
DEPARTMENT OF ELECTRICAL AND COMPUTER
ENGINEERING

CHAIR OF ELECTRONIC DESIGN AUTOMATION

TECHNISCHE UNIVERSITÄT MÜNCHEN

Contamination-Free Switch Design and
Synthesis for Microfluidic Large-Scale

Integration

Duan Shen

DEPARTMENT OF ELECTRICAL AND COMPUTER
ENGINEERING

CHAIR OF ELECTRONIC DESIGN AUTOMATION

TECHNISCHE UNIVERSITÄT MÜNCHEN

Contamination-Free Switch Design and
Synthesis for Microfluidic Large-Scale

Integration

Master Thesis

Author: Duan Shen
Supervisor: Dr. -Ing. Tsun-Ming Tseng
Supervising Professor: Prof. Dr. -Ing. Ulf Schlichtmann
Submission Date: June 05 2021

I confirm that this is my own work and I have documented all sources and material used.

Munich, June 05 2021 Duan Shen

Acknowledgments

First of all, I would like to thank my supervisor Dr. Tsun-Ming Tseng for his constant
advice about my thesis, his mental support, encouragement and trust in my abilities.

Secondly, I would like to express my gratitude to Prof. Ulf Schlichtmann for the opportunity
to make my thesis at Chair of Electronic Design Automation. I also want to thank my advisor
Zhidan for her helps in building the Gurobi models and using the remote server.

Most importantly, I would not have been able to afford to undertake this endeavour without
the support by my parents and my friends.

Abstract

Continuous-flow microfluidic large-scale integration (mLSI) biochips have rapidly been
developed and widely been used in recent decades. The gap between design efficiency
and application complexity leads to a growing interest in mLSI design automation. State-
of-the-art in design automation for continuous-flow microfluidics focuses on simultaneous
co-optimization of both flow and control layers but neglects the potential contamination
between flows. Functioning as the fluid router, microfluidic switches are likely among the
most polluted modules since they locate at the intersection of flow channels. State-of-the-art
tools design the switches as a spine with junctions, which makes the spine prone to fluid
pollution.This thesis proposes an 8-pin, a 12-pin and a 16-pin reconfigurable microfluidic
switch designs. I propose a synthesis method to produce application-specific switches reduced
from the proposed switch designs. This thesis also proposes a scheduling and binding method
to determine the contamination-free fluid routing paths on the switch. The proposed method
groups the fluid flows that can be routed through the switch in parallel, and minimizes the
number of fluid flow groups to minimize the time spent on fluid routing tasks. To save control
resources, pressure sharing is considered among valves within the switch. The problem
is solved with integer quadratic programming (IQP). Experimental results show that the
application-specific switch designs synthesized by the proposed method are always able to
avoid fluid contamination.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Switch Model 4
2.1 Switch Module of Microfluidics . 4
2.2 General Switch Structure . 6
2.3 Problem Formulation . 12

3 Mathematical model 13
3.1 Path Assignment For Flows . 13
3.2 Fluid Contamination Avoidance . 13
3.3 Flow Scheduling . 14
3.4 Binding Policies . 16
3.5 Pressure Sharing . 17

4 Result 20
4.1 Contamination Avoidance . 20
4.2 Flow Scheduling . 22
4.3 Binding Policies . 23

5 Discussion 29

6 Conclusion 30

List of Figures 31

List of Tables 33

Glossary 34

v

Contents

Acronyms 35

Bibliography 36

vi

1 Introduction

Microfluidics is the technology that precisely manipulates reagent fluids at a nanoliter-scale or
below. Continuous-flow microfluidic large-scale integration (mLSI) refers to the technology of
microfluidic chips containing a large number of micro-mechanical valves and control compo-
nents, enabling hundreds of assays to be automatically performed on a single miniaturized
chip [1][2]. The common structure of an mLSI device is composed of two layers: a flow layer
and a control layer. As shown in Figure 1.1, valves are formed at the intersections of the
two layers [1]. By changing the pressure in the control channels through control inlets, the
state of valves lying between the control layer and the flow layer can be switched, which
enables the manipulation of fluids flowing on the flow layer. Since mLSI takes much less
experiment space and uses less amount of reagents, it can significantly save experiment
materials and time costs. Thanks to its convenient manipulation, high efficiency, spared
costs and accuracy, mLSI is applied in a wide range of applications in the fields of chemistry
and biology, such as polymerase chain reaction (PCR) [3], single cell mRNA isolation [4],
chromatin immunoprecipitation (ChIP) [5], nucleic acid processor [6], etc.

As microfluidic experiments become more complex, the number of components integrated
on the chip is increasing dramatically, which incapacitates the manual design as it would
be error prone and consume much more effort and time when dealing with a large assay.
Therefore, automated design tools for mLSI are highly needed to fit the growing design
complexity. So far, there has been significant effort devoted to design automation research
for mLSI. However, the focus has been placed on optimizing microfluidic layers separately,
neglecting the interactions between the two layers. This would result in a less global and
less practical solution. Recently, several attempts have been made to the physical co-design
of both layers. For example, Wang et al. proposed a placement algorithm to seamlessly
integrate the two interacting layers [7], and Tseng et al. proposed a design tool named
Columba, a top-down approach that applies a library of microfluidic components specifying
the interactions between two layers to simplify the co-layout design [8].

Despite these advances, there have been insufficient discussions to avoid fluid contamination
on mLSI biochips. This problem should be given much attention considering the following

1

1 Introduction

flow layer

control layer

flow channel

control channel

Figure 1.1: The valve structure.

facts: First, reagent fluids leave their residues when passing through the flow channels
[9]. Therefore, a subsequent fluid that is conflicting with the residues may be polluted
when routed through the same channel. Second, since the bioassays are manipulated with
significantly reduced amounts of fluids, the resultant concentration of contamination is
amplified, causing seriously erroneous outcomes and thus drastically reducing the accuracy.
Taking PCR as an example, as described in [9], if flows of different DNA samples go through
the same channel segment, the residual left by the former sample will pollute the later one,
leading to an unexpected experiment result. Third, fluids in an mLSI device tend to use
the same flow segment, especially within the microfluidic switches. In the current synthesis
tools for continuous-flow microfluidics, the switch is among the modules most likely to be
polluted. For example, in Columba [8], the switch is designed as a spine with junctions, which
leaves inadequate space for conflicting fluids to avoid forming overlapping transportation
paths. However, the previous literature either demonstrated a contamination-free method for
a specific bioassay [10] or introduced washing operations into the biochip design to clean up
the flow channels [9]. So far, there has been no attempt to solve this problem by optimizing
the switch module.

This thesis aims to propose a contamination-free switch design methodology for automation
synthesis tools of mLSI. The contributions include:

• This thesis proposes to synthesize a switch that avoids the fluid contamination. The
switch structure is designed reduced from a crossbar, providing more routing pos-
sibilities than a spine. The switch is given in three sizes, 8-pin, 12-pin and 16-pin,
to be applied to different sizes of switch inputs. It is configurable by removing the
unnecessary channels and valves.

• This thesis proposes a switch input scheduling method to efficiently arrange the flows
by grouping the flows that can simultaneously go through the switch. Each flow group
is executed at different time to prevent fluid collisions or undesired flow routing.

2

1 Introduction

• This thesis provides multiple binding policies between the flow pins and the connected
modules. The flow pins are connected to other modules that are serving as the sources
or the destinations of the flows. Different binding policies can increase the design
flexibility.

• This thesis provides pressure sharing as an optional feature. Since control inlets occupy
much more chip area compared to microfluidic channels, the number of control inlets is
strongly limited. In addition to removing the unnecessary valves, the pressure sharing
method minimizes the number of control inlets. This groups the valves that can share
the same pressure sequence, so that they are able to reuse the same control inlet. Yet
the control channel routing of pressure sharing lies beyond the scope of this thesis.

The proposed methods take flow inputs and contamination flow pairs as inputs, and synthe-
sizes the optimal design by solving an integer quadratic programming (IQP) model.

The rest of this paper is organized as follows. Section 2 introduces the switch of the prior
studies, describes the general structure, and formulates the problem model to be solved in this
thesis. Section 3 then explains the proposed methods in detail. Section 4 shows and analyzes
the results of multiple test cases. Section 5 discusses the results. A general conclusion is
summarized in Section 6.

3

2 Switch Model

This section first introduces the switch structure that is designed by other studies. Then the
general structure of the proposed switch is described. And the problem is formulated.

2.1 Switch Module of Microfluidics

200𝜇𝑚
𝑣2

𝑣2

𝑣3

𝑣3

𝑣
0

𝑣
1𝑝0

′ 𝑝1
′

𝑝2
′ 𝑝3

′𝑝0

𝑝1

𝑝2

𝑝3

𝑝4 𝑝5

𝑝6 𝑝7

𝑝8 𝑝9

𝑝10 𝑝11

…

…𝑝2
′ 𝑝4

′

spine

Figure 2.1: Spine-like switch structure in Columba [8].

Currently, there has been a new trend to design microfluidic synthesis tools in a top-down
methodology, which builds a library of microfluidic components to simplify the physical
synthesis [11]. Taking Columba [8][12][13] as an example, it is a top-down physical synthesis
tool for continuous-flow microfluidics that provides a library of module models, including
mixers, reaction chambers, etc. The module models precisely describe the inner module
structure as well as the layer interactions. Figure 2.1 shows the switch module model provided
by the module library of Columba, which draws the flow channels in blue, control channels in
green, and valves as orange rectangles. As presented, Columba designed the switch basically
as a spine with junctions, which cannot support contamination-free fluid transmissions as
discussed previously in Section 1.

4

2 Switch Model

(a)

(b)

Figure 2.2: Switch structures designed by a previous study[14]: (a) of one GRU. (b) of two
GRUs.

My colleage Ma has recently developed a microfluidic switch that attempted to avoid the

5

2 Switch Model

fluid contamination [14]. Her switch structure was inspired by a network flow model [15]
and it was constructed as General Routing Units (GRUs) which was proposed by Truppel
[16]. As shown in Figure 2.2 (a), the switch can be an 8-pin switch consisting of one GRU.
It can also be extended by connecting multiple GRUs. For example, Figure 2.2 (b) shows a
12-pin switch consisting of two GRUs. However, this design is suffering from considerable
design limitations. First, the structure provides insufficient routing space for contamination
avoidance. Each node is connected to two pins. Here I call those intersections of flow
segments as nodes, such as C, N, E, W and S. I call those flow channel ends that can be
connected by other modules as flow pins, such as TL, T, TR, R, BR, B, BL and L. It can be
observed from Figure 2.2 that the flow pins TL and T are connected to the same and only
node N. Problem occurs when two conflicting flows are from pin TL and T, passing by the
node N without other routing choices. Second, the lack of routing choice could also result in
a flow collision even though the collided flows do not cause contamination. For example, if
two flows are going from pin L and pin BL simultaneously, they would come across with
each other at the intersection node W. With the valves open for corresponding flows, these
flows might be routed into wrong flow channels. Third, the flow channels are placed too
close. For example, in one-GRU structure, the angle between the flow segments N-W and
W-C is about 45◦. Such closed channels could increase the possibility of reagent residual at
the turning nodes. Fourth, the control channels are placed too close, which does not meet
the standards. According to the design rule of Stanford Foundry [17], the minimum space
between channels should be 100µm. While, for instance in the one-GRU structure, the control
channels extending from pins p6 and p9 are beyond the standard.

2.2 General Switch Structure

To overcome the contamination problem, this thesis designs the switch module as a crossbar-
like structure, as presented in Figure 2.3 and Figure 2.4. After the physical synthesis, the
unused channel segments and valves will be removed to generate an application-specific
switch. The switch structure design follows the design rule of Stanford Foundry [17], which
defines the flow channel width and valve length to be 100µm, the valve channel width to be
300µm, and the minimum space between channels to be 100µm. As shown in Figure 2.3(a)(b)
and Figure 2.4, this thesis provides three sizes, 8-pin, 12-pin and 16-pin, for this switch, so
that this switch design is able to support different sizes of applications.

6

2 Switch Model

𝑝12

𝑣2 𝑣3

𝑣8

𝑣9 𝑣10
𝑣11

𝑣26
𝑣27 𝑣28

𝑣29

𝑣17

𝑣18
𝑣19

𝑣20

𝑣
7

𝑣
1
5

𝑣
2
5

𝑣
1
2

𝑣
2
1

𝑣
3
0

𝑣
4

𝑣
1
3

𝑣
2
2

𝑣
5

𝑣
6

𝑣
1
6

𝑣
2
4

𝑣34 𝑣35 𝑣36

𝑣
3
3

𝑣
3
2

𝑣
3
1

𝑣
2
3

𝑣
1
4

T1 T2𝑝0 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 T3𝑝9 𝑝10 𝑝11 𝑝13 𝑝14 𝑝15 𝑝16

𝑝17

𝑝18
𝑝19
𝑝20
𝑝21

𝑝23
𝑝24
𝑝25
𝑝26

R1

R2

𝑝22

R3

𝑝27
𝑝28

𝑝29
𝑝30
𝑝31
𝑝32
𝑝33

𝑝40𝑝42𝑝43𝑝44𝑝45𝑝46𝑝47𝑝48𝑝49 B2B1 B3𝑝50 𝑝41 𝑝35𝑝37𝑝38𝑝39 𝑝36 𝑝34

𝑝67
𝑝66
𝑝65
𝑝64

𝑝62
𝑝61
𝑝60
𝑝59

L1

𝑝63

L2

𝑝58

𝑝57

𝑝56
𝑝55
𝑝54
𝑝53
𝑝52

𝑝51

L3

𝑣1

N1 N2 N3 E1

W1 TL TR E2

W2 BL BR E3

W3 S1 S2 S3

𝑣1 𝑣2

𝑣7

𝑣6 𝑣8

𝑣14
𝑣15𝑣13

𝑣20

𝑣
3

𝑣
4

𝑣
5

𝑣
1
2

𝑣
9

𝑣
1
0

𝑣
1
1

𝑣
1
6

𝑣
1
7

𝑣
1
8

𝑣19

𝑝0 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8T1 T2

𝑝9

𝑝10
𝑝11
𝑝12
𝑝13

𝑝14
𝑝15
𝑝16
𝑝17

R1

R2

𝑝18𝑝19𝑝20𝑝21𝑝22𝑝23𝑝24𝑝25𝑝26 B2B1

𝑝27

𝑝28

𝑝29

𝑝30

𝑝31

𝑝32

𝑝33

𝑝34

𝑝35

L1

L2

T TRTL

BRBL B

RCL

(a)

(b)

Figure 2.3: Switch structures of the present thesis: (a) 8-pin. (b) 12-pin.

7

2 Switch Model

𝑣1

𝑣10

𝑣
5

𝑣2

𝑣11

𝑣
1
5

𝑣
1
6

𝑣22

𝑣21

𝑣
3
7

𝑣
3
8

𝑣44

𝑣53

𝑣43
𝑣
4
8

𝑣
4
9

𝑣
5
0

𝑣4

𝑣13
𝑣14

𝑣
9

𝑣
8

𝑣
1
9

𝑣
2
0

𝑣24

𝑣
7

𝑣
4
1

𝑣
4
2

𝑣47

𝑣56

𝑣
5
2

𝑣46

𝑣55

𝑣36

𝑣3

𝑣12

𝑣23

𝑣
1
7

𝑣
1
8

𝑣
4
0

𝑣
3
9

𝑣45

𝑣54

𝑣
2
6

𝑣
2
7

𝑣33

𝑣
5
1

𝑣32

𝑣
6

𝑣25
𝑣
2
9

𝑣
2
8

𝑣34

𝑣
3
1

𝑣
3
0

𝑣35

T1 T2 T3

R1

R2

R3

N1 N2 N3

C

T4

N4 E1

T TR E2

R E3

R4B BR E4

S2 S3 S4

B4B3B2B1

L4

L3

L2

L1

L

TL

BL

W2

W1

W3

S1W4

𝑝0 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14 𝑝15 𝑝16 𝑝17 𝑝18 𝑝19 𝑝20 𝑝21 𝑝22 𝑝23 𝑝24 𝑝25 𝑝26

𝑝27

𝑝28
𝑝29
𝑝30
𝑝31
𝑝32

𝑝33
𝑝34

𝑝35

𝑝36

𝑝37

𝑝38

𝑝39

𝑝40

𝑝41

𝑝43
𝑝44
𝑝45
𝑝46
𝑝47
𝑝48

𝑝42

𝑝49

𝑝50
𝑝51

𝑝52
𝑝53

𝑝76 𝑝75 𝑝74 𝑝73 𝑝72 𝑝71 𝑝70 𝑝69 𝑝68 𝑝59 𝑝58 𝑝57 𝑝56 𝑝55 𝑝54𝑝67 𝑝66 𝑝65 𝑝64 𝑝63 𝑝62 𝑝61 𝑝60𝑝80 𝑝79 𝑝78 𝑝77

𝑝107
𝑝106

𝑝105
𝑝104

𝑝103
𝑝102

𝑝100
𝑝99
𝑝98
𝑝97
𝑝96

𝑝101

𝑝95

𝑝94

𝑝92
𝑝91
𝑝90

𝑝93

𝑝89

𝑝88
𝑝87

𝑝86
𝑝85
𝑝84
𝑝83
𝑝82

𝑝81

Figure 2.4: Switch structure of the present thesis, 16-pin.

In the aspect of scalability, Columba S [13] has developed a feasible implementation. It
modified its module models to be accessed horizontally by flow channels and vertically by
control channels, and applies multiplexers for valve control. To be compatible to Columba S,
this work also draws the switch structure for the consideration of scalability, as presented in
Figure 2.5 and Figure 2.6.

Throughout this paper, the term pins will refer to the switch pins that connect to the

8

2 Switch Model

other modules by flow channels. The term nodes will refer to the intermediate nodes of
a switch in the flow layer. The term flow segments will refer to the flow channel edges
between nodes or between nodes and pins. For example, in the 8-pin switch, the pins are
T1, T2, R1, R2, B2, B1, L2, L1. The nodes are C, T, L, R, B. There are 20 flow segments in the
8-pin switch, such as T1-TL and TL-T. Also, each valve is designed to be accessed by at
least one control channel. Those valves with two possible connected control channels can be
accessed by either or both of the channels.

Moreover, the switch distributes its flow pins nearly evenly on the border, so that it can
be reached by the connected modules from all directions. The modules serve as the sources
or the destinations of the flows. They should have a one-to-one binding relation with the
flow pins. This thesis provides three different binding policies: fixed, clockwise and unfixed.
The fixed policy binds the connected modules strictly to specified flow pins according to
the input. This setting has the smallest problem space but also the least flexibility. The
clockwise policy binds the modules with the flow pins according to a user-defined order of
modules. The modules are sequentially assigned to the flow pins so that they are arranged in
clockwise direction around the switch. For example, modules A, B, C, D are the connecting
modules to an 8-pin-switch. The specified order is {A, B, C, D}. The available flow pins are
{T1, T2, R1, R2, B2, B1, L2, L1} in clockwise order around the switch. A clockwise policy may
bind the modules {A, B, C, D} to {T1, T2, R1, R2} respectively. It may also skip pins and
make the modules bind to {R1, B1, L1, T1} respectively. Same as most other module models,
the switch of this thesis is allowed to be rotated. This policy can be applicable to those design
tools, for instance Columba [8] [12] [13], which locate the modules before routing, while
leaving rotation space for the modules. These synthesis tools determine the relative location
order of the modules after the placement phase. The clockwise policy therefore takes the
order as input, and routes the modules to the flow pins, thus enabling a relatively more
flexible routing solution than the fixed policy. The unfixed policy does not assign the modules
to specific flow pins. This policy has the largest problem space and also the largest flexibility,
whereas it might require the synthesis tool to conduct the module placement afterwards. The
switch model is supposed to be able to support any application using the unfixed policy.

9

2 Switch Model

𝑣
1

𝑣
2

𝑣
8

𝑣
9

𝑣
1
1

𝑣
1
7

𝑣
2
6

𝑣
1
8

𝑣
2
0

𝑣
2
7

𝑣
3
4

𝑣
2
9

𝑣
3
6

𝑣21
𝑣12

𝑣30

𝑣4

𝑣13

𝑣22

𝑣31

𝑣5

𝑣14

𝑣23

𝑣32

𝑣
3

𝑣
1
0

𝑣
1
9

𝑣
2
8

𝑣
3
5

𝑣6

𝑣15

𝑣24

𝑣33

𝑣7

𝑣16

v25

T
1

𝑝
0
𝑝 1

𝑝
2
𝑝
3
𝑝
4
𝑝
5
𝑝
6

T
2

𝑝
7
𝑝
8
𝑝
9
𝑝 1
0
𝑝 1
1
𝑝 1
2
𝑝 1
3
𝑝 1
4
𝑝 1
5

T
3

𝑝 1
6
𝑝 1
7
𝑝 1
8
𝑝 1
9
𝑝 2
0
𝑝 2
1
𝑝 2
2
𝑝 2
3
𝑝 2
4

𝑝 2
5
𝑝 2
6
𝑝 2
7
𝑝 2
8
𝑝 2
9
𝑝 3
0
𝑝 3
1
𝑝 3
2

𝑝 3
3
𝑝 3
4
𝑝 3
5

R
1

R
2

R
3

𝑝 6
5
𝑝 6
6
𝑝 6
7
𝑝 6
8
𝑝 6
9
𝑝 7
0
𝑝 7
1

B
3

B
2
𝑝 5
6
𝑝 5
7
𝑝 5
8
𝑝 5
9
𝑝 6
0
𝑝 6
1
𝑝 6
2
𝑝 6
3
𝑝 6
4

B
1
𝑝 4
7
𝑝 4
8
𝑝 4
9
𝑝 5
0
𝑝 5
1
𝑝 5
2
𝑝 5
3
𝑝 5
4
𝑝 5
5

𝑝 3
9
𝑝 4
0
𝑝 4
1
𝑝 4
2
𝑝 4
3
𝑝 4
4
𝑝 4
5
𝑝 4
6

𝑝 3
6
𝑝 3
7
𝑝 3
8

L
1

L
2

L
3

R
1

R
2

L
1

L
2

𝑣
1

𝑣
6

𝑣
8

𝑣
1
5

𝑣
1
3

𝑣
2
0

𝑣16

𝑣17

𝑣18

𝑣9

𝑣3

𝑣10

𝑣4

𝑣11

𝑣5
𝑣12

𝑣
2

𝑣
7

𝑣
1
4

𝑣
1
9

T
1

T
2

B
1

B
2

𝑝
0
𝑝 1

𝑝
2
𝑝
3
𝑝
4

𝑝
5
𝑝
6
𝑝
7
𝑝
8
𝑝
9
𝑝 1
0
𝑝 1
1

𝑝 1
2
𝑝 1
3
𝑝 1
4
𝑝 1
5
𝑝 1
6
𝑝 1
7

𝑝 1
8
𝑝 1
9

𝑝 2
0
𝑝 2
1

𝑝 2
2
𝑝 2
3
𝑝 2
4
𝑝 2
5
𝑝 2
6
𝑝 2
7

𝑝 2
8
𝑝 2
9
𝑝 3
0
𝑝 3
1
𝑝 3
2
𝑝 3
3
𝑝 3
4

𝑝 3
5
𝑝 3
6
𝑝 3
7
𝑝 3
8
𝑝 3
9

T
T
R

T
L

C
R

L

B
BR

B
L

N
1

N
2

N
3

E
1

W
1

T
L

T
R

E
2

W
2

B
L

BR
E
3

W
3

S1
S2

S3

(a
)

(b
)

Fi
gu

re
2.

5:
Sc

al
ab

le
sw

it
ch

st
ru

ct
ur

es
co

m
pa

ti
bl

e
to

C
ol

um
ba

S.
(a

)
of

8-
pi

n
sw

it
ch

.(
b)

of
12

-p
in

sw
it

ch
.

10

2 Switch Model

T
1

T
2

T
3

R
1

R
2

R
3

L
1

L
2

L
4

B
1

B
2

B
4

R
4

L
3

T
4

B
3

𝑣2
𝑣1

𝑣3

𝑣4

𝑣
5

𝑣
6

𝑣
7

𝑣
8

𝑣
9

𝑣12
𝑣11

𝑣13

𝑣14

𝑣10

𝑣
1
5

𝑣
1
6

𝑣
1
7

𝑣
1
8

𝑣
1
9

𝑣23
𝑣22

𝑣24

𝑣25

𝑣21

𝑣
2
0

𝑣
2
6

𝑣
2
7

𝑣
2
8

𝑣
2
9

𝑣
3
0

𝑣34
𝑣33

𝑣35

𝑣36

𝑣32

𝑣
3
1

𝑣
3
7

𝑣
3
8

𝑣
3
9

𝑣 4
0

𝑣 4
1

𝑣45
𝑣44

𝑣46

𝑣47

𝑣43

𝑣 4
2

𝑣 4
8

𝑣 4
9

𝑣
5
0

𝑣
5
1

𝑣
5
2

𝑣55
𝑣54

𝑣56

𝑣53

N
1

W
1

W
2

W
3

W
4

N
2

T
L L B
L

S1

N
3 T C B S2

N
4

TR R BR S3

E
1

E
2

E
3

E
4

S4

𝑝 0
𝑝 1

𝑝 2
𝑝 3

𝑝 4
𝑝 5

𝑝 6
𝑝 7

𝑝 8
𝑝 9

𝑝 1
0
𝑝 1
1
𝑝 1
2
𝑝 1
3
𝑝 1
4
𝑝 1
5
𝑝 1
6
𝑝 1
7
𝑝 1
8
𝑝 1
9

𝑝 2
0
𝑝 2
1
𝑝 2
2
𝑝 2
3
𝑝 2
4
𝑝 2
5
𝑝 2
6
𝑝 2
7
𝑝 2
8
𝑝 2
9
𝑝 3
0

𝑝 3
1
𝑝 3
2
𝑝 3
3
𝑝 3
4
𝑝 3
5
𝑝 3
6
𝑝 3
7
𝑝 3
8
𝑝 3
9
𝑝 4
0
𝑝 4
1

𝑝 4
2
𝑝 4
3
𝑝 4
4
𝑝 4
5
𝑝 4
6
𝑝 4
7
𝑝 4
8
𝑝 4
9
𝑝 5
0
𝑝 5
1

𝑝 5
2
𝑝 5
3
𝑝 5
4
𝑝 5
5

𝑝 5
6
𝑝 5
7
𝑝 5
8
𝑝 5
9

𝑝 6
0
𝑝 6
1
𝑝 6
2
𝑝 6
3
𝑝 6
4
𝑝 6
5
𝑝 6
6
𝑝 6
7
𝑝 6
8
𝑝 6
9

𝑝 7
0
𝑝 7
1
𝑝 7
2
𝑝 7
3
𝑝 7
4
𝑝 7
5
𝑝 7
6
𝑝 7
7
𝑝 7
8
𝑝 7
9
𝑝 8
0

𝑝 8
1
𝑝 8
2
𝑝 8
3
𝑝 8
4
𝑝 8
5
𝑝 8
6
𝑝 8
7
𝑝 8
8
𝑝 8
9
𝑝 9
0
𝑝 9
1

𝑝 9
2
𝑝 9
3
𝑝 9
4
𝑝 9
5
𝑝 9
6
𝑝 9
7
𝑝 9
8
𝑝 9
9
𝑝 1
00
𝑝 1
01

𝑝 1
02

𝑝 1
03

𝑝 1
05

𝑝 1
04

𝑝 1
06

𝑝 1
07

𝑝 1
09

𝑝 1
08

𝑝 1
10

𝑝 1
11

Fi
gu

re
2.

6:
Sc

al
ab

le
16

-p
in

sw
it

ch
st

ru
ct

ur
e

co
m

pa
ti

bl
e

to
C

ol
um

ba
S.

11

2 Switch Model

2.3 Problem Formulation

The general model for the contamination-free switch is formulated as follows:

Input:

• all groups of flows to be executed,

• the conflicting flow pairs,

• the binding option (either fixed, clockwise or unfixed),

• the order of connected input/output modules (if using clockwise binding policy).

Output:

• sets of parallel-executable flows,

• routing paths of the flows without risk of contamination,

• binding pairs between modules and switch pins,

• used flow channels, and the total flow channel length.

• used valves, and the information of pressure-sharing valves.

• the program runtime.

Objective:

• to minimize the flow channel length,

• to minimize the number of sets of flows.

The mathematical model will be described in detail in the next section.

12

3 Mathematical model

This thesis proposes to synthesize application-specific switches reduced from the switch
models. This thesis constructs an integer quadratic programming (IQP) model for the
synthesis problem and send the model to an optimization solver to calculate the optimal
solution. This section explains the variables, constraints, and objectives introduced in the
IQP model to implement the contamination-free switch with optimized flow scheduling and
minimized flow channel length.

3.1 Path Assignment For Flows

Switches are deployed to route the flows when the flow channels intersect. The first general
task of a switch is thus to assign a switch flow path to each flow. To avoid flow detour, this
thesis generates in advance a set of shortest paths that route between each pair of flow pins,
and then assigns each flow to one of the paths. A binary variable xi,d is introduced to indicate
whether flow i chooses path d, for each i ∈ Flows and d ∈ Paths, where Flows indicates the
set of flow indices and Paths indicates the set of path indices. Each flow should choose exactly
one path. Each path should be chosen at most once. The corresponding constraints are as
follows:

∑
d∈Paths

xi,d = 1, ∀i ∈ Flows, (3.1)

∑
i∈Flows

xi,d ≤ 1, ∀d ∈ Paths. (3.2)

3.2 Fluid Contamination Avoidance

Fluid contamination happens when conflicting flows use the same flow segment or node. The
polluted segment or node can result in erroneous outcomes. The contamination avoidance
is implemented by forcing the conflicting flows to choose paths without intersections or

13

3 Mathematical model

TR

BR

TL

BL

L

T1 T2

R1

R2

B2B1

L1

L2

C R

T

B

flow 1

flow 2

flow 3 flow 4

(a)

TR

BR

TL

BL

L

T1 T2

R1

R2

B2B1

L1

L2

R

T

B

flow 1

flow 2

flow 3

flow 4
𝑣
3

𝑣
4

𝑣
1
0

𝑣14
𝑣15

𝑣2

𝑣7

𝑣
1
2

C

(b)

Figure 3.1: Switch models of example cases (in the flow layer) for (a) contamination avoidance,
where the fluid flows with the same color indicate a high risk of contamination.
(b) flow scheduling, where the fluid flows with the same color indicate that they
are scheduled to be routed in the same flow set and they are executed at the same
time.

overlapping. In other words, each node in the conflicting paths should be used at most
once. Here a binary constant hasNoded,n is indicated to indicate whether path d uses node
n, for each d ∈ Paths and n ∈ Nodes, where Nodes indicates the set of nodes of the switch.
For example, Nodes of an 8-pin switch is {C, T, R, B, L}. The set of conflicting flow pairs is
denoted as CF. For example, the flow indices are Flows = {1, 2, 3, 4}. If there are conflicts
between flow 1 and 2, and between 3 and 4, the set CF is therefore {{1, 2} , {3, 4}}. The
switch shown in Figure 3.1(a) is a possible solution for the example. The paths of flow 1
and flow 2 do not share the same node or segment. The flow 3 and flow 4 are also routed
separately apart. Therefore, no consequent fluid contaminations will occur. The constraint is
as follows:

∑
d∈Paths

∑
i∈CF

xi,d · hasNoded,n ≤ 1, ∀n ∈ Nodes. (3.3)

3.3 Flow Scheduling

Considering a great number of flows that should be routed through the switch, it is necessary
to schedule these flows into multiple sets to be executed separately. It is also important
that each flow segment cannot simultaneously be occupied by multiple flows unless for the

14

3 Mathematical model

branching flows from the same inlet. The term flow sets will be used in this paper to refer to
such sets of parallel executable flows. Flow scheduling allows the flow segments and nodes
to be reused in different flow sets, which means, each node should be used by the flows from
at most one inlet in each flow set. The switch shown in Figure 3.1(b) shows an example of
flow scheduling. Flows 1, 2, 3 and 4 are routed through different paths, but flow 2 is sharing
the same segment C-R with flow 3, sharing the same node T with flow 1 and the same node
C with flow 4. If flow 2 is executed together with any of the other three flows, an unexpected
collision may occur. Furthermore, since the corresponding valves along the paths of flows 1, 3
and 4 are open, flow 2 may go to pins T1, B1 or B2. To avoid this, flow 2 should be assigned
to a different flow set. While the flows 3 and 4 are the branches stemming from inlet L1, they
are allowed to be executed in the same flow set.

An integer variable Kn,s is introduced to count the usage of node n by all flows in flow set
s, and an integer variable kp,n,s is introduced to count the usage of node n by flows from inlet
pin p in flow set s. The value of Kn,s is a summation of kp,n,s over inlet pin p. When kp,n,s is
nonzero, the node n is used by flows from inlet pin p in the flow set s. In this case, flows
from all other inlet pins p

′
cannot use this node, leading the kp′ ,n,s value to be zero, and thus

the value of Kn,s is equal to kp,n,s. The problem is equal to model the conditional relation that
if kp,n,s ≥ 1, then kp,n,s = Kn,s. An auxiliary binary variable q

′
p,n,s is introduced for each inlet

pin p, at each node n in each flow set s to indicate whether the node n is used by flows from
pin p in flow set s.

kp,n,s ≥ 1− q
′
p,n,s · N_Pins, (3.4)

kp,n,s ≤ Kn,s + q
′
p,n,s · N_Pins, (3.5)

kp,n,s ≥ Kn,s − q
′
p,n,s · N_Pins, (3.6)

with respect to ∀p ∈ InletPins, ∀s ∈ FlowSets, and ∀n ∈ Nodes, where FlowSets is the set of
flow set indices. N_Pins is an integer constant indicating the number of flow pins. It is the
smallest constant that ensures the correctness of constraints (4)–(6). Based on the previous
experience, a smaller constant usually results in a faster optimization. When q

′
p,n,s is set to

1, constraints (4)–(6) become kp,n,s ≥ 1 ∧ kp,n,s = Kn,s, but when q
′
p,n,s is set to 0, constraints

(4)–(6) become tautology regardless of the values of kp,n,s and Kn,s.

It is worth mentioning that for the flows that have no risk to pollute each other, they can
share the same flow segments and nodes as long as they are assigned to different flow sets
to pass the switch at different time. However, for contamination-prone flows, they cannot
occupy the same flow segments or nodes even when they are assigned to different flow sets.

15

3 Mathematical model

The whole functional model is now completed. The model is formulated as follows:

Minimize : ∑ α · N_Sets + β · L f low (3.7)

Subject to : constraint (1)− (6). (3.8)

where N_Sets represents the number of flow sets. L f low represents the total length of flow
channels. α and β are the weight coefficients, which are defined by the application input.

3.4 Binding Policies

This thesis provides multiple binding policies between the flow pins and the connected
modules. Each module is either the source or the destination of a flow. And each module
should be bound to a unique flow pin, which means that each flow pin should be used by
at most one module. A binary variable ym,p is introduced to indicate whether module m is
bound to switch pin p, for each m ∈ Modules and p ∈ Pins, where Modules indicates the set
of connected modules and Pins indicates the set of flow pins. For example, Pins for an 8-pin
switch is {T1, T2, R1, R2, B2, B1, L2, L1}. Each module should choose exactly one flow pin,
while each pin should be chosen at most once by the modules. The corresponding constraints
are as follows:

∑
p∈Pins

ym,p = 1, ∀m ∈ Modules, (3.9)

∑
m∈Modules

ym,p ≤ 1, ∀p ∈ Pins. (3.10)

The current design examines three policies of module-to-pin binding: fixed, clockwise and
unfixed. A fixed policy specifies the module-pin pairs as the switch input, which requires a
constraint to bind the modules to the specified pins.

ym,p = 1, ∀(m, p) ∈ MP, (3.11)

where (m, p) is a module-pin pair of the set of fixed module-pin pairs MP.

For the clockwise policy, the module indices are first read in a clockwise order, and then the
following constraints are constructed to assign modules to the pins sequentially around the
switch. An integer variable pinm is introduced to indicate the pin index to which module m is
bound, for each m ∈ Modules. The indices of pins T1, T2, R1, R2, B2, B1, L2, L1 are respectively
1 to 8. An auxiliary binary variable qm is introduced for each module m to indicate whether

16

3 Mathematical model

the assigned pin index is the largest among the assigned pins. There should be exactly one
module that satisfies qm = 1.

pina ≤ pinb − 1 + qa · N_Pins, ∀a ∈ Modules, (3.12)

∑
m∈Modules

qm = 1, (3.13)

where b is the module that is successive to a in the order. If a is the last in the order,
then b is the first module. To give an example, four modules are bound to flow pins
of an 8-pin switch, with the specified order m1, m2, m3, m4. A possible binding result is
m1-T2, m2-R1, m3-B1, m4-L1, with the pin indices as 2, 3, 6, and 8. In this case, according
to constraint (12), qm1 , qm2 , and qm3 can all be set to 0 or 1, while qm4 must be set to 1 or
constraint (12) would be violated. This, according to constraint (13), implies that qm1 , qm2 , and
qm3 all must be 0. Another result may be m1-B1, m2-L2, m3-T1, m4-T2, with the pin indices as
6, 7, 1 and 2. The pin index assigned to module m2 is the largest and thus the variable qm2 is
set to be 1.

The unfixed binding policy requires no extra constraints.

3.5 Pressure Sharing

Before minimizing the number of pressure sources, the essential valves are identified and
the unnecessary ones are removed. An essential valve is recognized by comparing the flows
passing through the valve and the flows passing through the neighbor segments of the valve.
Here, this thesis defines an action carry of a valve if the valve is open for flows to pass it. If
the valve can carry all flows in the neighbor segments, the valve can always be at the open
status. Removing the valve does not affect the flow routing, hence such a valve is regarded as
an unnecessary valve. Taking the case drawn in Figure 3.1(b) as an example, the valve on the
segment C-R carries the flows 2 and 3, coming from the inlet pins R2 and L1. Its neighbor
segments are L-C, T-C, R-R2, C-B, after removing the unused segment TR-R. The neighbor
segments carry the flows from either pin R2 or L1. The valve on segment C-R is regarded as
unnecessary, since it can always be at the open status.

As the valves are controlled by control inlets, with a standard size of 1mm2, a large number
of control inlets can take considerable chip area, compared to standard microfluidic channels
that extend 0.1mm in width [17]. This thesis provides pressure sharing as an optional feature
by grouping the valves that can share the same pressure source, with the goal of minimizing

17

3 Mathematical model

a

b c

O,X,C

X,O,C O,O,C

(a)

a

b c

O,X,C

X,C,C O,O,C

(b)

Figure 3.2: Clique examples. The blue circle indicates a valid clique. The red circle indicates
an invalid clique. The status sequence is aside each valve node, with O indicating
the status open, C indicating the status closed, and X indicating the status don’t
care. (a) The three valves can be covered by the same clique. (b) The valve a can
construct a clique either with valve b or valve c, however valves b and c cannot be
covered by the same clique.

the number of such valve groups. Two valves are said to be able to share pressure when
one’s state schedule do not affect the other one. Besides open and closed, a valve status X
is introduced to indicate the status don’t care. A valve is at status X when its status is not
affecting the microfluidic device at that time, which can be compatible to other either open
valves or closed ones [18].

To solve the pressure sharing problem, the valves are regarded as the vertices, and the
edges are used to connect the valves that can share a pressure sequence. Then a graph model
is built to model the pressure sharing relations of all valves. The pressure sharing problem is
transferred to a clique covering problem which searches the minimum number of cliques that
cover all valves. If a group of valves can share their pressure source, they can be considered
to make up a clique. For example, as drawn in Figure 3.2(a), status sequence of valve a is
open, X, closed. Status sequence of valve b is X, open, closed. And status sequence of valve
c is open, open, closed. The first and the second status of these valves is either open or X.
The third status of each valve is the same to be closed. This means, they can be controlled
by the same pressure source open, open, closed. A clique can thus be constructed to cover
all the three valves. The other example in Figure 3.2(b) presents the situation that the valve
a can form a clique either with valve b or valve c, but valves b and c cannot be covered by
the same clique. In this case, all three valves should be covered by at least two cliques. For
instance, one clique to cover valves a and b, the other to cover valve c. At the end, the number
of cliques is the number of control inlets that should be integrated. The modeling of this

18

3 Mathematical model

problem is established on the solution of the previous switch model.

To model this problem, this thesis constrains each valve to belong to exactly one clique
in constraint (3.14). A binary variable zv,c is introduced to indicate whether valve v belongs
to clique c, for all c in Cliques, and for all v in Valves, where Cliques is the set of clique
indices with the initial size to be the number of valves. Valves is the set of all essential valves.
Another binary variable cliquec is introduced to denote whether the clique c is occupied. If
any of zv,c is 1, cliquec is forced to be 1.

∑
c∈Cliques

zv,c = 1, ∀v ∈ Valves, (3.14)

cliquec ≥ zv,c, ∀c ∈ Cliques, ∀v ∈ Valves. (3.15)

All valves in the same clique should be able to share the pressure source. This means, if two
valves cannot share their pressure, they are not allowed to be in the same clique. A binary
constant psv1,v2 is introduced to indicate whether the valves v1 and v2 are able to share the
pressure. The constraints are modeled as follows:

zv1,c + zv2,c ≤ 1 + psv1,v2 , (3.16)

∀c ∈ Cliques, ∀v1, v2 ∈ Valves, v1 6= v2. When valves v1 and v2 are able to share their pressure,
psv1,v2 is equal to 1. The right-hand side of constraint (3.16) becomes 2. In this case, they are
allowed to belong to the same clique. The left-hand side can be either 0, 1 or 2, which holds
the inequality. Otherwise, if psv1,v2 = 0, the valves should not belong to the same clique.
Variables zv1,c and zv2,c cannot be 1 with the same clique c. The left-hand side is thus forced
to be either 0 or 1. Last, the optimization goal of this problem is to minimize the number of
occupied cliques.

Minimize ∑
c∈Cliques

cliquec. (3.17)

19

4 Result

The method of this thesis is implemented in C++ on a computer with 900 MHz CPU. The
proposed mathematical model is an integer quadratic programming (IQP) model, and is
solved by Gurobi [19], an optimization solver.This thesis synthesizes the switches in widely
used applications as test cases: kinase activity [20], single cell mRNA isolation [4], chromatin
immunoprecipitation (ChIP) [5] and nucleic acid processor [6]. The switch inputs are as
defined by Columba [21], which can be accessed online [22]. The following tests take the
optimization weight of number of flow sets α = 1 and weight of flow channel length β = 100.
The three different binding policies are tested on each switch case.

4.1 Contamination Avoidance

To investigate that the synthesis results in a contamination-free switch design, this thesis
first tests the switches that contain conflicting flows. Table 4.1 presents the input features:
number of connected modules #m, the size of the switch model sw. size, as well as the
result feature values : the program runtime T in second, total flow channel length L in mm,
the number of valves #v, and the number of flow sets #s. Figure 4.1 shows the synthesized
application-customized switch structures for the switch in ChIP with different binding policies:
Figure 4.1(a) with fixed binding, Figure 4.1(b) with clockwise binding and Figure 4.1(c) with
unfixed binding. Figure 4.2(a) shows the result for the switch case of nucleic acid processor.
Figure 4.2(b) shows the result for the switch case of mRNA. By contrast, Figure4.1(d), Figure
4.2(c) and Figure 4.2(d) present the corresponding switch (marked and amplified with red
rectangles) synthesized in another synthesis tool Columba [8][12][13].

As shown in Table 4.1, the switch of ChIP can be synthesized within all three binding
policies, while the switch of the other two cases are only synthesized within the unfixed
policy. This can be explained by the fact that the solution spaces of fixed and clockwise
binding policies are much smaller. Flow conflicting constraints may let the solver fail to find
solutions. Although applying the unfixed policy is able to handle all these test cases, it takes

20

4 Result

Table 4.1: Feature results of test cases with contamination avoidance

id application #m sw. size binding T (s) L (mm) #v #s

1 ChIP[5] 9 12-pin

clockwise 48.413 13.6 6 2

fixed 0.273 16.4 6 2

unfixed 8336.38 13.6 6 2

2 nucleic acid processor[6] 7 8-pin

clockwise no solution

fixed no solution

unfixed 7.083 9.8 6 2

3 mRNA isolation[4] 10 12-pin

clockwise no solution

fixed no solution

unfixed 13448.9 17.8 8 2

#m: number of connected modules; sw.: switch; T: runtime in second; L: flow channel
length in mm; #v: number of valves; #s: number of flow sets.

much more time for optimization with a larger problem space. It is worth mentioning that the
unfixed binding policy needs the cooperation of the physical design tool to place connected
modules according to the pin assignment results for flows.

Figure 4.1 (a), (b) and (c) show the synthesized switch structures on the flow layer. All
green lines are flows of the same flow set, and the yellow lines are of the other flow set. The
rectangles located across the flow channels are the essential valves. Likewise, the valves in
the same color are able to share the same pressure source. The first test case is a switch of
ChIP. It has conflicts between flows coming from flow inlets i_10 and i_11. The flow from
i_10 is routed to Mixer M2, while the flows from i_11 are distributed to Mixers M3, M4 and
M5. As Figure 4.1(b) displays, these flows, which are drawn as lines in yellow, are separated
by the channel segment S2-S3 with its valve v33 closed. The result successfully avoids the
potential contamination. On the contrary, a spine-like switch in this case is polluted at the
junctions and segments of the spine. As presented in Figure 4.1(d), the fluid flows from i_10
and i_11 intersect at the horizontal spine. In addition, since there are no valves except at the
ends along the spine, the flow from i_10 to M2, for example, may flow to M3 if the flow from
i_11 to M3 is routed simultaneously. Besides, it deploys 9 valves, which do not share pressure
with each other, quadrupling the number of control inlets compared to this design.

The second test case is a switch of nucleic acid processor. The mixture from each mixer
should be sent to a dedicated reaction chamber. If any mixtures pollute each other, the
single-cell experiment run on the nucleic acid processor is a failure. The tests generate a result

21

4 Result

with unfixed binding policy. The result design is shown in Figure 4.2(a). The conflicting flows
from different mixers to their destination reaction chambers are drawn in yellow lines. The
design separates apart the flows from M1 to RC1, from M2 to RC2 and from M3 to RC3,
which achieves the goal of contamination avoidance. On the contrary, the switch design of
Columba 2.0 in Figure 4.2(c) suffers from relatively heavy contamination among the spine.
The spine segment marked red is the most polluted, as it is used by every flow from the
mixers. Since the flows cannot avoid passing through this segment, the contamination occurs.

The third test case is a switch of mRNA isolation. Similar to the second test case, RC1,
RC2, RC3, and RC4 send fluids to their dedicated fluid outlets, p_c1, p_c2, p_c3, and p_c4,
respectively. As shown in Figure 4.2(b), the synthesized switch result routes these flows apart,
thus avoiding the pollution. This time, the switch design of Columba S shown in Figure 4.2(d)
successfully arranges the flows apart. However, similar to the first test case, since there is
no valve along the spine, the fluids cannot be controlled to flow to the correct destinations
if some flows are routed in parallel. For example, if the flow from RC1 to p_c1 and the
flow from RC2 to p_c2 are routed in parallel, some of the fluids from RC1 may go to p_c2,
polluting the fluids collected from RC2.

The switch is also able to be synthesized in a scalable version that is compatible to Columba
S. The synthesized scalable switches for ChIP with different binding policies are presented in
Figure 4.3.

4.2 Flow Scheduling

Another goal of this work is to schedule the input flows into minimum number of flow sets.
Since the above referred experiments do not have many flows to be scheduled, 90 artificial
switch input cases have been tested, with different input features: switch size, number of
flows, number of connected modules, number of conflicting constraints, number of initial sets
of flows, and binding policies.

This thesis takes the following settings as default. First, each flow pin of the switch can
be bound to at most one module. The module should be either the inlet or the outlet to the
switch. For example, if module A is connected to the pin T1 of the switch as an inlet, no
flows can be routed to the pin T1. Second, each outlet pin can be accessed at most once. For
example, it is not allowed to execute flows T1 to T2 and R1 to T2 in the same switch case,
where T2 is the outlet pin that tries to be accessed twice.

22

4 Result

Table 4.2: Input and output features of the example case

input flows 1→ (7, 10, 11), 2→ (5, 8, 9), 3→ (4, 6, 12)

connected module order 1,2,3,4,5,6,7,8,9,10,11,12

conflicting flows none

switch size 12-pin

binding policy clockwise

scheduled flows [3→ (4, 5, 6)], [2→ (5, 8, 9)], [1→ (7, 10, 11)]

#flow sets 3

#valves 15

L (mm) 21.2

All of the test cases achieve the goal of flow scheduling. It is observed from the statistics
that applying the clockwise or fixed policy of module-pin binding cannot handle some of the
cases that are with contamination constraints, while the unfixed policy can always synthesize
a solution to schedule all flows into one set. Another finding is that, for the same test case
but tested on both 8-pin and 12-pin switches, the case on the smaller size performs better
regarding the program runtime and flow channel length. But choosing the 8-pin or the 12-pin
switch as the starting point has almost no impact on the scheduling performance.

Here, one of the cases is illustrated as example. The input and output features are as shown
in Table 4.2. The synthesized switch structure and the flow paths on the switch are shown
in Figure 4.4. This example takes all flows non-scheduled as input, and results in 3 sets of
flows after synthesis. Flows of the same flow set are drawn in the same color. The flows from
input 3 to outputs 4, 6 and 12 can be scheduled together (colored in yellow). It is the same for
the flows from input 1 to outputs 7, 10, 11 (colored in blue), and the flows from input 2 to
outputs 5, 8, 9 (colored in green). The switch schedules its input flows so that a flow channel
segment cannot be occupied by flows from different inlets at the same time.

4.3 Binding Policies

To compare the difference between binding policies, further tests are conducted. The result
features are as illustrated in Table 4.3, which shows the runtime T in seconds and the total
flow channel length L in mm. These cases have no constraints on conflicting flows, and
therefore, they have solutions for all binding policies. Regarding the flow channel length,

23

4 Result

Table 4.3: Result features using different binding policies

id application #m sw. size binding T (s) L (mm)

1 ChIP sw.1 [5] 9 12-pin

clockwise 48.413 13.6

fixed 0.273 16.4

unfixed 8336.38 13.6

2 ChIP sw.2 [5] 10 12-pin

clockwise 209.919 154

fixed 0.513 180

unfixed 3282.29 154

3 kinase activity sw.1 [20] 4 12-pin

clockwise 0.927 46

fixed 1.867 46

unfixed 21.85 46

4 kinase activity sw.2 [20] 6 12-pin

clockwise 2.197 60

fixed 0.05 60

unfixed 8.3 60

#m: number of modules; sw.: switch; T: runtime in second; L: flow channel
length in mm; #v: number of valves; #s: number of flow sets.

fixed binding policy in general results in the largest flow channel length L in almost all cases.
This results from the smaller routing flexibility compared with the clockwise or unfixed
binding policy. It is also noticeable that the fixed binding policy takes much less program
runtime since the optimization solver does not need to spend effort on binding. Additionally,
it is observed that for each test case, the runtime T becomes larger as the number of connected
modules increases, which means, the program runtime of the switch designs increases with
the complexity of the input application.

24

4 Result

i_10

M3

M4

i_11

M5

wf_1 wf_2

N3

𝑣
3
3

N1

M1 M2

E1

E2

S3S2

E3

N2

TL

S1

BL

𝑣20

𝑣35𝑣34

𝑣
4

𝑣
5

(a)

M2M3M4

E2

i_11

i_10

M5

M1

wf_1

wf_2

W2

N3 E1

E3

S3S2S1

𝑣26

𝑣
2
5

𝑣
1
6

𝑣
7

𝑣
6

𝑣
3
3

W3

(b)

i_10

M3M4

i_11

M5

wf_1

wf_2

N3

𝑣
3
3

M1

M2

E1

E2

S3S2

E3

N2

𝑣1

W1

N1

𝑣8 𝑣11

𝑣
2
5

𝑣36

(c)

M2M3

M4

M5

M1

i_11 i_10 wf_2

wf_1

(d)

Figure 4.1: Synthesized switch results (in the flow layer) for ChIP[5]: (a) by the present thesis
with fixed binding policy. (b) by the present thesis with clockwise binding policy.
(c) by the present thesis with unfixed binding policy. (d) by Columba [8].

25

4 Result

RC3

RC2

TR

M2

M3o_bo

RC1

M1

T

B
BL

𝑣
3

𝑣8

𝑣
1
7

𝑣
1
1

𝑣14

𝑣6

(a)

TL

RL C

(c)

RC1

RC2

M1
o_bo

RC3

M2

M3

RC2

p_c4

p_bo

p_c3

p_c1

wf

RC1 RC3
W2

TL TR

N1 E1

E3

S3W3

𝑣
6

𝑣29𝑣26

𝑣20
𝑣47

𝑣9
𝑣10

𝑣
4

(b)

N2

p_c2 RC4

E2W1

N3

(d)

p_c1

p_bo

RC1

RC2

RC4

wf

RC3
p_c2

p_c3

p_c4

Figure 4.2: Switch designs of: (a) nucleic acid processor.(b) mRNA isolation. (c) nucleic acid
processor synthesized by Columba 2.0 [12]. (d) mRNA isolation synthesized by
Columba S [13].

26

4 Result

M5

M2M1 M3

M4

i_11

i_10wf_2wf_1

N1 N2

TL

BL

S1
S2

S3

𝑣
4

N3
E2

E3

E1

𝑣
3
3

𝑣20

𝑣
5

𝑣34 𝑣35

(a)

M5

M2 M1

M3

M4

i_11 i_10 wf_2

wf_1

N1

W1

W2

N2 N3

TL TR

BL BR

W3 S1 S2 S3

𝑣27𝑣
3
1

𝑣
3
2

𝑣8

(b)

M5

M2

M1

M3

M4

i_11

i_10

wf_2wf_1

TL

BL

S1 S2 S3

N3

E2

E3

E1

𝑣
2
5

𝑣36

𝑣28

TR

BR

N1
N2

𝑣
4

𝑣
5

𝑣9

(c)

Figure 4.3: Synthesized scalable switch result (in the flow layer) for ChIP by the present thesis:
(a) with fixed binding policy. (b) with clockwise binding policy. (c) with unfixed
binding policy.

27

4 Result

5 6 7

4

3

2

1 12 11

10

9

8

W1

W2 BR

N1 N2 N3 E1

E2

E3

S3S1

TR

𝑣1

𝑣
4

𝑣
1
2

𝑣
2
1

𝑣
3
0

𝑣
3
1

𝑣34 𝑣35

𝑣
6

𝑣3

𝑣36

𝑣
2
5

𝑣20

𝑣
3
3

𝑣28

S2W3

Figure 4.4: Switch structure and flow paths of the example case described in Table 4.2. (pre-
sented in the flow layer)

28

5 Discussion

Prior studies either do not consider the fluid contamination problem [8], or do not provide
enough routing space to avoid fluid contamination or collision [14]. Since the switch is
among the most polluted components in a microfluidic biochip, this thesis sets out to design
a microfluidic switch that is able to avoid contaminations.

The results of this thesis indicate that the synthesized switch is always able to route the
conflicting flows apart and thus ensuring the avoidance of contamination. Moreover, the
implementation of flow scheduling is able to arrange the flows to be executed so that collision
can be avoided. The objective to minimize the number of flow set aims to minimize the
control effort as well as the flow transmission time. A smaller number of flow set indicates
less changing of valve status, and thus decreased controlling effort for the control inlets.
Further, the results of different binding policies indicate that the clockwise binding policy
performs in general the best if the locations of the connected modules are relatively fixed
around the switch. The synthesis applying the clockwise binding policy takes relatively short
runtime, as well as small flow channel lengths. The fixed policy may be more desirable
when the locations of the connected modules are fixed, or the synthesis expects a minimum
program runtime. On the other hand, an unfixed policy is preferred when the other two
methods cannot solve the model due to the constraints of conflicting flows.

Nevertheless, A number of limitations need to be noted regarding the present thesis. First,
the proposed switch models cannot generate solutions for some cases owing to the strict
constraints of contamination prevention when the clockwise or fixed binding policy is applied.
Second, this thesis fails to solve complex cases on the 16-pin switch. The program runtime
exceeds 5 hours for the 13-module input case in mRNA [4]. Besides, the current switch
occupies more chip area than a traditional spine-like structure. Furthermore, although the
tested cases can always be tackled using the unfixed binding policy, it takes much program
runtime and may require relocation afterwards. Last, the synthesis process does not include
control channel routing. Although each valve can be accessed by at least two control channels,
and the unused valves are recognized during the synthesis, control channel routing should
be considered for pressure sharing.

29

6 Conclusion

The microfluidic switch is among the most likely modules to be polluted in a continuous-flow
microfluidic biochip. The purpose of this thesis is to synthesize switch designs that avoid
fluid contamination with efficient flow scheduling, multiple module-pin binding policies and
pressure sharing among valves. This thesis has designed reconfigurable general structures of
the 8-pin, 12-pin and 16-pin switch models. And then it has built an IQP model to solve the
synthesis problem. The results show that the switch designs synthesized by the proposed
method are always contamination-free. This is the first attempt to investigate methods of
avoiding the fluid contamination in automated synthesis tools for mLSI.

For the future work, new switch structures can be developed to be more flexible and
efficient. In addition, I recommend to enhance the efficiency of the synthesis tool.

30

List of Figures

1.1 The valve structure. 2

2.1 Spine-like switch structure in Columba [8]. 4
2.2 Switch structures designed by a previous study[14]: (a) of one GRU. (b) of two

GRUs. 5
2.3 Switch structures of the present thesis: (a) 8-pin. (b) 12-pin. 7
2.4 Switch structure of the present thesis, 16-pin. 8
2.5 Scalable switch structures compatible to Columba S. (a) of 8-pin switch. (b) of

12-pin switch. 10
2.6 Scalable 16-pin switch structure compatible to Columba S. 11

3.1 Switch models of example cases (in the flow layer) for (a) contamination
avoidance, where the fluid flows with the same color indicate a high risk of
contamination. (b) flow scheduling, where the fluid flows with the same color
indicate that they are scheduled to be routed in the same flow set and they are
executed at the same time. 14

3.2 Clique examples. The blue circle indicates a valid clique. The red circle
indicates an invalid clique. The status sequence is aside each valve node, with
O indicating the status open, C indicating the status closed, and X indicating
the status don’t care. (a) The three valves can be covered by the same clique.
(b) The valve a can construct a clique either with valve b or valve c, however
valves b and c cannot be covered by the same clique. 18

4.1 Synthesized switch results (in the flow layer) for ChIP[5]: (a) by the present
thesis with fixed binding policy. (b) by the present thesis with clockwise
binding policy. (c) by the present thesis with unfixed binding policy. (d) by
Columba [8]. 25

4.2 Switch designs of: (a) nucleic acid processor.(b) mRNA isolation. (c) nu-
cleic acid processor synthesized by Columba 2.0 [12]. (d) mRNA isolation
synthesized by Columba S [13]. 26

31

List of Figures

4.3 Synthesized scalable switch result (in the flow layer) for ChIP by the present
thesis: (a) with fixed binding policy. (b) with clockwise binding policy. (c) with
unfixed binding policy. 27

4.4 Switch structure and flow paths of the example case described in Table 4.2.
(presented in the flow layer) . 28

32

List of Tables

4.1 Feature results of test cases with contamination avoidance 21
4.2 Input and output features of the example case 23
4.3 Result features using different binding policies 24

33

Glossary

clique is a subset of vertices of an undirected graph such that its induced subgraph is
complete; that is, every two distinct vertices in the clique are adjacent. 18, 19, 31

continuous-flow microfluidics is the technology of microfluidic chips containing a large
number of micro-mechanical valves and control components, enabling hundreds of
assays to be automatically performed on a single miniaturized chip. 2, 4

microfluidics is the technology that precisely manipulates reagent fluids at a nanoliter-scale
or below. 1

mLSI microfluidic Large-Scale Integration. 1, 2, 30

34

Acronyms

ChIP chromatin immunoprecipitation. 1

PCR polymerase chain reaction. 1

35

Bibliography

[1] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake. “Monolithic micro-
fabricated valves and pumps by multilayer soft lithography”. In: Science 288.5463 (Apr.
2000), pp. 113–116. doi: 10.1126/science.288.5463.113.

[2] T. Thorsen, S. Maerkl, and S. Quake. “Microfluidic Large-Scale Integration”. In: Science
(New York, N.Y.) 298 (Nov. 2002), pp. 580–4. doi: 10.1126/science.1076996.

[3] J. Liu, M. Enzelberger, and S. Quake. “A nanoliter rotary device for polymerase
chain reaction”. In: Electrophoresis 23 (May 2002), pp. 1531–6. doi: 10.1002/1522-
2683(200205)23:10<1531::AID-ELPS1531>3.0.CO;2-D.

[4] J. Marcus, W. Anderson, and S. Quake. “Microfluidic Single-Cell mRNA Isolation and
Analysis”. In: Analytical chemistry 78 (June 2006), pp. 3084–9. doi: 10.1021/ac0519460.

[5] A. Wu, J. Hiatt, R. Lu, J. Attema, N. Lobo, I. Weissman, M. Clarke, and S. Quake.
“Automated microfluidic chromatin immunoprecipitation from 2,000 cells”. In: Lab on a
chip 9 (June 2009), pp. 1365–70. doi: 10.1039/b819648f.

[6] D.-W. Cho, V. Studer, G. Hang, W. Anderson, and S. Quake. “A nanoliter-scale nucleic
acid processor with parallel architecture”. In: Nature Biotechnology 22 (Apr. 2004). doi:
10.1038/nbt951.

[7] Q. Wang, H. Zou, H. Yao, T.-Y. Ho, R. Wille, and Y. Cai. “Physical Co-Design of Flow
and Control Layers for Flow-Based Microfluidic Biochips”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems PP (Aug. 2017), pp. 1–1. doi:
10.1109/TCAD.2017.2748003.

[8] T.-M. Tseng, M. Li, B. Li, T.-Y. Ho, and U. Schlichtmann. “Columba: co-layout synthesis
for continuous-flow microfluidic biochips”. In: June 2016, pp. 1–6. doi: 10.1145/
2897937.2897997.

[9] K. Hu, T.-Y. Ho, and K. Chakrabarty. “Wash optimization for cross-contamination
removal in flow-based microfluidic biochips”. In: Proceedings of the Asia and South Pacific
Design Automation Conference, ASP-DAC (Jan. 2014), pp. 244–249. doi: 10.1109/ASPDAC.
2014.6742897.

[10] K. Dorfman, M. Chabert, J.-H. Codarbox, G. Rousseau, P. Cremoux, and J.-L. Viovy.
“Contamination-Free Continuous Flow Microfluidic Polymerase Chain Reaction for
Quantitative and Clinical Applications”. In: Analytical chemistry 77 (July 2005), pp. 3700–
4. doi: 10.1021/ac050031i.

36

https://doi.org/10.1126/science.288.5463.113
https://doi.org/10.1126/science.1076996
https://doi.org/10.1002/1522-2683(200205)23:10<1531::AID-ELPS1531>3.0.CO;2-D
https://doi.org/10.1002/1522-2683(200205)23:10<1531::AID-ELPS1531>3.0.CO;2-D
https://doi.org/10.1021/ac0519460
https://doi.org/10.1039/b819648f
https://doi.org/10.1038/nbt951
https://doi.org/10.1109/TCAD.2017.2748003
https://doi.org/10.1145/2897937.2897997
https://doi.org/10.1145/2897937.2897997
https://doi.org/10.1109/ASPDAC.2014.6742897
https://doi.org/10.1109/ASPDAC.2014.6742897
https://doi.org/10.1021/ac050031i

Bibliography

[11] F. Su, K. Chakrabarty, and R. Fair. “Microfluidics-Based Biochips: Technology Issues,
Implementation Platforms, and Design-Automation Challenges”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 25.2 (2006), pp. 211–223. doi:
10.1109/TCAD.2005.855956.

[12] T.-M. Tseng, M. Li, D. N. Freitas, T. McAuley, B. Li, T.-Y. Ho, I. E. Araci, and U. Schlicht-
mann. “Columba 2.0: A Co-Layout Synthesis Tool for Continuous-Flow Microfluidic
Biochips”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 37.8 (2018), pp. 1588–1601. doi: 10.1109/TCAD.2017.2760628.

[13] T.-M. Tseng, M. Li, D. N. Freitas, A. Mongersun, I. E. Araci, T.-Y. Ho, and U. Schlicht-
mann. “Columba S: A Scalable Co-Layout Design Automation Tool for Microfluidic
Large-Scale Integration”. In: 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC). 2018, pp. 1–6. doi: 10.1109/DAC.2018.8465905.

[14] Y. Ma. Switch Design for Microfluidic Large-Scale Integration. https://www.ei.tum.de/
en/eda/theses-jobs/finished-theses/,https://edawww.regent.e-technik.tu-
muenchen.de/public/upload/202010021545_MasterThesis_YanluMa.pdf. Accessed
on 2021-05-31.

[15] T. Yan and M. D. F. Wong. “A Correct Network Flow Model for Escape Routing”. In:
Proceedings of the 46th Annual Design Automation Conference (July 2009), pp. 332–335. doi:
https://doi.org/10.1145/1629911.1630001.

[16] A. Truppel, T.-M. Tseng, D. Bertozzi, J. Alves, and U. Schlichtmann. “PSION: Combining
Logical Topology and Physical Layout Optimization for Wavelength-Routed ONoCs”.
In: Proceedings of the 2019 International Symposium on Physical Design (2019).

[17] Stanford Foundry. Basic Design Rules. http://web.stanford.edu/group/foundry.
Accessed on 2021-05-31.

[18] H. Yao, T.-Y. Ho, and Y. Cai. “PACOR: Practical control-layer routing flow with length-
matching constraint for flow-based microfluidic biochips”. In: 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC). 2015, pp. 1–6. doi: 10.1145/2744769.2744887.

[19] Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual. http://www.gurobi.com.
Accessed on 2021-05-31.

[20] C. Fang, Y. Wang, N. Vu, W.-Y. Lin, Y.-T. Hsieh, L. Rubbi, M. Phelps, M. Müschen,
Y.-M. Kim, A. Chatziioannou, H.-R. Tseng, and T. Graeber. “Integrated Microfluidic
and Imaging Platform for a Kinase Activity Radioassay to Analyze Minute Patient
Cancer Samples”. In: Cancer research 70 (Nov. 2010), pp. 8299–308. doi: 10.1158/0008-
5472.CAN-10-0851.

[21] T.-M. Tseng, M. Li, Y. Zhang, T.-Y. Ho, and U. Schlichtmann. “Cloud Columba: Ac-
cessible Design Automation Platform for Production and Inspiration: Invited Paper”.
In: 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 2019,
pp. 1–6. doi: 10.1109/ICCAD45719.2019.8942104.

[22] Cloud Columba Team. Cloud Columba. https://cc1.cloud-columba.org/. Accessed
on 2021-05-31.

37

https://doi.org/10.1109/TCAD.2005.855956
https://doi.org/10.1109/TCAD.2017.2760628
https://doi.org/10.1109/DAC.2018.8465905
https://www.ei.tum.de/en/eda/theses-jobs/finished-theses/, https://edawww.regent.e-technik.tu-muenchen.de/public/upload/202010021545_MasterThesis_YanluMa.pdf
https://www.ei.tum.de/en/eda/theses-jobs/finished-theses/, https://edawww.regent.e-technik.tu-muenchen.de/public/upload/202010021545_MasterThesis_YanluMa.pdf
https://www.ei.tum.de/en/eda/theses-jobs/finished-theses/, https://edawww.regent.e-technik.tu-muenchen.de/public/upload/202010021545_MasterThesis_YanluMa.pdf
https://doi.org/https://doi.org/10.1145/1629911.1630001
http://web.stanford.edu/group/foundry
https://doi.org/10.1145/2744769.2744887
http://www.gurobi.com
https://doi.org/10.1158/0008-5472.CAN-10-0851
https://doi.org/10.1158/0008-5472.CAN-10-0851
https://doi.org/10.1109/ICCAD45719.2019.8942104
https://cc1.cloud-columba.org/

	Acknowledgments
	Abstract
	Contents
	Introduction
	Switch Model
	Switch Module of Microfluidics
	General Switch Structure
	Problem Formulation

	Mathematical model
	Path Assignment For Flows
	Fluid Contamination Avoidance
	Flow Scheduling
	Binding Policies
	Pressure Sharing

	Result
	Contamination Avoidance
	Flow Scheduling
	Binding Policies

	Discussion
	Conclusion
	List of Figures
	List of Tables
	Glossary
	Acronyms
	Bibliography

