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Abstract—Sequential logic locking has been studied over the
last decade as a method to protect sequential circuits from
reverse engineering. However, most of the existing sequential
logic locking techniques are threatened by increasingly more
sophisticated SAT-based attacks, efficiently using input queries
to a SAT solver to rule out incorrect keys, as well as removal
attacks based on structural analysis. In this paper, we propose
TriLock, a sequential logic locking method that simultaneously
addresses these vulnerabilities. TriLock can achieve high, tunable
functional corruptibility while still guaranteeing exponential
queries to the SAT solver in a SAT-based attack. Further, it adopts
a state re-encoding method to obscure the boundary between the
original state registers and those inserted by the locking method,
thus making it more difficult to detect and remove the locking-
related components.

Index Terms—Sequential Logic Locking, SAT-Based Attacks,
Hardware Security

I. INTRODUCTION

The decentralization of the integrated circuit (IC) supply
chain over the past few decades has increasingly raised con-
cerns about potential threats, such as intellectual property (IP)
piracy and hardware Trojan insertion [1]. One of the most in-
vestigated IC protection schemes against these threats is logic
encryption (or locking) [2]–[8], which adds programmability
to the design at the gate or register-transfer level (RTL), so
that the intended function is hidden from unauthorized users,
and can only be accessed by a legal user by appropriately
configuring the locked circuit.

Early logic locking methods have mostly focused on mod-
ifying the combinational portion of a circuit [3], [4]. On the
other hand, sequential logic locking, the focus of this paper,
usually involves creating new states in the finite state machine
representing the original circuit and modifying its transi-
tions [2], [6], [9]–[13]. The correct functionality is typically
retrieved by either providing a key sequence, i.e., a dynamic
sequence of key patterns, via the primary input ports during
the first few clock cycles [2], [9] or by setting a set of key ports
to fixed values throughout the circuit operation time [11]–
[13]. Sequential locking shows the promise of significantly
increasing the attack effort at reasonable cost by judiciously
expanding a circuit’s state space. Yet, major threats to existing
schemes have been posed by increasingly more sophisticated
SAT-based attacks, efficiently using queries to a Boolean
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satisfiability (SAT) solver to rule out incorrect keys, as well as
removal attacks that can exploit structural circuit signatures.

SAT-based attacks [6], [14], [15], leveraging circuit un-
rolling and model checking, have shown to be successful
against the first versions of sequential locking [2], in that
they can effectively exploit the early occurrence of output
errors to dramatically decrease the number of SAT queries
and accelerate the key search. This vulnerability has called for
methods that can intentionally postpone the first occurrence of
the output errors [9]–[11], [13]. However, SAT-based attacks
can still be accelerated by leveraging functional corruptibility
to help estimate the required circuit unrolling depth and further
reduce the number of SAT queries [16]. Moreover, SAT-
resilient methods tend to exhibit poor error rates, usually
captured in terms of functional corruptibility, hence lack
enough protection – a trade-off that is extensively documented
in the context of combinational locking [17], [18]. Finally,
the net boundary between the locking-related components and
the rest of the circuit makes them vulnerable to removal
attacks [19], possibly boosted by machine learning-assisted
netlist analysis tools [20], [21]. A robust sequential locking
scheme that can offer quantifiable protection and resilience to
SAT-based and removal attacks is still elusive.

This paper proposes TriLock, an IC protection scheme
that leverages the temporal dimension of sequential locking
to break the well-known trade-off between SAT-attack re-
silience and functional corruptibility of combinational locking
and simultaneously address all of the above challenges. Our
contributions include:

• A cost-effective logic locking method that can exponen-
tially increase the number of SAT queries required for a
successful SAT-based attack.

• An error-generation mechanism that can strategically
increase the output error rate to achieve a desired func-
tional corruptibility without compromising SAT-attack
resilience.

• A state re-encoding technique that can significantly blur
the boundary between the original circuit and the logic
added by the locking scheme.

To the best of our knowledge, TriLock is the first sequential
locking technique that simultaneously tackles all the above
security objectives. We demonstrate its effectiveness via secu-
rity analysis and empirical validation on ISCAS’89 [22] and
ITC’99 [23] benchmarks.
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Fig. 1. Schematic of (a) a sequential circuit and (b) its b-unrolled version.

II. BACKGROUND AND RELATED WORK

We discuss SAT-based and removal attacks as well as the
methods that have been proposed to counteract them.

A. Preliminaries
In the following, we just use the term circuit to refer to

a sequential circuit. For a circuit C, shown in Fig. 1(a), its
b-unrolled version, denoted by Cb, is a combinational circuit,
shown in Fig. 1(b), that represents the behavior of C over the
first b clock cycles. We denote by I and O the sets of input and
output ports of C, respectively, by k and i its key and input
sequence, respectively, and by κ the (cycle) length of k, i.e.,
the number of clock cycles required to provide k to the circuit
after reset. For a sequence s, sn denotes the sub-sequence of
s associated with the n-th unrolling (clock cycle) and sn↔m
the one associated with the range of unrollings from n to m.

Let Cob be the b-unrolled version of the original circuit and
Ceb , with a slight abuse of notation, the (κ+b)-unrolled version
of the encrypted circuit. For simplicity, we refer to Ceb as the b-
unrolled version of the encrypted circuit, by skipping the first
κ cycles used to input the key. Let the functions implemented
by Cob and Ceb be fb : Bb|I| → Bb|O| and f ′b : Bκ|I| ×Bb|I| →
Bb|O|, respectively. Then, the functional corruptibility (FC) of
a b-unrolled version of an encrypted circuit is defined as [16]

FCb =
1

2(κ+b)|I|

∑
i∈Bb|I|

∑
k∈Bκ|I|

1(fb(i) 6= f ′b(i, k)), (1)

where 1(·) is the indicator function. FCb quantifies the
proportion of errors over all input-key combinations for a b-
unrolled encrypted circuit.

B. SAT-Based Attacks
The idea of formulating a SAT problem to prune out wrong

keys was first adopted by the SAT attack COMB-SAT [24]
to combinational logic locking. COMB-SAT assumes that the
attacker has access to the netlist of the locked circuit as well
as unlimited access to the correct input/output pairs from
the original circuit. An iterative key elimination process is
executed by searching for distinguishing input patterns (DIPs)
via SAT solving. A DIP is an input pattern of the locked circuit
for which there exist two different keys that lead to different
outputs. When a DIP d is found, it can effectively rule out a
set of wrong keys Kd that are detectable by d, expressed as

Kd = {k|f(d) 6= f ′(d, k)}, (2)

where f and f ′ are the functions implemented by the original
and the locked circuit, respectively. Until the correct key is
obtained, more DIPs are iteratively found and used to further
prune out the key search space. A trade-off exists between
SAT-attack resilience, i.e., the number of DIPs required to find
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Fig. 2. Overview of TriLock.

the correct key, and the FC of a locked circuit [17], [18].
The larger the number of errors induced by a wrong key, the
higher the likelihood that the wrong key can be detected and
eliminated by a DIP.

COMB-SAT cannot be directed applied to sequential circuits
without scan access to their internal states. It can, however,
be extended by relying on circuit unrolling to generate a b-
unrolled version of the encrypted circuit, Ceb , on which to
apply COMB-SAT [6], [14], [15]. Once a key is found for Ceb ,
model checking is performed to verify whether the key is also
correct for Ce, beyond the first b clock cycles. If this check
fails, the above steps will be repeated for a larger b. Several
sequential encryption methods [9]–[11], [13] boost SAT-attack
resilience by increasing the minimum unrolling depth b∗ that
is needed to rule out all the wrong keys. However, b∗ has been
recently shown to be effectively predictable [16], thus making
SAT-based attacks even more efficient.

C. Removal Attacks

Sequential logic encryption methods may be vulnerable to
removal attacks based on structural analysis of the circuit
netlist [12], [19]–[21]. Unwanted signatures may be detected
in the state transition graph (STG) of the encrypted circuit, for
example, when there is only one edge from the set of states
added by the locking logic to the states in the original STG [2].
Graph analysis methods can then be applied to the STG to
recognize the boundary between the two sets of states [19].
State-Deflection [10] adds several sink state clusters in the
STG to trap illegal users. However, because a sink cluster
does not have any outgoing edge, it can be easily identified
by a strongly connected component (SCC) algorithm.

Several papers [20], [21] view the recognition of state
registers as the first step for reverse-engineering finite state
machines, and propose accurate tools for this task. After the
state registers are recognized, the original registers must be
separated from the additional registers associated with the
encryption logic. In this paper, we assume that all the state
registers of a circuit can be successfully recognized. The aim
of TriLock is to make it more difficult to separate and remove
the additional registers associated with the encryption.

III. TRILOCK

We first discuss the trade-off between SAT-attack resilience
and FC and present in Section III-A a naive implementation
of TriLock that achieves high resilience at the cost of low
FC. We show how to overcome the trade-off in Section III-B,
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Fig. 3. Error tables resulting from the application of (a) ENb as in (3), with
|I| = κ = b∗ = b = 2 and (b) ESFb as in (16), with |I| = κs = b∗ = b = 2
and κf = 1.

allowing independent configuration of FC without compro-
mising SAT-attack resilience. We finally detail our strategy
to mitigate removal attacks in Section III-C. The encryption
flow of TriLock is shown in Fig. 2.

A. Trade-off Between SAT-Attack Resilience and FC
Combinational logic encryption techniques, such as SAR-

Lock [4] and Anti-SAT [5], adopt point functions to achieve
exponential SAT-attack resilience, quantified in terms of the
required number of DIPs (ndip). In these methods, each DIP
can only rule out a limited number of wrong keys at each
iteration of the SAT attack. We apply a similar concept in
TriLock to achieve exponential ndip in the key length κ. We
assume that an attacker can efficiently estimate the minimum
required unrolling depth b∗ [16] and perform COMB-SAT
directly on Ceb , with b ≥ b∗. We then focus on guaranteeing
an exponential ndip for Ceb .

We define an error function, Eb : Bb|I| × Bκ|I| → {1, 0},
for Ceb , as a function that takes as arguments a b|I|-bit input
sequence i and a κ|I|-bit key sequence k and returns 1 if and
only if an error occurs at the output of Ceb , i.e., if and only
if f ′b(k, i) 6= fb(i) holds. A naive error function that achieves
exponential ndip can then be obtained by setting b∗ = κ and
by implementing a point function, as done, for example, in
SARLock [4]. We would therefore obtain

ENb (i, k) = 1 [(k 6= k∗) ∧ (k = i1↔κ)] , (3)

where k∗, the correct key sequence, is a fixed sequence of
length κ. For an arbitrary wrong key kw, there exists a set of
input sequences ISkw for which ENb evaluates to 1, expressed
as follows,

ISkw = {i ∈ Bb|I||kw = i1↔κ}, (4)

that is, all the input sequences having kw as a prefix. Based on
the mechanism of COMB-SAT, any input sequence in ISkw
can then be selected as a DIP to rule out the wrong key kw.
However, an input sequence in ISkw cannot detect any other
wrong key, that is,

∀i ∈ ISkw ,∀k ∈ Bκ|I|\{kw}, Eb(i, k) = 0. (5)

Consequently, one DIP can only rule out one wrong key at a
time and the ndip will equal the number of wrong keys, i.e.,

ndip = 2κ|I| − 1. (6)

The effect of ENb is pictorially represented by the colored
error table in Fig. 3(a) for a 2-input circuit with κ = b∗ = b =
2. The row and the column indexes correspond to the values of
the input and the key sequences, respectively. If ENb (i, k) = 1,
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Fig. 4. Relations between ndip and FCb of a 4-input circuit implemented
by (a) ENb , and (b) ESFb with κf = 1.

the corresponding square is red. By definition, FCb can be
computed as

FCb =
(2κ|I| − 1) · 2(b−κ)|I|

2(κ+b)|I|
≈ 1

2κ|I|
=

1

ndip + 1
. (7)

which is, unsurprisingly, low for ENb , as low as 0.06 in the
scenario of Fig. 3(a). In the following, we detail how this trade-
off between ndip and FCb, captured by (7) and pictorially
shown in Fig. 4(a) for different key cycle lengths κ for a 4-
input circuit, can be circumvented by appropriately designing
the error function.

B. Circumventing the SAT-Attack Resilience vs. FC Trade-Off

For better clarity, we use κs to denote the key cycle length
and rewrite the error function in (3) as follows:

ESb (i, k) = 1 [(k 6= k∗) ∧ (k1↔κs = i1↔κs)] . (8)

We can now increase FC without compromising the attack
resilience achieved by ESb by strategically redesigning the
error function over a larger key cycle length κ = κs + κf ,
leading to an extended error table, as shown in Fig. 3(b) for
a 2-input circuit with κs = b∗ = b = 2 and κf = 1. The red
squares represent the errors defined by ESb ; we denote their
number by nSb , given by

nSb = (2κ|I| − 1) · 2(b−κs)|I| ≈ 2(b+κf )|I|. (9)

Similarly to (4), for any wrong key with prefix kw1↔κs , there
exists a set of input sequences ISkw = {i ∈ Bb|I||kw1↔κs =
i1↔κs} that can be used as DIPs to eliminate only wrong keys
with the same prefix kw1↔κs . There are, in total, 2κs|I| possible
values for the prefix kw1↔κs of a wrong key, so the SAT-attack
resilience corresponding to ESb is

ndip = 2κs|I|. (10)

Besides the errors defined by ESb , we look for a set of
additional input-key pairs in Ceb such that, if an error is added
at each pair, it will not decrease the SAT-attack resilience
achieved by ESb . For a fixed sequence k∗∗ of length κf ,
specified by the designer and such that k∗∗ 6= k∗(κ−κf )↔κ,
one such set can be defined as follows:

P k
∗,k∗∗

b = {(i, k)|k(κ−κf )↔κ 6= k∗∗) ∧ (k 6= k∗)}, (11)

where k∗ is the correct key sequence of length κ. The blue
squares in Fig. 3(b) pictorially represent P k

∗,k∗∗

b when k∗ =
100101 and k∗∗ = 11. The following result states the property
of P k

∗,k∗∗

b .
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Theorem 1. Given two sequences k∗∗ and k∗ of length κf
and κ, respectively, with κf < κ, let the b-unrolled version
of the encrypted circuit Ceb implement the error function ESb
in (8), with κs = κ− κf . We assume that errors are inserted
at all input-key pairs in P k

∗,k∗∗

b , defined as in (11), i.e.,
f ′b(i, k) 6= fb(i), ∀(i, k) ∈ P k

∗,k∗∗

b . Then, COMB-SAT on
Ceb will require at least 2κs|I| DIPs.

Proof. Given a wrong key kw with k∗∗ as a suffix, i.e., such
that (kw 6= k∗) ∧ (kw(κ−κf )↔κ = k∗∗), by the definition of

P k
∗,k∗∗

b , we have that (i, kw) /∈ Pb, ∀i ∈ Bb|I|. Let iw be the
DIP capable of detecting kw. Since iw cannot be in P k

∗,k∗∗

b ,
then it must satisfy ESb (i

w, kw) = 1. Let us now assume that
kv is another wrong key with k∗∗ as a suffix, and such that
kw 6= kv . By (8), we conclude that ESb (i

w, kv) = 0 holds.
Therefore, the DIP that allows ruling out kw cannot exclude
any other wrong key having k∗∗ as a suffix. In total, there are
2κs|I| wrong keys with a suffix of k∗∗. Therefore, 2κs|I| DIPs
are at least required to exclude those wrong keys.

Theorem 1 indicates that more errors can be added to
Ceb to boost FCb without negatively affecting the SAT-attack
resilience achieved with ESb alone. Moreover, the number of
DIPs is independent of b. We denote by nefb the number
of error-free entries on the error table. We can compute the
maximum achievable FCb as follows:

FCb =
2(κ+b)|I| − nefb

2(κ+b)|I|
= 1− 2κs|I| · 2b|I|

2(κ+b)|I|
= 1− 1

2κf |I|
. (12)

In the scenario of Fig. 3(b), if all the blue squares are selected
as errors, FCb can be as high as 0.75. We can select the
additional errors via the following error function

EFb (i, k) = 1

[
(i, k) ∈ P k

∗,k∗∗

b ∧ r(i, k)
]
, (13)

where r(i, k) modulates the proportion of input-key pairs in
P k
∗,k∗∗

b that are selected to place an error. In this paper, we
choose

r(i, k) = 1

[
k(κ−κf )↔κ ≤ α(2

κf |I| − 1)
]
, (14)

where α ∈ (0, 1) is a design parameter used to configure the
desired FC to the following value:

FCb ≈ α
(
1− 1

2κf |I|

)
. (15)

By combining ESb and EFb , we obtain

ESFb (i, k) = ESb (i, k) ∨ EFb (i, k), (16)

which is the error function adopted by TriLock to guarantee
exponential SAT-attack resilience and independently config-
urable FC. As shown in Fig. 4(b) for a 4-input circuit with
κf = 1, it is indeed possible to independently tune the FCb
while still keeping high SAT-attack resilience. Moreover, the
ndip and FCb in (10) and (15), respectively, are independent
of the unrolling depth b.

We implement the error function ESFb with the error genera-
tor block, shown in green in Fig. 2(a), whose output signals are

Algorithm 1 State register selection
Input: Ce and S.
Output: R.
1: RCG = create_graph(Ce); R = [ ]; count = 0
2: E,O,M = run_scc(RCG)
3: while ((E 6= ∅ or O 6= ∅) and count < S) do
4: if (E 6= ∅ and O 6= ∅) then
5: SCC1, SCC2 = get_largest_scc(E,O)
6: else
7: temp = get_non_empty_set(E,O)
8: SCC1, SCC2 = get_largest_scc(temp,M)
9: end if

10: r1, r2 = get_max_edge_node(SCC1, SCC2)
11: R.append([r1, r2]); count = count+ 1
12: RCG = update_graph(RCG, [r1, r2])
13: E,O,M = run_scc(RCG)
14: end while
15: return R

passed to the state error handler and the output error handler in
orange, to trigger a signal inversion on a configurable number
of state registers and primary output ports, respectively.

C. Enhancing Removal Attack Resilience: State Re-encoding

As shown in Fig. 2(a), we can distinguish the original
state registers of an an encrypted circuit (in blue) from
the extra state registers added by the encryption (in green).
Identifying the type of registers is an essential step toward
removal attacks. Specifically, an attacker can leverage the
SCC algorithm in a register connection graph (RCG), where
a register is represented by a node and the existence of a path
between two registers is denoted by a directed edge between
the corresponding nodes. The output of the SCC algorithm on
an RCG is one or more clusters of nodes, called SCCs. For
any two nodes in the same SCC, they are reachable from each
other. We denote by O-SCC, E-SCC, and M-SCC, an SCC
containing only the original registers, only the extra registers,
and a mix of the two types of registers, respectively.

When no SCC in an RCG is an M-SCC, the identification of
the set of original or extra registers is expected to be easy, as
each SCC is already a congregation of either original or extra
registers. In the best case, an attacker could expect only two
SCCs, an O-SCC and an E-SCC, with all the original registers
and all the extra registers, respectively, as the algorithm output.
Such a successful clustering of the registers would be due
to the insufficient connections between original and extra
registers. In contrast, if the connections are dense, one or more
M-SCCs will exist and it will be harder to classify the type
of registers in those M-SCCs. We then propose a state re-
encoding method, implemented on the encrypted sequential
circuit, that intentionally creates new edges between O-SCCs
and E-SCCs, resulting in more registers being clustered in
one or several M-SCCs. As shown in Fig. 2(b), the state re-
encoding method selects a configurable number of registers,
and inserts state encoders and decoders after adding the error
generator and error handlers. We introduce below the regis-
ter selection procedure and the encoder/decoder mechanism
adopted in state re-encoding.

State Register Selection. We adopt a greedy method to
iteratively select and encode pairs of original and extra reg-
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Fig. 5. (a) Abstract schematic and (b) RCG before and after state re-encoding.

isters. Algorithm 1 shows the pair selection process, which
takes as inputs an encrypted netlist Ce and the desired number
of register pairs S, and returns a list of register pairs R as
output. After creating the RCG from Ce (line 1) and running
the SCC algorithm (line 2), three sets, i.e., E, O, and M , are
generated that contain all the E-SCCs, O-SCCs, and M-SCCs,
respectively. To maximize the impact of state re-encoding for
a single pair of original and extra registers, we first identify the
largest O-SCC and E-SCC as SCC1 and SCC2, respectively
(line 5). In case there does not exist an E-SCC or O-SCC, we
choose the largest M-SCC as the replacement (line 7-8). In
SCC1 and SCC2, we then select the nodes connected by the
largest number of edges, denoted as r1 and r2, respectively
(line 10). We record (r1, r2) in R (line 11) and update the
RCG (line 12-13) as a result of re-encoding (r1, r2). The above
register pair selection process is iterated until the designer-
specified number of pairs is reached or no E-SCC and O-SCC
exist.

Encoder/Decoder Mechanism. For each pair of registers
(r1, r2) in R, a state encoder and a state decoder are inserted
between the combinational logic and the two registers, r1 and
r2, as shown in Fig. 5(a), to merge the SCC containing r1
(SCC1) and the one containing r2 (SCC2). We denote by
enc(·) and dec(·) the functions of the encoder and the decoder,
respectively. Between the encoder and the decoder, r1 and r2
are replaced by a set of encoded state registers rei, where
1 ≤ i ≤ m. We denote by s1 (s′1) the net connecting from
(to) the combinational logic to (from) r1. Similar notations are
used for r2.

To prevent the encoder/decoder structure from affecting the
circuit function, a fixed-point condition dec(enc(a)) = a
should hold for any 2-bit sequence a. Moreover, state re-
encoding should achieve successful merging of the two SCCs
into one M-SCC, which requires the existence of the following
looped signal propagation path (abbreviated as a path):

∃x, y ∈ [1,m] : s1 → rex → s′2 → s2 → rey → s′1 → s1. (17)

When such a looped path exists, any register ra in SCC1 can
connect to any register rb in SCC2 via the path: ra → s1 →
rex → s′2 → rb, as shown in Fig. 5(b). Similarly, rb can also
reach ra via the path: rb → s2 → rey → s′1 → ra. On the
RCG, the above paths construct a bidirectional edge between
ra and rb, which merges SCC1 and SCC2 into an M-SCC.

In this paper, we implement the encoder with two arithmetic
operations, namely, e1 = s1 + s2 and e2 = s1 − s2,
where e1 and e2 are the encoded states. The decoder also
excutes two arithmetic operations, s′1 = 1

2 (e
′
1 + e′2) and

s′2 = 1
2 (e
′
1 − e′2), which satisfies the fixed-point condition

TABLE I
SAT-ATTACK RESILIENCE OF TRILOCK

Circuit Circuit Info. κs = 1 κs = 2 κs = 3
PI PO FF Gate ndip T (s) ndip T (s) ndip T (s)

s9234 19 22 228 5597 524288 3.9e+06 2.7e+11 2.1e+12 1.4e+17 1.1e+18
s15850 13 87 597 9772 8192 105283 6.7e+07 5.0e+08 5.5e+11 4.1e+12
s35932 35 320 1728 16065 3.4e+10 2.6e+11 1.2e+21 8.8e+21 4.1e+31 3.0e+32
s38417 28 106 1636 22179 2.7e+08 2.0e+09 7.2e+16 5.4e+17 1.9e+25 1.4e+26
s38584 11 278 1452 19253 2048 27394.01 4.2e+06 3.1e+07 8.6e+09 6.4e+10

b12 5 6 121 1000 32 55.44 1024 1934.18 32768 244449.28
b14 32 54 245 8567 4.3e+09 3.2e+10 1.8e+19 1.4e+20 7.9e+28 5.9e+29
b15 36 70 447 6931 6.9e+10 5.1e+11 4.7e+21 3.5e+22 3.2e+32 2.4e+33
b18 37 23 20372 94249 1.4e+11 1.0e+12 1.9e+22 1.4e+23 2.6e+33 1.9e+34
b20 32 22 490 17158 4.3e+09 3.2e+10 1.8e+19 1.4e+20 7.9e+28 5.9e+29

while creating a looped path as in (17). The associated
two SCCs are, thus, merged into an M-SCC. To mitigate
the structural signature produced by repeatedly implementing
the same encoder/decoder, various enc(·) and dec(·) can be
applied to different register pairs, which can be subject of
future work.

IV. EXPERIMENTAL RESULTS

We implement the encryption flow of TriLock in Python,
using Synopsys Design Compiler and a 45nm Nangate Open
Cell Library [25] as the synthesis tool and the target library,
respectively. FC is simulated with 800 random inputs and
keys using Synopsys VCS, while the SAT-attack resilience
is evaluated via an implementation of a state-of-the-art SAT-
based attack [16] which can effectively predict the minimum
required unrolling depth b∗. In the case of TriLock, b∗ = κs.
We select ten benchmark circuits from ISCAS’89 [22] and
ITC’99 [23], as shown in Table I. All experiments are executed
on an Intel(R) Xeon(R) E5-2450 2.5-GHz CPU with 126-GB
memory.
SAT-Attack Resilience. Table I shows ndip and the runtime
resulting from applying the attack on the selected benchmark
circuits when κs ranges from 1 to 3, and κf , α and S are
fixed to 1, 0.6, and 10, respectively. With a two-day time-out
threshold, four experiments terminated successfully. The re-
sults show that the achieved SAT-attack resilience is consistent
with (10). For the rest of the experiments, denoted in blue, we
show ndip as computed by (10) and extrapolate the runtime by
conservatively assuming a constant ratio between the runtime
and ndip that can be acquired from the finished experiments.
According to Table I, 76.6% of the attack experiments are
expected to require more than one year to finish.
Functional Corruptibility. Fig. 7 reports the simulated FCb
for different α and κf . We set κs = 4 to achieve high
SAT-attack resilience, since κs = 3 can already achieve
high resilience for most circuits in Table I. For each locking
configuration, we plot the average of the simulated FCb for b
ranging from κs to κs+5. Our results show that FCb is close
to its estimate in (15), with an absolute error within ±0.05,
which illustrates TriLock’s ability to configure FC with high
SAT-attack resilience.
Removal Attack Resilience. For each benchmark circuit, we
perform state re-encoding with S = 10 and S = 30. In
addition, we generate a reference design with no state re-
encoding, i.e., S = 0. Table II shows the results of the SCC
algorithm. In addition to the number of different types of
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TABLE II
REMOVAL ATTACK RESILIENCE OF TRILOCK

Circuit S = 0 S = 10 S = 30
O E M PM O E M PM O E M PM

s9234 72 79 0 0 12 0 1 95.2 0 0 1 100
s15850 203 93 0 0 39 0 1 94.0 14 0 1 97.9
s35932 18 317 0 0 0 0 1 100 0 0 1 100
s38417 889 198 0 0 36 0 1 97.9 20 0 1 98.9
s38584 735 79 0 0 30 0 1 97.5 0 0 1 100

b12 19 37 0 0 0 0 1 100 0 0 1 100
b14 57 226 0 0 45 0 1 90.4 24 0 1 95.1
b15 141 254 0 0 91 0 1 87.1 61 0 1 91.8
b18 95 261 0 0 53 0 1 98.4 42 0 1 98.7
b20 43 226 0 0 31 0 1 95.6 10 0 1 98.6

SCCs, denoted by O, E, and M , we show the percentage
of registers that are in M-SCCs, which is denoted by PM . On
average, the numbers of O-SCCs and E-SCCs are reduced by
71.71% and 100% when 10 register pairs are selected for state
re-encoding. The reduction becomes 83.80% and 100% when
30 register pairs are selected. While state re-encoding may not
eliminate the existence of O-SCCs or E-SCCs for most cases
in Table II, PM being close to 100 indicates that most of the
registers are clustered in one M-SCC, which means most of
the original and extra registers are densely connected.

Overhead. We synthesize the locked netlists with κf = 1,
α = 0.6, and S = 10, which achieve reasonable FC and
high removal attack resilience. κs ranges from 1 to 5 to
achieve different levels of SAT-attack resilience. The overhead
of area, delay, and power (ADP) is computed as percentage
increase in the area, delay, and power, respectively, incurred
by the locking scheme. We report the ADP overhead in Fig. 6,
showing that larger circuits tend to exhibit smaller overhead.
Six out of ten circuits present less than 40% in any of the
ADP dimensions. In three benchmark circuits, namely, s9234,
b14, and b15, the power and area overhead exceed 50% when
κs > 3. However, as shown in Table I, these circuits can
already achieve reasonably high SAT-attack resilience with
κs = 2, where the overhead is less than 40%. In system-
on-chip scenarios, it is possible to implement TriLock only
on the sensitive portions of the design, making the overhead
even smaller.

V. CONCLUSIONS

In this paper, we propose a cost-effective sequential logic
locking technique, TriLock, to achieve both high SAT-attack
resilience and high functional corruptibility, which circum-
vents, for the first time, the trade-off between the two security
concerns that exists in combinational locking. We also present
a state re-encoding technique that can significantly improve
the removal attack resilience of TriLock and, potentially,
other sequential locking techniques. Future work includes
investigating other attack vectors [26], e.g., signature analysis
on the STG, to further improve the robustness of TriLock.
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