able to defend inference pipelines in such highly
resource-limited scenarios is extremely important for modern
hardware-constrained autonomous systems.
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